Tomamos uno de los cuatro puntos como origen, por ejemplo D. Una vez fijado el origen, los otros tres puntos definen otros tantos tres vectores,
Estos tres vectores definen una matriz,
Si el rango de esta matriz es 1, entonces los cuatro puntos están alineados. Si el rango es 2, son coplanares. Si es tres, no son coplanares.
Podemos comprobar fácilmente que el rango es, como mínimo, dos considerando el menor
Nos queda únicamenmte comprobar si el rango de la matriz puede ser tres, calculando el determinante total,
Por lo tanto, el rango de la matriz es tres, y los vectores no son coplanarios.
Dados tres puntos , y , la ecuación del plano formado por ellos es
Así, todo punto que cumpla lo anterior pertenecerá al plano.
En el caso particular que se nos pide resolvamos, hemos de escribir la matriz con los puntos dados y calcular el determinante; si éste es nulo, entonces los puntos són coplanarios si no, no pertenecerán a un mismo plano.
Por lo que los los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1) no son coplanarios.
Dados los planos
hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.
El vector perpendicular al plano es , mientras que el vector perpendicular a la recta es . La proyección del vector sobre viene dada por el producto escalar,
La proyección del vector sobre el plano se obtiene restándole su proyección sobre el vector ,
Para asegurarnos que la recta es la proyección sobre el plano de la recta , debemos asegurarnos de que pasa por el punto de intersección entre la recta y el plano. Dicho punto se obtiene por simple substitución en la ecuación del plano de la ecuación de la recta,
para facilitar el proceso, agrupamos todos los términos dependientes y los independientes, utilizando la notación del producto escalar, tenemos
lo que nos da
con lo que el punto de intersección será
Por lo tanto, la ecuación de la recta será
lo que nos da
Dos barras se cruzan bajo un ángulo y se mueven con iguales velocidades y perpendicularmente a si mismas, tal como se indica en la figura. ¿Cuál será la velocidad del punto de cruce de las barras?