Problemas de oscilador armónico simple

Nivel: Secundaria

1
Nivel
Secundaria
Dificultad
3
 

El desplazamiento de una partícula viene dado por

(1)

(x en metros y t en segundos).

1.Determinar la frecuencia, el periodo, la amplitud, la pulsación y la fase inicial.

2.¿Dónde se encuentra la partícula en t = 1s?

3.Calcula la velocidad y la aceleración en un instante cualquiera, t.

4.Calcula la posición y velocidad inicial.

Solución disponible
pod
 
2
Nivel
Secundaria
Dificultad
3
 

Un resorte metálico del que pende una masa m, si se estira ligeramente, comienza a oscilar al dejarlo en libertad. Si cambiamos la masa por otra mayor o menor, ¿se verá afectado el período?, ¿por qué?

2 soluciones disponibles
pod
 
Cat_in_a_box
 
3
Nivel
Secundaria
Dificultad
5
 

Una balanza de resorte, con una constante elástica , cuelga verticalmente y una bandeja de se suspende de su extremo inferior. Un carnicero suelta un filete de sobre la bandeja desde una altura de , después de lo cual la bandeja oscila con movimiento armónico simple. Calcular:

1.la amplitud,

2.el periodo T,

3.la energía potencial del resorte justo en la posición de equilibrio.

Dibuje el esquema experimental.

Solución disponible
N30F3B0
 
4
Péndulo simple en diferentes planetas
Nivel
Secundaria
Dificultad
8
 

Un hilo elástico de constante elástica de área transversal igual a y de de longitud natural, sostiene verticalmente desde un punto fijo un bloque de de masa formando un péndulo simple. ¿Cuál es el periodo T de las oscilaciones de este péndulo?

1.En la tierra .

2.En la luna .

Dibuje el esquema en cada caso. Suponga en todo momento que durante las oscilaciones la variación de la longitud del hilo es despreciable.

Solución disponible
N30F3B0
 

Analicemos para un caso general, es decir cuando un hilo elástico de constante "", área transversal "" y longitud natural "" que es afectado por una fuerza gravitaroria "" y soporta una masa "".

Cuando al hilo se le ata en la parte inferior de masa "" este experimenta una deformación de longitud , que estará dado por lo cual se obtiene de despejar de la ley de Hooke, luego la longitud con la que oscila el resorte será de entonces

(1)

Entonces el periodo del péndulo será:

(2)

Entonces en el problema se tendrá:

Apartado 1. En la tierra
Diagrama en la tierra
Figura 1. Diagrama en la tierra

Aplicando las fórmulas tenemos:

(3)
(4)
Apartado 2. En la luna
Diagrama en la luna
Figura 2. Diagrama en la luna

En este caso, la aplicación directa de las fórmulas anteriores nos da:

(5)
(6)

Se concluye que la oscilación se llevará a cabo en mayor tiempo en la luna que en la tierra.

Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2022, La web de Física
Dirección de contacto
Créditos