Una esfera sólida de masa gira uniformemente alrededor de su eje con una carga
distribuida uniformemente en su superficie. Probar que el momento magnético
esta relacionado con el momento angular
, por:
Un disco de radio lleva una carga fija de densidad
y gira con una velocidad angular
.
1.Halle la inducción magnética en un punto situado en el eje de simetría del disco a una distancia
del centro.
2.Halle la inducción magnética en el centro del disco.
1.Un disco no conductor de pequeño grosor de masa , uniformenente distribuida en toda la superficie del mismo, y radio
posee una densidad superficial de carga uniforme
y gira con velocidad angular
alrededor de su eje. Determine el momento (dipolar) magnético del disco en rotación.
2.Una esfera sólida de radio posee una densidad de carga uniforme
y una carga total
. La esfera gira alrededor de su diámetro con velocidad angular
, y posee una masa total
uniformenente distribuida en toda ella. Con la ayuda del resultado del apartado anterior, calcule el momento (dipolar) magnético de la esfera giratoria.
3.Para la esfera sólida, demuestre que los vectores de momento magnético y momento angular están relacionados por , resultado de validez general para cuerpos con densidades de carga y masa ambas uniformes, con
el denominado factor giromagnético.