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Abstract

Symmetries are the cornerstone of the modern development of theories in
particle physics. The Standard Model, which describes the strong, weak
and electromagnetic interactions is one of the most successful examples.
Supersymmetry (SUSY) is a new formulation which is based on a sym-
metry that relates two basic types of elementary particles: bosons, which
have integer spin, and fermions, which have half-integer spin. Since de-
veloped in the early 1970s, SUSY has drawn a growing attention, due to
the interesting consequences that proposes. Despite some relevant phe-
nomenological implications (as a suitable candidate for dark matter or the
cancellations of quantum corrections for the Higgs boson), we will review
some no-go theorems that leads us to consider SUSY as a suitable scenario
in which spacetime and internal symmetries can be unified.

In this work we are going to study SUSY theories that contain particles
with spin s < 1. To do so, we firstly investigate the main aspects of bosonic
fields: scalar fields, Maxwell and Yang-Mills fields; and fermionic fields:
Weyl, Dirac and Majorana spinors. The treatment of these fields has
been done for any generic dimension. Finally, we have studied in detail
two N = 1 SUSY theories: we have considered the Wess-Zumino model,
and the SUSY Yang-Mills theory. Explicit calculations and other aspects
on group theory are provided in the various appendices.

In summary, we have learned the basics of SUSY theories, one of the
most relevant developments in modern theoretical physics. To that end,
we have studied the main properties of all the fields with spin s < 1 in full
generality. We consider this work as a first step to address further open
problems in theoretical physics.



Resumen

Las simetrias son la piedra angular en el desarrollo de teorias modernas
de fisica de particulas. El Modelo Estandar, que describe las interacciones
fuerte, débil y electromagnética, es uno de los ejemplos méas exitosos. La
supersimetria (SUSY) es una nueva formulacién basada en una simetria
que relaciona dos tipos basicos de particulas elementales: los bosones, que
tienen espin entero, y los fermiones, que tienen espin semientero. Desde
su desarrollo a principio de los anos 1970, SUSY ha captado una creciente
atencion, debido a las interesantes consecuencias que propone. Pese a
algunas de sus implicaciones fenomenoldgicas més relevantes (como una
candidata adecuada para la materia oscura o las cancelaciones de las cor-
recciones cudnticas al bosén de Higgs), revisaremos algunos teoremas de
imposibilidad que llevan a considerar SUSY como un escenario apropiado
en el que las simetrias internas y espaciotemporales pueden ser unificadas.

En este trabajo vamos a estudiar teorias SUSY que contienen particu-
las con espin s < 1. Para ello, investigamos primero los aspectos princi-
pales de los campos bosonicos: campos escalares, los campos de Maxwell
y de Yang-Mills; y los campos fermidnicos: espinores de Weyl, Dirac y
Majorana. El tratamiento de esos campos se ha hecho para dimension
genérica. Finalmente, hemos estudiado en detalle dos teorias SUSY con
N = 1: hemos considerado el modelo de Wess-Zumino, y la teorfa SUSY
Yang-Mills. Hemos provisto de célculos explicitos y de otros aspectos de
teoria de grupos en los diversos apéndices.

En sintesis, hemos aprendido las bases de la supersimetria, uno de los
desarrollos mas importantes en la fisica tedrica moderna. Para este fin,
hemos estudiado las principales propiedades de todos los campos de espin
s < 1 con total generalidad. Consideramos este trabajo como un primer
acercamiento para abordar otros problemas abiertos en la fisica tedrica.
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Introduction

Since many decades ago, particle physicists have tried to make sense out of the rich
amount of data on elementary particles arising from high energy experiments [I]. To
carry out this task, symmetry has been used. One of the most successful examples
is the Standard Model (SM), which describes the electromagnetic, strong and weak
interactions. This model is based on the symmetry group SU(3) x SU(2) x U(1),
that dictates and sculpts the SM Lagrangian.

But what is a symmetry? In few words, it is a transformation that leaves some
system invariant. For example, a 90 degree rotation is a symmetry of the square. In
a similar way, we say that some physical laws are invariant under certain symmetry
transformations. For instance, Einstein’s special theory of relativity shows that all
physical laws have to be invariant under Lorentz transformations.

Despite the very recent discovery of the Higgs boson [2, 3], which plays an impor-
tant role in the SM, there exist some physical phenomena in Nature that the SM does
not explain: dark matter, the hierarchy problem, the matter-antimatter asymmetry,
the description of gravity,.... This has led theorists to consider extensions of the
SM. Formulations of this type are referred as physics beyond the SM. Some examples
of these theories are grand unified theories, supersymmetry, brane-world scenarios,
supergravities or superstrings, among others.

In this work we are going to study supersymmetry (SUSY), which is a new sym-
metry that enlarges the type of symmetries of the SM. SUSY is a transformation that
exchanges bosons by fermions and viceversa, thus stating that the physical laws are
invariant under these transformations. This simple idea solves in an elegant manner
some of the present enigmas of the SM all at once: it provides new particles as suit-
able candidates for dark matter, it implies the cancellation of the radiative corrections
to the Higgs mass and it predicts the unification of the coupling constants at high
energy scales [4]. Furthermore, SUSY seems to be a necessary ingredient to formulate
a unification theory with gravity, as it brings the possibility of mixing internal and
spacetime symmetries.

The goal of this work is to analyze in detail two SUSY theories: the Wess-Zumino
model [5] and the supersymmetric Yang-Mills theory [6]. While the former involves
spin-0 and spin—% particles, the later contains Spin-% and spin-1 fields. To carry



out this task, we previously need to study the most general aspects of bosonic and
fermionic fields. For future research purposes, we study the conditions that dimen-
sionality imposes on the fields when we consider arbitrary dimensions. In this work
supersymmetry is considered at a classical level, since the construction of Lagrangians
is essential for a quantum treatment. A further motivation is that it is precisely classi-
cal Lagrangians those which are required for the path integral formulation of quantum
field theory.

Let us comment on the methodology of this work. We will study the main bibli-
ographic references and explicitly reproduce the main results. Such calculations will
be done analytically by hand and by using the Mathematica scientific software. We
will make use of the open access repository arXiv and the programming language
KTEX for edition.

The thesis is organized as follows:

In Chapter [I]we present the Klein-Gordon scalar field, which describes bosons with
spin s = 0. We discuss its equation of motion, as well as its internal and spacetime
symmetries.

In Chapter [2] we explore the most significant features of spinors, which we apply
to describe fermions with spin s = % The discussion starts with Dirac spinors, and
continues later with Majorana spinors, that can be regarded as Dirac spinors with a
reality restriction. Majorana spinors are basic for the study of SUSY. Furthermore,
we find that not all types of spinors exist in certain dimensions. This is a key aspect
to formulate supersymmetric theories in dimensions higher than 4.

In Chapter 3| we analyze gauge fields describing bosonic particles with spin s = 1.
We firstly study the Maxwell field, which enjoys an Abelian U(1) gauge symmetry.
Afterwards, we investigate Yang-Mills theory, which is a generalization of electromag-
netism when other non-Abelian symmetry groups are considered. Yang-Mills theories
constitute the basis for understanding the SM, since the groups SU(3) and SU(2) are
non-Abelian.

In Chapter [] we firstly ellaborate on further reasons to study supersymmetry.
Then we discuss two important no-go theorems to introduce the superPoincaré alge-
bra, which is an extension of the Poincaré algebra that mixes spacetime and internal
symmetries in a non-trivial way. Finally we discuss two important N' = 1 SUSY theo-
ries that contain all types of fields studied in the previous chapters: the Wess-Zumino
model and SUSY Yang-Mills.

Several appendices are provided. In Appendix [A] we present our notation. In
Appendix [B] we develop the tools provided by Lagrangian and Canonical formalism.
In Appendix [C] we review important concepts of group theory. In Appendix [D] we
study basic notions of Clifford algebras and we apply them to study spinors in general
dimension. Finally, in Appendix [E] we present some of the Mathematica code used.



Chapter 1

The Klein-Gordon scalar field

Scalar fields assign an scalar value to each point in space and time. For instance,
the pressure distribution in a fluid is a scalar field. In this chapter we study the
Klein-Gordon scalar field, owing his name to O. Klein and W. Gordon, who in 1926
used it to describe relativistic electrons. Although this scalar field exhibits Lorentz
invariance, today we know it describes spin-0 particles, so it cannot account for the
properties of the electron. The only elementary spin-0 particle known to date is the
Higgs boson, in addition to other some non-elementary spin-0 particles in Nuclear
Physics [7].

