Problemas de geometría lineal y espacio afín

1
Nivel
Secundaria
Dificultad
3
 

Hallar la ecuación del plano que pasa por el punto y es perpendicular a la recta

(1)
Solución disponible
Ghiret
 
2
Nivel
Secundaria
Dificultad
4
 

Dados los puntos A(1,2,3), B(-1,2,0) y C(2,3,-1), hallar:

1.La distancia de A a B,

2.El ángulo ACB.

Solución disponible
Ghiret
 
3
Nivel
Secundaria
Dificultad
4
 

Hallar las coordenadas de un vector paralelo a los dos planos, y .

Solución disponible
Ghiret
 
4
Nivel
Secundaria
Dificultad
4
 

¿Son coplanarios los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1)?

2 soluciones disponibles
pod
 

Tomamos uno de los cuatro puntos como origen, por ejemplo D. Una vez fijado el origen, los otros tres puntos definen otros tantos tres vectores,

(1)

Estos tres vectores definen una matriz,

(2)

Si el rango de esta matriz es 1, entonces los cuatro puntos están alineados. Si el rango es 2, son coplanares. Si es tres, no son coplanares.

Podemos comprobar fácilmente que el rango es, como mínimo, dos considerando el menor

(3)

Nos queda únicamenmte comprobar si el rango de la matriz puede ser tres, calculando el determinante total,

(4)

Por lo tanto, el rango de la matriz es tres, y los vectores no son coplanarios.

Ghiret
 

Dados tres puntos , y , la ecuación del plano formado por ellos es

(1)

Así, todo punto que cumpla lo anterior pertenecerá al plano.

En el caso particular que se nos pide resolvamos, hemos de escribir la matriz con los puntos dados y calcular el determinante; si éste es nulo, entonces los puntos són coplanarios si no, no pertenecerán a un mismo plano.

(2)

Por lo que los los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1) no son coplanarios.

5
Nivel
Secundaria
Dificultad
5
 

Dados los planos

(1)

hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.

Solución disponible
Ghiret
 
6
Nivel
Secundaria
Dificultad
6
 

Hallar el simétrico , del punto respecto del plano .

2 soluciones disponibles
pod
 
Ghiret
 
7
Nivel
Secundaria
Dificultad
8
 

Hallar la ecuación de la recta , proyección de la recta

(1)

sobre el plano .

2 soluciones disponibles
pod
 

El vector perpendicular al plano es , mientras que el vector perpendicular a la recta es . La proyección del vector sobre viene dada por el producto escalar,

(1)

La proyección del vector sobre el plano se obtiene restándole su proyección sobre el vector ,

(2)

Para asegurarnos que la recta es la proyección sobre el plano de la recta , debemos asegurarnos de que pasa por el punto de intersección entre la recta y el plano. Dicho punto se obtiene por simple substitución en la ecuación del plano de la ecuación de la recta,

(3)

para facilitar el proceso, agrupamos todos los términos dependientes y los independientes, utilizando la notación del producto escalar, tenemos

(4)

lo que nos da

(5)

con lo que el punto de intersección será

(6)

Por lo tanto, la ecuación de la recta será

(7)

lo que nos da

(8)
Ghiret
 
8
Nivel
Primer ciclo
Dificultad
7
 

Dos barras se cruzan bajo un ángulo y se mueven con iguales velocidades y perpendicularmente a si mismas, tal como se indica en la figura. ¿Cuál será la velocidad del punto de cruce de las barras?

Diagrama del problema
Figura 1. Diagrama del problema
Solución disponible
pod
 
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2024, La web de Física
Dirección de contacto
Créditos