El desplazamiento de una partícula viene dado por
(x en metros y t en segundos).
1.Determinar la frecuencia, el periodo, la amplitud, la pulsación y la fase inicial.
2.¿Dónde se encuentra la partícula en t = 1s?
3.Calcula la velocidad y la aceleración en un instante cualquiera, t.
4.Calcula la posición y velocidad inicial.
Un resorte metálico del que pende una masa m, si se estira ligeramente, comienza a oscilar al dejarlo en libertad. Si cambiamos la masa por otra mayor o menor, ¿se verá afectado el período?, ¿por qué?
Sí se verá afectado, pues el período de oscilación depende de la masa. Al dejarlo en libertad, después de que haya sido estirado ligeramente, el cuerpo es apartado de su posición de equilibrio y la fuerza restauradora tiende a devolverlo a dicha posición, comenzando dicho cuerpo a oscilar. Esta fuerza, producirá una aceleración que se obtendrá de la igualdad:
Si tenemos en cuenta que la aceleración es la derivada segunda de la posición con respecto al tiempo, podemos ecribir que:
Cabe tener en cuenta que la notación que utilizo para las derivadas temporales es equivalente en todo momento a:
Por tanto, la ecuación de posición x que describe este movimiento, debe ser tal que al derivarla dos veces con respecto al tiempo vuelva a obtenerse ella misma multiplicada por . Tras resolver la ecuación diferencial, se puede comprobar cómo una solución del tipo o satisface la igualdad anterior; es lo que se conoce como ecuación del oscilador armónico:
De este modo, podemos calcular la frecuencia angular y consecuentemente el período:
Observamos que el período depende de la masa, por lo que si la cambiamos por otra mayor, el periodo aumentará, mientras que si ponemos una masa menor, el período disminuirá.
Una balanza de resorte, con una constante elástica , cuelga verticalmente y una bandeja de se suspende de su extremo inferior. Un carnicero suelta un filete de sobre la bandeja desde una altura de , después de lo cual la bandeja oscila con movimiento armónico simple. Calcular:
1.la amplitud,
2.el periodo T,
3.la energía potencial del resorte justo en la posición de equilibrio.
Dibuje el esquema experimental.
Un hilo elástico de constante elástica de área transversal igual a y de de longitud natural, sostiene verticalmente desde un punto fijo un bloque de de masa formando un péndulo simple. ¿Cuál es el periodo T de las oscilaciones de este péndulo?
1.En la tierra .
2.En la luna .
Dibuje el esquema en cada caso. Suponga en todo momento que durante las oscilaciones la variación de la longitud del hilo es despreciable.
Considera las diferentes asociaciones de muelles que se muestran en la figura 1. Calcula la frecuencia natural de oscilación de cada uno de estos sistemas.