1.1 Equations of motion

We first consider the Klein-Gordon action for a set of real Klein-Gordon scalar fields
¢'(x) for i = 1,..., N, defined on a D-dimensional Minkowski spacetime:

— D _ _1 D % 7 i 2 17 41
S—/dxﬁ_ 2/dx[n 0,6'0,6" + m2p' ). (1.1.1)
The equations of motion are obtained by @ = (0. We proceed to derive them :
oL 9
- = — ! 1.1.2
a¢l m ¢’ ( )
oL n’ , . y .
— = ——— (04 ! L@ ) = —nt0,¢", 1.1.
a(aﬂ¢1> 92 (5 Maﬁ¢ + 5ﬁ#8 ¢) " o,¢ ( 3)
oL . .
— | = —1"0,0,¢" = ¢, 1.14

where O = 049, = n*9,0, = —0f + V$H_, is the d’Alembertian operator in D
dimensions. Thus we arrive at

(O-m?¢' =0, i=1,..N. (1.1.5)




1.2. SYMMETRIES OF THE SYSTEM 4

Each of the fields ¢* satisfies the equation of motion (1.1.5)), commonly known as
the Klein-Gordon equation. Because we have not considered any interaction interac-
tion terms in our discussion, (|1.1.5)) is also referred as the free Klein-Gordon equation.

It is instructive to look at its solutions [§].

e — =BHPT) congstitutes a solution, as we obtain:

The plane wave e?* = e

[JetPar® — T]#”@u (ipyeipa”a) = —nwjpupueipax = m261par (1'1‘6>

where we have made use of the relativistic dispersion relation p*p, = n*p,p, =
—E? +p? = —m?. Because of the linearity of the Klein-Gordon equation, any sum of
solutions yields a new solution. We use this in order to write the general solution as
a Fourier transform in the plane waves

dD 1—» ) .
/dE/ 27TD 1 _p _m> ( ﬁje —Et+p-&)
dP-1p . . o
_/ 2 D 12E (ﬁ)ez(fEter-z)_i_a*(ﬁ)ez(Eter-x)). (1.1.7)
7T

The factor 1/2F arises from the following property of the § distribution

5(/(2)) = Zm

In our classical framework, the complex amplitudes a(p) and a*(p) of the (D — 1)

for all zy such that f(x¢) = 0. (1.1.8)

dimensional Fourier transform are simply functions of spatial momentum p. In the
quantized theory, they become anihilation and destruction operators for the particles
described by the fields operators ¢(z), which commute at different points of space

1.2 Symmetries of the system

In this section, we are going to study different continuous symmetries associated with
the Klein-Gordon field, as well as their corresponding Noether currents and charges.

1.2.1 Internal symmetries

We consider the mapping ¢' (z) — ¢ () = R';¢/ (z), where R’; is a N x N matrix
of the special orthogonal group SO(N E] This global symmetry acts as a rotation on
the internal space of the fields ¢’. This tranformation leaves the Klein-Gordon action
invariant. For example, for the mass term we have

¢ = R R ¢F = S’ ot = ¢l (1.2.1)
'For a brief introduction on Lie groups, see Appendix A further discussion of the SO(N)

group is in Appendix




1.2. SYMMETRIES OF THE SYSTEM )

The same holds for 9,¢", as R’; does not depend on z. From the theory of Lie
algebras, we know that a matrix R’; of the SO(N) group can be given in terms of its
generators (t4)"; by matrix exponentiation

R=c""4 (1.2.2)

where 64 for A = 1,..., N(N — 1)/2 are the independent parameters characterizing
the transformation. This helps us to compute the corresponding Noether current
using the general expression that can be found in Appendix . Identiying the
parameters €2 — 04, we see that the infinitesimal variation is given by

06" = (8% — 04(ta)' )¢ — ' = =07 (ta)';¢" = "Dag’ — Aag’ = —(ta)';¢'.

In addition,
oL
9(9.9")

As for this symmetry the Lagrangian density is invariant, we have that K% = 0. The

= -0t (1.2.3)

Noether currents are therefore

Jh=— u(bi(tA)ijW : (1.2.4)

And the conserved charges
QA::/}#*45J14:-i/dD*%?a@%ugg¢i (1.2.5)

Let us consider a particular example, where N = 2. Thus, we can consider the SO(2)

t:CfBﬂ. (1.2.6)

We explicitely check that this generator leads to a rotation 2 x 2 matrix upon expo-

group, whose unique generator is

nentiation

249 3,3 o
64t G-t (cos@ sin 9) ‘ (1.2.7)

-0t _ g -2 H =
R=e¢%=1-—0t+ 5 6 +0(07) sinf cos@

The transformation acts on the two fields as
Y\ $1\ _ [¢P1cost — pysind
((;5’2 =k Go)  \prsinf + ¢gcos )’ (1.2.8)
It is interesting to note that the same result can be obtained if we consider a single
complex field given by ¢ = ¢ + i and the following transformation

¢ = ePp = (cosf +isinb)(p1 +igy) = ¢ + iy (1.2.9)
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The complex number e? is an element of the Unitary group U(1). Now, inserting the
generator t of (|1.2.6)) in the general expression ((1.2.5)) for the Noether charge, we get

Q= [aP7F (@s01 — Arn) = —, [AP7F (D66 —06%6). (12.10)

When the scalar fields are quantized, the quantity 0,102 — 0;¢2¢1 is seen to be an
electric charge density and so () has the natural interpretation of an electric charge
(for more details, see chapter 7 in [7]). In the case of a single real scalar field, N = 1,
there is no internal space and so it cannot possess a conserved charge arising from any
internal symmetry. That is why it is said that charged particles can only be described
by complex fields.

1.2.2 Spacetime symmetries

Spacetime translations
The spacetime translation

¢'(z) = ¢"(2) = ¢'(x +a), (1.2.11)

for a constant vector a*, is a transformation that also leaves the Klein-Gordon action
invariant, so it is a symmetry of the system. In order to obtain the Noether current
we identify €4 — a”, with v characterizing the transformation. In this case, K*, # 0
as

a’0,K", =0L.=a"0,L — K',=0L = K, =n,L. (1.2.12)

The infinitesimal transformation A 4¢° now corresponds to d,¢‘. With this, we obtain
that the Noether current is the so-called Energy-momentum tensor of the system

Jus = Ty = 0u0' 000" + 1 L. (1.2.13)

This tensor is important in physics, as it encompasses the density and the flux of both
energy and momentum. For example, the element Ty, represents energy density. The
conserved charges are

Py = [aP77 Ty, (1.2.14)

It is worth noting that the charge

Po = / dP1E Ty = / aP-1z [ . (gf(bi)aow _ .c]

- ;/lef (062 + [V 16 + (me')?] (1.2.15)

is to be identified with the energy E of the system, which in this case is the same as
the Hamiltonian H (we have given a definition of H in Appendix. One can check
that both the positive and negative frequency solutions appearing in lead to
a positive Py.
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Lorentz transformations
We take a matrix A of the Lorentz group E| The transformation of a scalar field
is given by:
¢'(z) — ¢ (z) = ¢""(Ax). (1.2.16)
Here Az is a shorthand notation for A, #z¥. The Klein-Gordon action is invariant
under this transformation, and thus it is another symmetry of the system. We are
going to prove this.

