Problemas de leyes de newton en una dimensión

Nivel: Primer ciclo

1
Nivel
Primer ciclo
Dificultad
4
 

Para despegar, dos planeadores se arrastran uno tras el otro mediante un avión de transporte. La masa de cada planeador es y la fuerza con que se oponen al arrastre es . Los cables empleados para unir los tres aviones no deben someterse a tensiones superiores a . ¿Cuál es la aceleración máxima con que puede arrastrar los planeadores sin que se rompan los cables? ¿Cuál es la longitud mínima de pista requerida, si es la velocidad de despegue?

Solución disponible
pod
 
2
Nivel
Primer ciclo
Dificultad
5
 

Suponemos gotas de lluvia que caen desde una cierta altura . Si no hubiera fricción, calcular la velocidad con la que llega a tierra. Ahora suponemos que las gotas experimentan una fuerza de fricción . Calcular y encontrar la velocidad límite. Para una aplicación realista supondremos los siguientes datos: y .

Solución disponible
H[e]rtz
 

En primer lugar realizaremos el caso en el que no hay fricción. Para ello utilizaremos la ley de la conservación de la energía, es decir, la energía mecánica inicial es igual a la energía mecánica final

(1)

Como la velocidad inicial la supondremos que es nula, la T será 0, eso quiere decir que en el instante inicial las gotas están paradas. Lo mismo con la que obtendrá tambien el valor 0, ya que la altura final la consideraremos 0. Quedando la siguiente ecuación

(2)

aislando la velocidad final de manera que nos queda

(3)

de manera que sustituyendo nos dará

(4)

Para el siguiente caso, en que hay fuerza de fricción, aplicamos la segunda ley de Newton, considerando que la únicas fuerzas que actúan en la gota son, su peso y la fuerza de fricción

(5)

para ahora hallar utilizaremos la regla de la cadena

(6)

teniendo en cuenta que , y desarrollando los siguientes pasos para la integración

(7)

ahora con sus correspondientes limites de integración

(8)

sabiendo que es una integral inmediata del tipo , nos queda

(9)

y aislando en la ecuación de la manera siguiente, obtenemos la velocidad en función de la altura

(10)

Para encontrar ahora la velocidad límite de la gota, se puede plantear de varias maneras: sabemos que cuando la velocidad es máxima la , también razonando que cuando el peso se iguala con la fuerza de fricción, la velocidad es constante ; de manera que podremos considerar el caso en que la altura tiende a 0

(11)
3
Nivel
Primer ciclo
Dificultad
6
 

Una cobra real de longitud L y masa m uniformemente distribuida reposa sobre el suelo. La cobra decide elevarse verticalmente. ¿Cuál será el valor de la fuerza media que ejerce el suelo sobre ella y hace que la cobra se eleve hacia arriba con una velocidad constante v? Despreciar todo tipo de rozamiento.

Solución disponible
Carroza
 
4
Fuerza proporcional al tiempo
Nivel
Primer ciclo
Dificultad
7
 

Un punto de masa se mueve por una trayectoria rectilínea bajo la acción de una fuerza proporcional al tiempo (el coeficiente de proporcionalidad es ). Además, el punto experimenta por parte del medio una resistencia viscosa por parte del aire proporcional a la velocidad (el coeficiente de proporcionalidad es ). En el instante inicial la velocidad es igual a cero.

1.Encuentre la evolución de la velocidad respecto del tiempo en el caso en que no hay resistencia del aire (es decir, cuando ).

2.Resuelva el problema en el caso general, con .

3.Compruebe que el resultado del segundo apartado se reduce al del primero tomando el límite .

Solución disponible
pod
 
5
Nivel
Primer ciclo
Dificultad
8
 

La fuerza de rozamiento de un cuerpo con un medio fluido se suele modelizar con expresiones del tipo , donde n = 1, 2, etc., y es la velocidad del cuerpo relativa al medio. Para ponerlo en práctica, imaginaremos un velero de masa que se mueve impulsado por un viento de de velocidad (respecto al mar). La fuerza de impulsión se puede considerar como el rozamiento con el aire, con y constante de proporcionalidad . Consideraremos también la existencia de el rozamiento con el agua, con y constante .

1.Escribir la expresión de todas las fuerzas que intervienen en el movimiento del velero en función de la velocidad del mismo, siguiendo un convenio de signos coherente.

2.¿Cuál es la velocidad de crucero del velero?

3.Encuentra la velocidad del velero en función del tiempo, suponiendo que comienza parado.

4.Encuentra la posición del velero en función del tiempo, suponiendo que comienza en el origen.

5.Utilizando la solución analítica, verifica que la velocidad de crucero es la calculada en el anterior apartado.

Solución disponible
pod
 
6
Nivel
Primer ciclo
Dificultad
8
 

Sabiendo que el momento lineal de una onda electro magnética és donde E es la energía de esta onda y c la velocidad de la luz, calcula la fuerza que ejerce una onda con un flujo de energía de sobre una cartulina negra de 3cm de lado, que la absorbe completamente

Solución disponible
Sartie
 
7
Nivel
Primer ciclo
Dificultad
9
 

Considerando una fuerza constante que actúa tan sólo entre y , con mucho menor que cualquier otra escala de tiempos del problema (con lo cual podemos quedarnos, en cada momento, con el primer orden) obtén la función de Green del oscilador armónico amortiguado, con frecuencia natural y coeficiente de rozamiento . Considerar los tres casos posibles:

1.oscilador sobreamortiguado,

2.amortiguamiento crítico y

3.oscilador infraamortiguado.

Solución disponible
pod
 
8
Nivel
Primer ciclo
Dificultad
9
 

Considera un oscilador armónico simple de frecuencia natural , el cual se mueve sobre la superficie del suelo, lo que produce una fuerza de rozamiento constante, de valor . El oscilador comienza, en reposo, separado una distancia de la posición donde la fuerza de recuperación es nula. Calcula cual será la evolución ulterior del oscilador. Considera iguales las fuerzas de fricción estática y dinámica.

Solución disponible
pod
 
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2024, La web de Física
Dirección de contacto
Créditos