Tomamos uno de los cuatro puntos como origen, por ejemplo D. Una vez fijado el origen, los otros tres puntos definen otros tantos tres vectores,
Estos tres vectores definen una matriz,
Si el rango de esta matriz es 1, entonces los cuatro puntos están alineados. Si el rango es 2, son coplanares. Si es tres, no son coplanares.
Podemos comprobar fácilmente que el rango es, como mínimo, dos considerando el menor
Nos queda únicamenmte comprobar si el rango de la matriz puede ser tres, calculando el determinante total,
Por lo tanto, el rango de la matriz es tres, y los vectores no son coplanarios.
Dados tres puntos , y , la ecuación del plano formado por ellos es
Así, todo punto que cumpla lo anterior pertenecerá al plano.
En el caso particular que se nos pide resolvamos, hemos de escribir la matriz con los puntos dados y calcular el determinante; si éste es nulo, entonces los puntos són coplanarios si no, no pertenecerán a un mismo plano.
Por lo que los los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1) no son coplanarios.
Dados los planos
hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.
En general una recta en el espacio que pasa por el punto y paralela al vector viene dada paramétricamente por
Dados dos planos y cualquier recta, , que cumpla cumple también que , donde es la recta intersección entre esos dos planos.
Sean los planos y , si tomamos los vectores y , el vector director, de la recta cumplirá que .
Tomando para simplificar que , podemos escribir la recta que nos pedían de la forma:
Para el caso particular en que y y , obtenemos la recta