Proof. First note that the Klein-gordon Lagrangian density can also be expressed
as L = —%(8*@@@ + m?¢?) (we omit the index i because it does not play any role
in the derivation). We are going to use that the derivative d,¢(x) and the derivative
0" ¢(x) follow the general transformation rules for covariant and contravariant vectors,
respectively. Namely,

0"¢(z) = (A)'5(070)(Ax),  Oup(x) — (A),"(9,0)(Ax) (1.2.17)

These rules simply arise from the chain rule. For example, notice that aa,,, = J20 0 _
T 'V dxP

(A1) »-2. We will also take into account the property A%, = (A1), *. With all of

v QzxP’
this in mind, and calling 7# = A* z¥, we compute S[¢'(z)]

1) = — [ A% [N (A7), 076 @06() + 677
=5 [ 4 (AN 6 @0,0(@) + ()]
. _; / APz (T, 7) [0 6(T)0,0(T) + m?*¢*(T)| (1.2.18)

Now we need to compute the Jacobian. We will use that for an invertible matrix A
we have det A™! = (det A)~!. We get:

det (gﬁ>| = |det (axa>|_l = |det (Aau)\‘l. (1.2.19)

ozt
But since we always consider proper Lorentz transformations, det A = 1 and so
J(z,x) = 1. In conclusion, the action is invariant S[¢'(x)] = S[¢(z)]. O

J(@,z) =

The last step is to obtain the Noether current corresponding to this symmetry.
We make the identification € — M7 /2, where \?? are antisymmetric numbers \*° =
—\?? denoting the D(D — 1)/2 independent parameters of the Lorentz group. Note
that

APE

5£ - 78HK[7)01 —

2For a more detailed summary of the Lorentz group, see Appendix

L(z" + Nx,) — L(z") = 0,L N7 x,. (1.2.20)
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Now, using the antisymmetry of A7, we can express the previous equation in the
following way:

pYad u pYad
TGHK[IJU] = 7 (xgﬁpﬁ — l'pao—ﬁ) . (1221)
This allows us to infer K, [’;U]:
K[‘ZU] = 2,00 L — 2,00 L. (1.2.22)

Finally, taking into account that the infinitesimal transformation corresponds in this
case to Ay¢' = — (2,0, — x,0,) ¢', we obtain the following Noether current:

Th = MV = —2,0" 30,0 + 2,0 G0, + 2,01L — 2,01L, (1.2.23)

which can be rewritten as:

Mu[pa} = _:LlpTlv:; + xaTﬂp . (1224)

MH 4 is conserved, 9, M*|,,) = 0, it T},,, is both conserved, 0,T%, = 0, and symmetric
T,

w = 1,,,. The conserved charges are given by

[po]

Mpo) = /dD*f M? (1.2.25)



Chapter 2

Dirac and Majorana spinors

Spinors describe all the fermionic spin—% particles existing in Nature, such as the
electron and quarks. They were first introduced by the mathematician Elie Cartan
in 1913 [9], but it was not until the 1920s that physicists started to use them to
describe half-integer spin particles. In 1928 Dirac wrote his eponymous equation [10],
considered as one of the greatest triumphs in physics. This equation assembled quan-
tum mechanics and special relativity, explained the origin of the spin and predicted
antimatter.

After Pauli had proposed neutrinos in 1930 to explain conservation of energy in
beta decay experiments, it was suggested that neutrinos are their own antiparticles.
During 1937 Majorana was pioneer in the study of such fermions [11].

2.1 Mathematical prelude

The Dirac equation requires a special representation of the Lorentz group, called
spinor representation. The explicit description of spinor representation in dimension
D = 4 is given through the homomorphism between the group of 2 x 2 complex
matrices of unit modulus determinant, SL(2,C), and the Lorentz group SO*(3,1)
(for the notation, see Appendix [C.2.3). But before exploring this homomorphism
between groups, it is convenient to see another important consequence of the case
D = 4 at the level of the algebras: the study of the algebra of the Lorentz group,
50(3,1), can be reduced to the study of the algebras of the SU(2) group, su(2). Let
us investigate this powerful connection.

For D = 4, the Lorentz group contains six independent matrix generators my,,,
labelled with the antisymmetric indices [ur]. They consist of three spatial rotations
J; = —%Eijkm[jk] and three boosts K; = myg (for further details of these transforma-
tions, see Appendix [C.2.3.1]). The following generators I, and I},

1 1
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satisfy the commutation relations of two independent copies of the Lie algebra su(2):

i, 1] = eijidk,

[1i, 1] = i,

[1;, I}] = 0. (2.1.2)
We have included the proof for this at the end of Appendix [C.2.3.1], due to its length.
Because of , we see that the complexified Lie algebra of so0(3,1) is related
to su(2) @su(2). The algebra of SU(2) is well known from the theory of quantum
angular momentum. This theory shows that the spin can be described by a basis
|ym), where j = 0,1/2,1,3/2,... and m = —j,—j + 1,....,5 — 1,7. Each j labels a
different irreducible representation, and the number of m’s gives the dimensionality
of the representation.

Therefore, any finite and irreducible representation of s0(3,1) can be obtained
as a product of two representations of su(2) and classified by the pair of numbers
(7,7")- The (j,7') representation has dimension (2j + 1)(2j" 4+ 1). This explains why
a 4-dimensional representation of the generators of the Lorentz group is denoted by
(%, %) This important result elucidates that the concept of spin is originated in
Lorentz symmetry.

2.1.1 The homomorphism SL(2,C) — SO*(3,1)

We study the 2 : 1 homomorphism E| between the SL(2,C) group and the Lorentz
group SO*(3,1), which will allow us to obtain the generators of the (3,0) and (0, %),
the most basic spinor representations. The first remark is that an arbitrary 2 x 2
Hermitian matrix x can be parametrized as:

.- 20+ a3 2t —iz?
S\t i 2% -3 )
The second remark is that the determinant of x is minus the Minkowki norm,
detx = —(—22% + 2'z! + 2%2* + 2%2°) = —at'n,, 2" (2.1.3)

Therefore, the vector space H of Hermitian 2x 2 matrices and 4-dimensional Minkowski
vector space M seem to have some type of connection. We proceed to show that there
is an isomorphism E| between them. For this task, we introduce two sets of 2 X 2 ma-
trices:

o, =(—1,0), o,=0"=(1,0;), (2.1.4)

LA homomorphism is a map between two algebraic structures of the same type that preserve the
operation of the structures. When two different elements of an algebraic structure are mapped into
a solely element of the other structure, we speak about a 2 : 1 homomorphism.

2An isomorphism is a bijective homomorphism, that is, it has an inverse. It is always 1 : 1.
Do not confuse the isomorphism between H and M with the homomorphism between the groups
of transformations acting on those spaces, namely SL(2,C) and SO (3,1), which we discuss here
afterwards.
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where 1 is the unit matrix, and the three Pauli matrices are:

01 0 — 1 0
0'1:<10>, 0'2:<Z. 0), 0'3:<0 _1> (215)
The following identities hold:

0,0, + 0,0, = 21,1, (2.1.6)
tr (0"'7,) = 26", (2.1.7)

Using (2.1.7)), we find

3

x = 12° + oy2' + 092® + 032° = T, 2", (2.1.8)

1 1 1
§tr (otx) = §tr (ctT,2") = gtr (otT,)x” = a. (2.1.9)

This gives the explicit form of the isomorphism between spaces. We are almost ready
for obtaining the desired homomorphism. Let A be a matrix of SL(2,C), and consider
the linear map:

x — x = AxA'. (2.1.10)

The corresponding 4-vectors are related through
't = 1tr (o#x") = 1tr (U“AXA]L) = ltlr (a“AE,,AT) ¥ = p(A)H, ", (2.1.11)
2 2 2

¢(A)*, is the homomorphism we were looking for. Transformation in (2.1.10) pre-
serves the determinant, since detx’ = detA detx detA’ = detx. Therefore, the
Minkowski norm is invariant under this transformation, and we can connect the ho-
morphism with a transformation matrix A of the Lorentz group

S(A), — ;tr (o Az, AT) = (A7), (2.1.12)

Note that, for a given A~!, there are two transformations corresponding to it, since
there is a freedom in sign (as detA = det(—A)). Thus, ¢(A) = ¢(—A) = A, and this
is why we call this a 2 : 1 homomorphism. Furthermore, we can convince ourselves
that this is a homomorphism by showing that ¢(A)p(B) = ¢(AB). For this purpose,
let us consider the map x’ = (AB)x(AB)" = AXA" where x = BxB'. Then,
't = 1tr (o“AEl,AT) T = 1tr (U“AE,,AT> 1tr (J”BE BT> xf = ¢(A)*,0(B)Y ,xr.
2 2 2 L L
Two specially important relations are

Az, AT =7,(A7YY,, Alo, A =0o,N,. (2.1.13)
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They can be proven without many difficulties. For example, x’ can be expressed in
two ways:

Then we straightforwardly read off the first identity. Equations provide the
recipe for obtaining a Lorentz transformation A from a matrix A of the SL(2,C)
group.

