Problemas de geometría lineal y espacio afín

Nivel: Secundaria

1
Nivel
Secundaria
Dificultad
3
 

Hallar la ecuación del plano que pasa por el punto y es perpendicular a la recta

(1)
Solución disponible
Ghiret
 
2
Nivel
Secundaria
Dificultad
4
 

Dados los puntos A(1,2,3), B(-1,2,0) y C(2,3,-1), hallar:

1.La distancia de A a B,

2.El ángulo ACB.

Solución disponible
Ghiret
 
3
Nivel
Secundaria
Dificultad
4
 

Hallar las coordenadas de un vector paralelo a los dos planos, y .

Solución disponible
Ghiret
 
4
Nivel
Secundaria
Dificultad
4
 

¿Son coplanarios los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1)?

2 soluciones disponibles
pod
 
Ghiret
 
5
Nivel
Secundaria
Dificultad
5
 

Dados los planos

(1)

hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.

Solución disponible
Ghiret
 
6
Nivel
Secundaria
Dificultad
6
 

Hallar el simétrico , del punto respecto del plano .

2 soluciones disponibles
pod
 
Ghiret
 

Dados el punto y el plano . El punto simétrico, de respecto de será el punto que cumpla

(1)

donde es el punto de intersección entre el plano y la recta , perpendicular a éste y que pasa por . Matemáticamente:

(2)
(3)

Si expresamos de forma continua

(4)

Y ahora resolvemos dos de las tres igualdades, podemos expresar como intersección de dos planos

(5)

Así podemos reescribir (5.2) como . Para calcular ahora las coordenadas de no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:

[ERROR DE LaTeX. Error: 4 ]
(6)

Donde , y . Lo resolveremos mediante la REGLA DE CRAMER, por lo que:

(7)

Así, tenemos que . Si ahora utilizamos este resultado en (1), obtenemos las coordenadas del punto simétrico :

(8)

En partircular para el caso dado,

[ERROR DE LaTeX. Error: 4 ]
(9)
(10)

Por lo tanto,

(11)

Entonces tenemos que

(12)
7
Nivel
Secundaria
Dificultad
8
 

Hallar la ecuación de la recta , proyección de la recta

(1)

sobre el plano .

2 soluciones disponibles
pod
 
Ghiret
 
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2024, La web de Física
Dirección de contacto
Créditos