Dados los vectores y con origen en el punto común y extremos A(-1,2,3) y B(2,-1,1) respectivamente, calcular:
1.Producto escalar .
2.Producto vectorial .
3.Producto vectorial .
La velocidad de un móvil es . Una fuerza actúa sobre él. Calcula la componente de dicha fuerza en la dirección del movimiento y en la dirección perpendicular a él.
El plano que pasa por los tres puntos no alineados , y ; entonces su ecuación puede ser escrita como:
Si desarrollamos el determinante por la primera fila:
Llamando
Podemos reescribir (3) como sigue
Que es la ecuación del plano que pasa por los puntos P, Q y R no colineales.
Para el caso particular, dados los vectores A(0,1,1), B(2,1,0) y C(3,0,1), calcularemos los coeficientes a, b, c y d por separado y luego los introduciremos en (4); así
Podemos, por lo tanto, escribir la ecuación del plano
Volviendo a la expresión general del plano, (4), y tomando dos puntos del mismo y para los cuales se cumple la ecuación, es decir:
Si restamos las expresiones y sacamos factor común nos queda
Y teniendo en cuenta que el vector , podemos escribir lo anterior como
Siendo y por lo tanto perpendicular al plano, . Si aplicamos el resultado obtenido de forma general al plano que teníamos, obtenemos un vector perpendicular a este: .
Dados los vectores y , calcula:
1.El producto escalar de ambos vectores.
2.La proyección de , sobre
3.Las coordenadas de un vector unitario de la misma dirección que
4.Un vector de la misma dirección que y cuyo módulo sea igual a la proyección de sobre .
Dados dos vectores y , obtener el vector proyección ortogonal de sobre . Aplicarlo al caso en que [ERROR DE LaTeX. Error: 4 ] , [ERROR DE LaTeX. Error: 4 ] y , obtener también la proyección ortogonal de sobre .
Halla el momento con respecto al punto P(0,-1,1) del vector unitario con origen en O(2,2,2) y que es paralelo al vector .