For the next step of the discussion, we present two sets of matrices, given in terms
of 7, and o, as:

1

O = 5 (0,0, — 0,T,) (2.1.14)
1

T = (.0, —TL0,). (2.1.15)

The commutator algebras of these matrices are the same as those of the Lorentz
group. For example, using (2.1.6) one can show

[O1u)s Tpol] = MpOlpo] = NupClvo) — MvoOlup] + MpoOlup)- (2.1.16)

According to , the commutators of I}, = —%(%@jk%‘j—l-w%) and [}, = —%(%@jkazj—
iog) should satisfy . This is the case if I, = 0. We thus arrive at the impor-
tant conclusion that the matrices o, and 7, are generators in the (0,1) and (3,0)
representations. Their exponentiation gives a representation of the Lorentz group,
but acting in the space H of Hermitian matrices instead of the Minkowski space M.

This is precisely the mapping involving A in (2.1.10)), so we can identify

A= 2o (2.1.17)
Al = eV (2.1.18)

where \*” are the parameters of the transformations. Notice that this identification
is consistent since O'LV = —Ou-

2.1.2 Spinors are not vectors

Spinors, which we may call as ¥®, are two-component complex objects. That is,
they live in C2. What is characteristic about them is their transformation proper-
ties. Spinors transforms under the SL(2,C) group which, as we have just seen, is
homomorphic to the Lorentz group. This is called the spinor representation. Strictly
speaking, the SL(2,C) group is the universal covering group of the Lorentz group
(for a formal definition of universal covering group, see [12]).
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Figure 2.1: A spinor visualized as an arrow pointing along the Mobius strip. Picture taken
from [13].

Thus, as spinors transform according to the SL(2,C) group and not the Lorentz
group, it should be not surprising that they don’t behave as normal vectors. So as to
exemplify this, let us consider a rotation of 27 around the 3-axis. We take
for an antisymmetric parameter A\*! = —\'2 = . Thus,

1 .
A = e aWontaPon) _ o=Flon-o1) _ o= F(o201-0102) 6Z%U3, (2.1.19)

where in the last step we have used the property [0;, 0;] = 2i¢;j50%. Remembering the
general formula for the matrix exponential of Pauli matrices, €% = 1 cos a+io; sin a,
we see that for a rotation of ¢ = 27 we get

A=1cosm+iozsinm = —1. (2.1.20)

This means that under a rotation of 360° a spinor reverses its direction, Y — —)°,
which it is definitely not what happens to a vector! In fact, a spinor needs a rotation
of 720° in order to return to its original position. We can get an intuitive picture of
this if we imagine the spinor as an arrow sliding across a Mobius strip (see Figure

2]).

2.2 Dirac spinors

Here we follow a different approach from what we did for the Klein-Gordon scalar
field. We first discuss the equation of motion and its implications, and later we
construct a suitable action for the theory.

2.2.1 The Dirac equation

Dirac postulated that a free electron is described by the following equation of motion

B

PV (z) = 9,V (x) = m¥(z) | (2.2.1)

3This is the classical Dirac equation. The quantum version of this equation includes a factor 7 in
front of the derivatives because of the pressence of the hermitian momentum operator.
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Here U(x) is a complex multicomponent field that transforms under some represen-
tation of the Lorentz group. It is closely related to the basic spinor representations
we have discussed in the previous section. In fact, for D = 4, we are going to see that
¥ is formed by two spinors, and it is normally called bispinor or Dirac spinor. The
quantities v*, u=0,1,..., D — 1, are a set of square matrices that satisfy

{327 =AMyt = 2L (22.2)
The Dirac equation mixes up different components of ¥ through the matrices v*, but

each individual component itself solves the Klein-Gordon equation. To see this, we
write

(v 0, + m)(v*0,, — m)¥ = (v4"9,0,, — m*)¥ = 0. (2.2.3)
But because of (2.2.2) we see v979,0, = 3 {v*,7"} 8,0, = 9"0,,, so (2.2.3) becomes

the Klein-Gordon equation for each component ¥®.

Although we are not going to enter into explanatory details, it is worth saying
that after canonical quantization, the fields W(x) become operators that anticommute
at different points in space, as opposed to the scalar field ¢(z), which becomes a
commuting operator. This is a manifestation of the spin statistics theorem E| But
even in the classical case, the components of ¥ are required to be anti-commuting
Grassmann numbers EL satisfying

{U,(x),¥s(y)} = 0. (2.2.4)

We will understand this requirement later, when studying Majorana spinors.

The condition (2.2.2)) is the defining condition for the generators of a Clifford
algebra. The structure of this algebra is discussed in Appendix [D} We now write a
well-known representation of the y-matrices for D = 4, called Weyl representation,
in which the 4 x 4 ~* have the 2 x 2 matrices of in off-diagonal blocks:

= (fﬂ %“ ) . (2.2.5)

There are block off-diagonal representations of this type in all even dimensions, as we
show in Appendix [D.1.2] We are going to prove that the following commutators
1
2= 0" (2.2.6)

satisfy the commutation relations (2.1.16|) and, as a consequence, they form also a
representation of the Lie algebra of the Lorentz group.

4This theorem states that multiparticle states described by fermions and bosons need to be
antisymmetric and symmetric under interchange of two particles, respectively. It is then said that
fermions obey Fermi-Dirac statistics whereas bosons obey Bose-Einstein statistics. For a detailed
discussion, see [14]

®Grassmann numbers 6' are real numbers that belong to an algebra in which all elements anti-
commute between them, 6;0; = —0;0;.
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Proof. First we need to show [XH 4P| = ~Hn"? — 4¥ntP. Note we can write the
following v#~v* = % {v", 4"} + %[7“, '] = In” 425+, Since the identity 1 commutes
with everything, for any matrix X we have:

1 1
(X, 2] = S = 1] = XA (2.2.7)

If we now use the matrix identity [A, BC] = {A,B}C — B{A,C} and (2.2.2)), we

have:
[V ) = {2 A = A {0 = 20 = 2, (22.8)

Then [S#,4°] = —L[y#, y#4"] = v#n"? —7*n**. Now we compute the term [y#y7, Z#]:

(VP97 ] = AP [P, BT + [y, Ry
=97 (7" =07 ") + (P =) 7
=Ny = TP+ Py — R
= 205, X" = 20, XPF + 21, X7 — 21, X1

And in conclusion, using the symmetry of 7, and the antisymmetry of ¥*¥, we have
v g 1 g v ag vo 14
[ZH XF7] = —§h”7 L X =, BT = 1y 2T — e B e 2507 (2.2.9)

]

In the Weyl representation, one sees that the matrices X, are expressed in terms
of the 2 x 2 matrices o* and " as

o 0
Y= ( 0 G ) ) (2.2.10)

From ([2.2.10f), we see that the 4-dimensional representation of so(3, 1) given by ¥, is
block-diagonal and therefore reducible. Actually, it is a direct sum of the irreducible
(3,0) and (0, 3) representations given by ¢** and o that we discussed in the previous
section. Lorentz transformations on Dirac spinors are implemented as

L = e3P (2.2.11)

In Appendix [D.I] we give an explicit construction of the y-matrices, which shows
they are necessarily complex. Moreover, the matrix +° is Hermitian while the rest of
matrices 7¢ are anti-Hermitian. This explains why the Dirac field needs to be complex.
In other words, if it was chosen to be real, then any arbitrary Lorentz transformation
would transform it into a complex one.

We check now that the Dirac equation is Lorentz covariant, as it should be. This
means that, if ¥(z) is a solution, then ¥'(x) = L~'W(Az) is also a solution.
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Proof. In the first place, we have to prove Ly*L~! = ~4°A,?. We will use the
Hadamard Lemma, which states that for any 2 matrices A and B

1
e PAe? = A+ [A B+ 5[[A, B],B] + .... (2.2.12)
So, by choosing A = 7* and B = —1),,X*, and taking into account that [y*, B] =
=[P T = 2 (3 — 4 ?) = A Py*, we have:
1 1
LY LN ="+ 1, Bl + 5[0 B Bl + o = 7 + A" 4 50 +

[\]

1
_ (5g A+ QAQP)\(,“...) — AP (2.2.13)

Now we compute (”y“(?;b — m) U’(z) and we make use of the previous relation in order
to check that this is zero

9 , ) o oz’ 9 o
(7“ o m) V() = (v“ S m) L70(a') = (7“ e m) L)

— (W(A‘l)u”aiy — m> L7N(2) = [(A1),"v*L710,9(z) — L™ 'm¥(2).

