Dados el punto y el plano . El punto simétrico, de respecto de será el punto que cumpla
donde es el punto de intersección entre el plano y la recta , perpendicular a éste y que pasa por . Matemáticamente:
Si expresamos de forma continua
Y ahora resolvemos dos de las tres igualdades, podemos expresar como intersección de dos planos
Así podemos reescribir (5.2) como . Para calcular ahora las coordenadas de no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:
Donde , y . Lo resolveremos mediante la REGLA DE CRAMER, por lo que:
Así, tenemos que . Si ahora utilizamos este resultado en (1), obtenemos las coordenadas del punto simétrico :
En partircular para el caso dado,
Por lo tanto,
Entonces tenemos que