Dados los planos
hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.
Llamaremos R a la recta perpendicular al plano que pasa por el punto A. De la ecuación del plano , sabemos que su vector perpendicular es (2, -1, -1), por lo que la recta R se puede escribir como
El punto de intersección entre la recta R y el plano , que llamaremos , se obtiene substituyendo los valores de , y en la ecuación del plano:
simplificando,
con lo que el punto de intersección se encuentra en . Substituyendo en (1), tenemos
El vector que une los puntos O' y A se obtiene simplemente restando,
Por simetría, el vector que une el punto con será . Por tanto,
Dos barras se cruzan bajo un ángulo y se mueven con iguales velocidades y perpendicularmente a si mismas, tal como se indica en la figura. ¿Cuál será la velocidad del punto de cruce de las barras?