If we multiply by L~! each side of (2.2.13)), we get v*L~! = L=147A,*. Introducing
this relation above we see

(7"8; - m) V' (x) = [AS(A), L197)0,¥ (2") — L 'm¥(2)
o

=L (v0, —m)¥(z') = 0. (2.2.14)

2.2.2 Constructing the Dirac action

We need to build a suitable Lorentz invariant action. For this purpose, we have
to introduce a bilinear form that satisfies Lorentz invariance. This is some scalar
quantity, formed by the product UIAW¥, with 8 a square matrix to be found. Under
an infinitesimal Lorentz transformation, the variations of ¥ and UT are:

oW (z) = — ;)\W (S + L) U(x) = —;WEW\IJ(@ a0,V (x),
SUi(z) = — ;AWW*ELV + A, 270,V (x)F. (2.2.15)
Lorentz invariance requires
S(WTBY) = A, 270, (VI BU) = §UT(BW) + (VT B3)sW
= —;wqﬁ (z:L,,ﬁ + BZW) U+ M,2"9, (xm\y) . (2.2.16)
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Therefore the following condition needs to be fulfilled:
X184 B, = 0. (2.2.17)

We look for a real bilinear form, so we choose a Hermitian matrix 8 = Sf. If the
Lorentz group were compact, it would have finite-dimensional unitary representations,
which would imply that the generators of its Lie algebra are all anti-Hermitian [15].
Then in it would be enough to choose 3 as the identity, so that ¥TW¥ would
be the Lorentz scalar. The problem is that the Lorentz group is non-compact and
therefore it has no finite-dimensional unitary representations. The required anti-
Hermitian property holds for spatial rotations

Eij:[777]]2< 0 )ZZ ( k ) —)EL:—Z”

4 4 olod —olod 2 0 oy

but not for boosts

1 ~ 1 —ct 0
20124[7077]:2< 0 ai) — 54 = Lo

which are Hermitian. Therefore § cannot be the identity. An alternative is to take
B to be any multiple of 7°, since then (2.2.17) is satisfied. We check this. First we
compute

et = (1 0 ) (o D) (56 )=( 0 ) =-een
(2.2.18)

which in turn implies

1 1

V()7 = 7 () )T = ()T 0)) = 7 (o = 3m) =~

It is convenient to choose 3 = 7. With this, we can define the Dirac adjoint (a row
vector) by
U =015 =0l (2.2.19)

so that we can write the invariant bilinear form as WW. We have everything we need
to define the action of the free Dirac field:

S[T, ] = / APz £ = / AP [~ Ty 9, ¥ + mIV]. (2.2.20)

Integrating by parts and setting to zero the term with a total derivative, this action
can equivalently be written as

ST, 0] = /de [0, U7 + mIW]. (2.2.21)
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The condition that the action is stationary, §S[¥, U] = 0, leads, by using ([2.2.21)) and
(2.2.20]), to the two equations of motion

oL oL = =

— — — f— M — p—

55~ On <8(0M\If)> 0 — 90,y —mV¥ =0, (2.2.22)
oL oL

ow (a (auxp)) 70 =) ( )

One of them is the already discussed Dirac equation. The other one is its conjugate.

2.2.3 Left or right?
The representation we saw in (2.2.10)) for D = 4 is reducible, so we can always write

U= (’;) . (2.2.24)

Here x and n are spinors that transform according to (2.1.17)) and (2.1.18)), whereas
the Dirac spinor ¥ transform according to (2.2.11]). Actually this can be done for any
even dimension D = 2m, since off-diagonal block representations for v* exist for all

even dimensions. Spinors x and 1, that transform under irreducible representations,
are more fundamental objects than the Dirac spinor, and they are tipically called
Weyl spinors (we will normally writen them in bold). In even general dimension, y*
are 2™ x 2™ matrices (as we show in Appendix , so Dirac spinors have to have

2™ components and Weyl spinors 2(m~1)

components.
Weyl spinors have a definite chirality. Chirality is described by the eigenvalues
of the chiral matrix (for the details, see Appendix [D.1.2)). In D = 4 the chiral matrix

is the so-called 75 and in the Weyl representation is given by

s = (g _0]1> . (2.2.25)

Notice that setting either x or m to zero in ([2.2.24]) yields eigenstates of ~s:

) ) e

Particles with positive chirality, such as x, are said to be left-chiral, whereas particles
with negative chirality, such as 1, are said to be right-chiral. That is why sometimes
we find U, and WUy as an alternative notation for x and 1. As we show in one
can define the matrices Pr r = %(1 + 75), which project a Dirac spinor onto some of
the two representations. For example, ¥, = P, W. As we see, chirality tells us under
which representation of the Lorentz group a spinor is transformed. It can be shown
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that left-chiral and right-chiral particles are related through a parity transformation.

Let us express Dirac equation (2.2.1) in terms of the Weyl fields. In the Weyl
representation ([2.2.5)) for the y-matrices, Dirac equation splits up in the two equations

d'0.x(x) =mn(x), c"d,n(z) =mx(z). (2.2.27)

We see that Dirac equation in general couples the Weyl spinors x and 7). Interestingly,
in the case of zero mass m = 0, equations are decoupled:

a"o,x(x) =0, o"d,n(z)=0. (2.2.28)

These are called Weyl equations. As these equations are independent, we can now
think of x and n as describing two different particles, instead of two states of a single
particle. In fact, there are theories that can contain only left-chiral or right-chiral
particles. This is the case of the Standard Model, which contains only left-chiral
neutrinos [f

It is the moment to introduce helicity. Helicity is defined as the projection of the
spin along the direction of motion of the particle. If we take the spin operator S = %6
and the momentum operator p'= (0;, 0, J3), we can define the helicity operator h as

=

h=S-p=25-

| (2.2.29)

Now, equations ([2.2.28]) can be reexpressed in terms of the 4-momentum operator
P, = 0,, or in components P = (po, p). Using that for massless particles p, = |p], we

=

can write Weyl equations as

1 1
hx = —|—§X, hn = —5M (2.2.30)
Thus, in the massless limit, Weyl spinors are eigenstates of helicity. Particles with
—l—% helicity eigenvalue are said to be left-handed, as opposed to particles with —% he-
licity eigenvalue, called right-handed. As we see, helicity and chirality are equivalent
concepts only for the massless case. In general, for massive particles, the right-chiral

and left-chiral spinors x and ) will be linear combinations eigenstates of helicity.

We can understand this from a physical point of view: for a massive particle, it
is always possible to boost to a reference frame where the direction of motion is seen
reversed. Therefore, an observer can see a left-handed particle but other may observe
that the particle is right-handed. For massless particles, this is not possible since they
travel at the speed of light [17].

60nly left-chiral neutrinos are allowed because parity is violated in weak interactions. Until two
decades ago, the Standard Model considered neutrinos to be massless. However, neutrino oscillation
experiments have showed that neutrinos actually have mass (see [16]). Thus they cannot be Weyl
fields. It has been suggested that they may be Majorana particles because of their neutral charge,
but the experimental situation remains inconclusive.
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2.2.3.1 Solution of the Dirac equation for D =4

As we have explained, each component of the Dirac spinor solves the Klein-Gordon
equation independently, so the Dirac equation also accepts plane-wave solutions. We

write positive and negative frequency solutions as wu(p, s)e’@#= 1) —ipE-Et)

and v(p, s)e
respectively. The momentum space functions u(p, s) and v(p, s) denote independent
column vectors, with the same number of components as ¥. The new feature is the
discrete label s. Why do we need to introduce it? What are their values? Let us
pause and discuss the degrees of freedom of the Dirac spinor first |Z|

The number of degrees of freedom of a system is half the dimension of the phase
space. As a consequence of the fact that the Dirac equation is of first order, the

momentum is not proportional to the derivative of V. In fact, using (2.2.20)
_oc
BCICAD)

Thus, the configuration space has 8 real dimensions (since W has four complex compo-

= T (2.2.31)

nents) and we can conclude that the number of degrees of freedom is 4. Two of them
are given by positive and negative frequency solutions. The other two are encoded in
the label s, so s run over two values ﬂ Exploiting the linearity of the Dirac equation,
a general solution can thus be expressed as the Fourier expansion

U(z) =V, (z)+¥Y_(x), with
d3p

_ i(F-#—Et > >
V@) = [ spame” )S_Zl,f(p’s)”@’s)’
d3p
v e~ iPE-E) N g 2.2.32
0= e 0 ST o2

c(p,s) and d(p,s) are complex quantities that simply denote the coefficients in this
expansion. In the quantum theory, d(p, s)* becomes the creation operator for particles
and c(p, s) the anihilation operator for antiparticles. Their complex conjugate would
denote the opposite actions, namely d(p, s) would become anihilator of particles and
c(p, s)* a creator of antiparticles. An antiparticle and a particle are almost identical,
the only difference is that an antiparticle has opposite charges.

