Un plano viene dado por , donde el vector es un vector normal al plano. Una recta en forma continua, es decir,
tendrá la dirección del vector . Como se nos pide un plano perpendicular a una recta y conocemos el vector director de la recta en cuestión no tenemos, pues, más que elegir como vector normal al plano, al vector director de esa recta; hacer , así quedaría el plano
Como además se nos pide que el plano pase por un punto , para calcular sólo tenemos que introducir las coordenadas del punto dado en la ecuación del plano y despejarla.
Y el plano queda de forma general en la forma
Si en la expresión anterior usamos los datos proporcionados
Obtenemos el plano
Dados los planos
hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.
Llamaremos R a la recta perpendicular al plano que pasa por el punto A. De la ecuación del plano , sabemos que su vector perpendicular es (2, -1, -1), por lo que la recta R se puede escribir como
El punto de intersección entre la recta R y el plano , que llamaremos , se obtiene substituyendo los valores de , y en la ecuación del plano:
simplificando,
con lo que el punto de intersección se encuentra en . Substituyendo en (1), tenemos
El vector que une los puntos O' y A se obtiene simplemente restando,
Por simetría, el vector que une el punto con será . Por tanto,
Dados el punto y el plano . El punto simétrico, de respecto de será el punto que cumpla
donde es el punto de intersección entre el plano y la recta , perpendicular a éste y que pasa por . Matemáticamente:
Si expresamos de forma continua
Y ahora resolvemos dos de las tres igualdades, podemos expresar como intersección de dos planos
Así podemos reescribir (5.2) como . Para calcular ahora las coordenadas de no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:
Donde , y . Lo resolveremos mediante la REGLA DE CRAMER, por lo que:
Así, tenemos que . Si ahora utilizamos este resultado en (1), obtenemos las coordenadas del punto simétrico :
En partircular para el caso dado,
Por lo tanto,
Entonces tenemos que