Dados los vectores y con origen en el punto común y extremos A(-1,2,3) y B(2,-1,1) respectivamente, calcular:
1.Producto escalar .
2.Producto vectorial .
3.Producto vectorial .
La velocidad de un móvil es . Una fuerza actúa sobre él. Calcula la componente de dicha fuerza en la dirección del movimiento y en la dirección perpendicular a él.
En primer lugar, obtendremos dos vectores paralelos al plano linealmente independientes. Para hacerlo, simplemente restamos los puntos dados por parejas:
Cualquier vector perpendicular al plano debe ser perpendicular a estos dos vectores. Podemos obtener uno de estos vectores simplemente calculando el producto vectorial,
Por la definición del producto vectorial, este vector es perpendicular al plano dado.
Dados los vectores y , calcula:
1.El producto escalar de ambos vectores.
2.La proyección de , sobre
3.Las coordenadas de un vector unitario de la misma dirección que
4.Un vector de la misma dirección que y cuyo módulo sea igual a la proyección de sobre .
Dados dos vectores y , obtener el vector proyección ortogonal de sobre . Aplicarlo al caso en que [ERROR DE LaTeX. Error: 4 ] , [ERROR DE LaTeX. Error: 4 ] y , obtener también la proyección ortogonal de sobre .
Halla el momento con respecto al punto P(0,-1,1) del vector unitario con origen en O(2,2,2) y que es paralelo al vector .