By inserting in the Dirac equation, one can find the explicit expression
for the vectors u(p, s) and v(p, s). We just write the final result here (a proof can be
found in [14]):

JEF e o JEElne)
+) = (\/ms v(p,£) = BT ) | (2.2.33)

"For any field theory, the number of degrees of freedom is infinite. What we are really counting
here is the number of degrees of freedom per spatial point.

8 After quantization, one can associate two of the degrees of freedom labelled by s with spin up and
spin down states. The other two degrees of freedom are associated with particles and antiparticles.
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We have used + for the index s. &(4) and m(+£) are simply two-component
arbitrary spinors. We can interpret them as the defining spin states of the particles.
For example ST(—i—) = (1 0) would represent a particle with spin up along the 3-axis.
It is often convenient to choose spin states to go along the direction of motion of the
particle, i.e. to be eigenstates of helicity. Thus,

hé(+) = ii&(i). (2.2.34)

We also choose
(L) = —026"(L). (2.2.35)
Let us show that n(+£) are also eigenstates of the helicity, hn(£) = F3n(£).

Proof. We will make use of the identity 026" = —do,. We compute
(0 - 9) n(£) = —pioi02€(£)" = pioao;&(%)* = oa(0* - PIE(E)*
= +03[pl&(£)" = F|p|(—02£(£)") = F[pIn(L). (2.2.36)
And after dividing by 2|p] we get the desired result. ]

For the massless case, where E = |p], the spinor u is greatly simplified

u(ﬁ,—):\/ﬁ<£(0_) ) u(ﬁ,+):\/ﬁ<i€?+> ) (2.2.37)

Similarly, for massless spinors v,

v(p,—) = @( —m;)(—) ) . v +) = \/ﬁ< ,,7(0+) ) . (2.2.38)

2.2.4 U(1) symmetry for Dirac spinors
Let us consider a global U(1) phase transformation on the Dirac field,
() — V'(x) = 0(z). (2.2.39)

Notice that the transformation for the adjoint field is then U = in?¥'t = ¢=®¥ and
because of that U/¥’ = UW¥. With this, we clearly see that the free Dirac action in
(2.2.20)) is invariant under this phase transformation.

We compute the Noether current associated to this one-parameter transformation,
considering the general formula (B.1.11)). Because of the invariance of the action, we
see that K, = 0. On the other hand 9£/3(9,¥) = —U~*. Thus the conserved
Noether current is

JH = iUy, (2.2.40)

The time component is given by J° = WTW. Precisely, one of Dirac’s original moti-
vations for his equation was that, unlike the Klein-Gordon equation, the quantity J°
could be seen as a positive probability density.
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2.3 Majorana spinors

Let us study now Majorana fields, which are Dirac fields that satisfy a reality con-
dition. This restriction reduces the number of degrees of freedom by a factor of 2.
Thus, like Weyl fields, a Majorana spinor field is a more fundamental object than a
Dirac spinor.

2.3.1 Definition and properties

Firstly we introduce a definition for row vector different from the Dirac adjoint in
(2.2.19)), called the Majorana conjugate, which sometimes is more convenient. The
Majorana conjugate of any spinor W is defined as

v =vlC (2.3.1)

In order to avoid confusion between Majorana and Dirac conjugate, we may write

sometimes WUpj. and @Major. The matrix C' is called the charge conjugation matrix

and its definition and properties are discussed in Appendix [D.1.3] This matrix has

mathematical importance, as it establishes the symmetries of the y-matrices and also

aids raising and lowering spinor indices. But it is also important from the physical

point of view, because as we will see, it helps us to relate particles with antiparticles.
For immediate purposes, we only need to make use of the relations

CT = —toc, ’}/‘LLT = tgth’y“C"l. (232)

Here ty and ¢; can only take the values . These values depend on the spacetime
dimension D. Let us see what happens if we impose that the Majorana conjugate is
equal to the Dirac adjoint

@Major = \I/Dirac = \I/TC = Z\IJT'YO (233)
Using (12.3.2) we can rearrange ([2.3.3)) as
U = —ityy°C7'0* = —(tot,) B~ U7, (2.3.4)

where we have introduced the inverse of the matrix B = itqCy. This matrix satisfies
A = —tot, By B, B*B = —t;1. (2.3.5)

We have proved these identities at the end of Appendix [D.1.3] This matrix B is
needed to introduce the charge conjugate of a spinor, defined as ¥¢ = B~1W¥*. As
we discuss in Appendix [D.2.4] the operation of charge conjugation generalizes com-
plex conjugation, and the definition of B is consistent with the complex conjugation
properties. Notice that U will contain d(p, s) and c(7, s)*, so we can anticipate that



2.3. MAJORANA SPINORS 23

1© describes antiparticles. We are now ready to talk about Majorana spinors. A
Majorana spinor is a Dirac spinor satisfying the reality restriction

U =0%=DB 10" ie U*=DRBU| (2.3.6)

This is exactly what we have in provided that —(tot;) = +1. Furthermore,
if we take the complex conjugate in we see that U = B*U* = B*BWY, so
this reality condition is only consistent if B*B = 1. From ([2.3.5), we see that this
requires t; = —1 and thus ¢, = 1. Having a glance at the Table of AppendixD.1.3]
this happens only for dimensions D = 2,3,4 mod 8. This explains why Majorana
spinors can only exist in certain dimensions.

As we see, the Majorana conjugate and the Dirac adjoint are equivalent operations
when acting on a Majorana spinor. It is worth noting that the reality condition ([2.3.6)
does not imply in general that a Majorana spinor has real components. However there
are representations in which the v-matrices are explicitely real. For example, a real
representation for D = 4 is given by:

0 __ 0 1 1 1 0 2 0 01 3 0 03
Y _<_]1 O y V= O -1 Y= oy O V= 03 0 : (237)

In such representations, v** = «* and because of we have B = 1. Therefore
in these representations the Majorana spinor is real as the Majorana condition ([2.3.6))
becomes ¥* = . Moreover, if B = 1 then C' = i7°. We have already discussed many
different operations applied to spinors as well as several spinor types, so we include
them in the diagram [2.3.1] for more clarity.

Now we are going to prove that, if U(z) satisfies the free Dirac equation J¥ = mW
for D = 4, then the charge conjugate field U satisfies the same equation.

Proof. First notice that, as @¥ = mUV, the complex conjugate of this equation is
(v*)*0,V* = mU*. Using that (y*)* = By*B~! for D = 4, we compute

PO = 4"9,(B~'*) = BT'By*B7'0,¥* = B~ (v*)*00* = mB~'¥* = mU°.
O

In Appendix we have also proved that 1 and ¢ transform in the same way
under Lorentz transformations, so the Majorana condition is compatible with Lorentz
covariance.

The Majorana condition implies that Majorana particles are their own anti-
particles, mathematically expressed as ¢(p, s) = d(p, s). Before showing this, we need
to prove that v = u® = B~'u* for the functions u and v appearing in the expansion

?.2.32).
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We compute B~! for D = 4, using the representations (D.1.33)) and (D.1.1)) that
can be found in Appendix D}

Bil = Z"'}/Ocil = Z’}/OCT = ’i(iUl & ]1)(0'1 & 0'2) = <_5-2 _00_2> . (238)

Then, remembering the choice for 1 in ([2.2.35)), we have

Ly — —oy 0 \/E—|ﬁ|€* _ 1P
s () (mg) ( E+|ﬂn) (239)

Now we apply the reality condition to the Dirac spinor, (¥ )¢ + ( =V, +V_.
We compute (¥, )¢,
c d*p
W)= B = [ e B! . 2.3.10
( +) + (27T)32E Z ( b, ) ( )

v(p,s)

As both U, and (¥.)% are linearly independent, we can identify (¥ )¢ with the
other term that contains a negative exponential, i.e. ¥_:

d3ﬁ —i(p-X— — — *
v :/(27T)32E6 FEEDN" v (5, 8)d(p, 5)* (2.3.11)

From here we can conclude ¢(p, s)* = d(p, s)* or equivalently ¢(, s) = d(p, s). Since
in the quantized theory, d*(p,s)/c*(p,s) become the creation operators of parti-
cles/antiparticles, this proves that Majorana particles are their own anti-particles.

2.3.2 Majorana action

Majorana and Dirac fields obey the same equation of motion, namely the Dirac equa-
tion. Moreover, Majorana spinors have half of the degrees of freedom of a Dirac
fermion, so the action is written as

S[w] = —; / AP U[y"d, — m]v. (2.3.12)

Because of the new barred spinor, ¥ = ¢TC, we see that the mass and kinetic terms
are proportional to ¢*Cy and YT Cy#9, ¥, respectively. Let us suppose that the field
components commute. Since C' is antisymmetric, the mass term vanishes:

VU =970V = —vTCTy = 97T = —(00)T = 0¥ - VU =0. (2.3.13)
On the other hand, C'v* is symmetric, and so the kinetic term is a total derivative:

_ _ H —
Uy 9, ¥ = U0y 9,¥ = U1 (Cy") 19,0 = (9,¥TC* )T = 419,00 = %au(\pxp).
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Dirac Spinor ¥

Spinor Types

Spinor Operations

Charge conjugate: ¢ = B~1y*

Weyl Spinors (D = 2m)
\IIL = PL\I’, \I’R = PR\I’

Dirac adjoint
Uhirae = %170

I Row vectors Majorana Spinors
Majorana (D = 2,3,4mod 8)
conjugate U = 0% ¢ Upjae = Upgyj

Uy = UTC

Figure 2.2: Definitions for some of the different spinor operations and spinor types.

Thus, the kinetic term is zero when integrated in the action. For commuting field
components, there is no dynamics! In order to recover the physical situation, we must
assume that Majorana fields are anti-commuting Grassmann variables.

In dimensions D = 2,4 mod 8, both Majorana and Weyl fields can exist. In fact
the physics described by them is equivalent since we can write the Lagrangian density
of the theory in terms of either fields. Let us show this for D = 4. We can rewrite
the action ([2.3.12)) using the chiral projectors Py and Pg:

17 _ _
S[W) == 5 [ d'& [0, — Um](Py + Pr)¥ =
1- 1- 1 - 1 -
__ / dz [QWW@PLQJ + 50 0, Pp¥ — SmUPLY — SmW PRV . (23.14)

We are going to manipulate the term %\IW“QLPR\I/ to see that it is identical to
%\IW“(%PL\I/. We compute,

1 1 1 1 1
570, Pr¥ = M — 500 Prip = = 0,990 + £0,B995 0

1- 1- 1-
= 1\117“8#\1/ + Z\I/fy“%ﬁu\ll = 5\117“8“PL\I/. (2.3.15)

We have neglected the total derivative term because it vanishes under the integral,
and then we have decomposed Pr and used the Majorana flip relation (see (D.2.3) in
the Appendix). Thus, the action can be written as

_ 1 - 1 -
S| = — / d*z {\Iwﬂa“PL\If — GmUPLY — SmWPRY|. (2.3.16)



Chapter 3

The Maxwell and Yang-Mills gauge
fields

In physical theories, invariance under global transformations (those that do not de-
pend on space and time) is important, because it leads to conserved quantities, such
as electric charge or isospin. If the invariance is further required under local trans-
formations, that do depend on space and time, interactions can be introduced. The
resulting theories are called gauge theories and they are the core of the Standard
Model of particle physics.

Quantum electrodynamics, the quantum version of Maxwell’s theory of electro-
magnetism, is a gauge theory with an Abelian symmetry group U(1). This was the
first field theory to be quantized and it has led to some of the most accurate predic-
tions in physics [I8]. In 1954, Chen Ning Yang and Robert Mills generalized gauge
theories to non-Abelian symmetry groups, in order to explain strong interactions [19].

3.1 The Abelian gauge field

We have already discussed the global U(1) symmetry of free complex scalar and free

spinor fields, in Sections [1.2.1}and [2.2.4], respectively. We generalize this situation by

considering that the parameter § becomes an arbitrary function of space and time,
0 — O(x). Therefore we now have an Abelian gauge transformation, consisting of a
local change of phase. For example, for a Dirac spinor field, the gauge transformation
is implemented as

U(z) — V(x)=e@u(z). (3.1.1)
In contrast with global phase transformations, the Dirac and the Klein-Gordon actions
are not invariant under the transformation , so equations of motion are not
gauge invariant. In order to formulate field equations that are gauge invariant, we
need to introduce a field A, (z), which is defined to transform as

A(n) = A() = Au(0) + iaﬂe(@. (3.1.2)

26
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We have included a numeric factor e, whose meaning will be explained soon. The vec-
tor field A,,(z) E|, also called gauge potential, enters the covariant derivative, defined
as follows:

D,V (z) = (0, —ieA,(z))¥(x). (3.1.3)

This covariant derivative transforms with the same phase factor as ¥ (z):

D,V (x) ( ZeA' L (@))e’ ( ) = (0 —ieAy(x) — i0,0())e™ I)‘I’( )
= ( )+ V(x e @) e, (x)e' ) — (g RS
=c'"@ D, W (x). (3.1.4)

If we replace 0,V (x) — D, V(x) in the free Dirac equation, we get
VD, —m]¥ = [y*(0, —ieA,) —m|¥ = 0. (3.1.5)

This equation is gauge covariant: if W(z) satisfies (3.1.5) with A,(x) then V'(z)
satisfies the same equation with A} ()
VDLW —m¥ =) [y D, —m] ¥ =0. (3.1.6)

—_——
=0

The procedure is the same for the complex scalar field ¢(x). The local gauge trans-
formation is ¢(z) — ¢'(x) = €@ ¢(z) becomes a symmetry by defining the covariant
derivative D,¢(x) = (0, — ieA,(x))¢(z) and modifying the Klein-Gordon equation
as follows:

[D*D,, — m?|¢(z) = 0. (3.1.7)

Therefore we have seen that, by simply promoting the global symmetry to be lo-
cal, we require the presence of a new vector field A, (z), that couples to ¥(x) and ¢(z).

The quantization of the field A,(x) leads to a description of massless particles
with helicities 1, called photons, as it is discussed in [2I]. Thus A,(x) represents
a bosonic field. Since A, (z) is a vector field, it transforms under the representation
(2, 2) according to the (j, j/) classification of the Lorentz group that we discussed in
section 2.1 We have already talked about scalar, spinor and vector fields, being all
of them classifiable in the (j, j') representation, so we include them in the Table [3.1]
Just for completness, we have also added the (j, j') representation of the metric tensor
9 and the Rarita-Schwinger field W, which describe the graviton and gravitino,
respectively. These are two-hypothetical particles not discovered yet that play an
important role in Supergravity theories.

"'We will assume that A, transforms as a vector under Lorentz transformations, but this is an
oversimplification, because the question is more subtle. A, is undetermined due to the gauge freedom
in and one can eliminate this ambiguity by choosing a certain . There are different choices,
and A, does not transform as vector in all of them. In [20], it is shown that A, transforms as a
vector in the so-called Lorenz gauge.



3.1. THE ABELIAN GAUGE FIELD 28

Lorentz rep. | Total spin | Mathematical Field Elementary particle
(0,0) 0 Scalar ¢ Higgs boson
(0, %) % Left-chiral spinor W, Neutrino

(%, O) ) (0, %) % Dirac spinor ¥ Electron, quarks
(%, %) 1 Gauge vectors A, AZ‘ Photon, gluons

(%, 1) ® (1, %) % Rarita-Schwinger ¥, | Gravitino (no SM particle)
(1,1) 2 Metric tensor g, Graviton (no SM particle)

Table 3.1: Common representations of the Lorentz group and their corresponding particles.
The graviton and gravitino are not included in the Standard Model of particle physics.

3.1.1 The free case

Although we have introduced the gauge potential A,(x) in order to write the dy-
namics of the spinor and scalar fields in a gauge invariant fashion, A,(x) can evolve
independently, that is, without the presence of any spinor or scalar field. In this
section we proceed to derive the dynamical equations of the free gauge field.

We introduce the field strength, an antisymmetric derivative of gauge potentials
F.(z) =0,A,(x) — 0,A,(x). (3.1.8)

This is a tensor of rank 2. Moreover, the field strength is invariant under gauge
transformations, F ;W = F,,, as the terms 9,0,0 and 0,0,0 cancel out. In four di-
mensions F),, has six independent components, which we identify with the three
components ¢ = 1,2, 3 of the electric field, F; = Fjy , and the three components of
the magnetic field, B; = %aijjk.

We look for second order Lorentz covariant equations describing A,. We would
like to make use of F),,, which is gauge invariant, so we will construct these equations
in terms of the first derivatives of F),,. We are going to see that the contracted form

O"F,, =0 (3.1.9)

is the suitable choice for the equations of motion of the free electromagnetic field.
The strength tensor also satisfies the Bianchi identity

0, Fyp + 0, Fyy + 0,F,, = 0. (3.1.10)

This equation is satisfied for any F),, expressed in terms of A, as in (3.1.8) (notice
that because of 0,0,A4, = 0,0, A4, all terms in (3.1.10]) cancel by pairs). We see that
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(3.1.9) and (3.1.10]) are tensorial equations, i.e., they hold in any inertial reference

system and thus they are Lorentz covariant, as we wished. When these equations are
expressed in terms of the electric and magnetic fields, we recover classical Maxwell’s
equations in the absence of currents and charges [22].

Making use only of (3.1.9)) and ([3.1.10)) we are going to show that the components

of the field strength satisfy the wave equation UJF),, = 0.

Proof. We apply 0" to equation (3.1.10). Taking into account (3.1.9)) and the fact
that F),, is antisymmetric, it is also true that 0" F,, = 0. With this, we have:
oo, F,, + 0"o,F,, +0"0,F,, = o0"o,F,, + 0,0"F,,+0,0"F,, =UF,, = 0.
N—— ~——
=0 =0
O
The gauge invariant equation [JF),, = 0 expresses the fact that the electromagnetic

field describes massless particles. It is worth noting that the field strength arises as
a consequence of the non-commutativity of the covariant derivatives (3.1.3])

(D, DU =D, (8, — ieA, W) — D,(8,¥ — icA,)
= —ied,(AV) —ieA,0,¥ +ied, (A, V) + ieA, 0,V
= —1e0, AV + 10, A,V = —ie(0,A, — 0,A,)V = —ieF,, V. (3.1.11)

3.1.2 Dirac field as a source

To account the presence of sources, (3.1.9) has to be modified in the following manner:

O F,, = —J,| (3.1.12)

The source J, is called the electric current vector. Since 90" F),, vanishes identically
Pl the current must be conserved

0" J, = 0. (3.1.13)

The continuity equation (3.1.13)) simply expresses the fact that electric charge cannot
be created or destroyed. With this, one can show that J, actually transforms as a
vector. Now, using that F), transforms as F(;ﬁ = A JF,, N5, we can check that
equation (3.1.13)) is Lorentz covariant

OOF s = (A1), N A 507 Fy = A g ' F,, = —N"3], = —J}, (3.1.14)
5¢ _Jl/

200" F,, = 0 is a mathematical identity because it is the contraction of a symmetric tensor
0”0* with an antisymmetric one F),,,, so an explicit expression for A, is not needed.
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The current vector .J, may represent any piece of laboratory equipment, such as a
magnetic solenoid. However, from the theoretical physics point of view, it is far more
interesting to consider as a source the field U of an elementary charged particle, like
the electron. After quantization, this leads to the theory of Quantum Electrodynamics
(QED), which describes all electromagnetic phenomena happening in Nature. We
proceed to see the classical version for the action functional of QED:

S[A,, T, 0] = /d% L= /de [—iF””FW V(D —m)¥|.  (3.1.15)

This action can be equivalently rewritten as
S[A,, U, V] = / 4”2 [Lpirac + Lataxwell + Linteraction] - (3.1.16)
where Lpipac = —\Tffy“@ulll +mPV and Lyfaswell = —iF #E,, describe the dynamics

of the spin—% particle and the photon, respectively. The other term,
EInteraction - e‘i/’}/#Ay‘Ij; (3117)

represents the interaction between them. Now we can understand the meaning of
e, which is called the coupling constant: it measures the strength of the coupling
between the photon and the charged particle. The factor e?/4m ~ 1/137 is called the
fine structure constant. We now proceed to derive the equations of motion. Firstly,
we compute each of the terms appearing in the functional derivative 4.5/ N

oL oL
O | ———=| =~"0,7, — =mU + jeqgy" A, V.
g <a(auxp)> T oy T T e
With this, we arrive at the gauge covariant Dirac equation of ([3.1.5)
0S oL oL
() - = = "D, — m] ¥ =0 (3.1.18)
o (0, %) o

The functional derivative with respect to the gauge potential A, is given by

0S oL oL
Rt — =0. 1.1
sar ~ O (a(auAv)> oA " (3.1.19)
We compute each term separately:
oL oL
—_— = — MAV - VAH - - ILF 18] 12
o~ A0 = 8 (Gan) = 1)
oL .=
DA eqU, V. (3.1.21)

The resulting equation of motion is thus

OMF,, = —ieqUy, . (3.1.22)
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This is the same as with the electric current proportional to the Noether
current of the global U(1) phase symmetry discussed in Section m Equations
(3.1.18) and determine both fields ¥ and A,,. The former equation tells that
the dynamics of W is affected by the field A,, whereas the later tells that ¥ acts as
the same time as a source for A,,.

3.1.3 Energy-momentum tensor

We consider in (3.1.16|) only the terms describing the free electromagnetic field, that
is, Lytaxwenn- This action is invariant under spacetime translations. Proceeding as we
did in Section (1.2.2]), we find that the energy-momentum tensor is given by

aACMaxwell
Jt,=T", = K¥, — —————0,A, = 0" Lotaxwen + F*70,A,. 3.1.23
0, Ay) e~ Pt T A 3125
Raising the v index with the help of the metric and writing Lyiaxwen €xplicitely, we
have

1
THY — _anpaﬂpaﬁ + FFOY A, (3.1.24)

Because of the presence of 0”A,, this expression for the energy-momentum tensor is
not gauge invariant. Gauge symmetry can be restorted by adding the derivative of
an antisymmetric tensor to this Noether current (see Appendix [B.1.2)). We add the

term 0,(A”F**) to (3.1.24)), so:

1
T =T 4 0(AVFP") = — 0 F* Foy P10 A, — 9,A"F"

1
_ _Znu'/paﬁpaﬂ + FreFv,. (3.1.25)

Therefore, 7" is now gauge invariant. We can check that in four dimensions the
elements of lead to well-known results of classical electromagnetism. For
example, using that the elements of the field strength can be expressed in terms of
the electric and magnetic field components as Fjy = E; and F}; = ajkBk respectively,
we compute the following:

FFO — FU R0, — BB, = E2, (3.1.26)

FOPF,5 = 2FF + FI'F; = —2E'E; + ¢, BE B, = 2(B? — E?).  (3.1.27)
1
261

In this way we can obtain 7"%°. As we know, this should represent the energy density.
We get:

1 L T
T = FOR, + (F¥Fy = 2 4 (B - B?) = (B + 7). (3.1.28)

This is the classical result for the energy density of the electromagnetic field [22].
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3.2 The non-Abelian gauge fields

Yang-Mills theory constitutes a generalization of electromagnetism, in the sense that
the symmetry group of the theory is now non-Abelian (as opposed to U(1), which is
Abelian). Examples of non-Abelian groups that play an important role in the Stan-
dard Model are SU(2) and SU(3). These are discussed in Appendix [C.2.1]

In Yang-Mills theory, scalar and spinor fields transform in an irreducible repre-
sentation R of a non-Abelian Lie group G. As we explain in Appendix [C.2] a general
element of the group is denoted by e=#"4, where 4 are the parameters of the trans-
formation and t4 the generators of the algebra of the group, g. For example, a set of
Dirac spinor fields ¥ (@ = 1,...,dim R) [[| transforms as

() = () 500 (). (3.2.1)

The set of Dirac conjugate spinors [2.2.19 denoted by ¥,, transforms as

= B

A 71 Gl (3.2.2)

In general we will only need to consider infinitesimal transformations, given by trun-
cation of the exponential series at first order in 4. Omitting « indices, we write:

oV = — 04,0, (3.2.3)
U =Uht,.

We can check that the global transformations in (3.2.1)) and (3.2.2)) leave the action
(2.2.20)) for the free Dirac field invariant:

S0, 0] = — / APz W[40, — m]V’
= — /dDas Tl A1, — mle 70 = S[T, ). (3.2.5)
Therefore, these transformations constitute a symmetry of the system and we can find

the corresponding Noether current. If we identify the general parameters ¢4 with 64
and consider that 0¥ = ¢4A U = —#4¢,4U, then the infinitesimal transformation is

AU = —t 0. (3.2.6)

Having in mind the general expression in Appendix (B.1.11)), we notice that K* =0
given the invariance of the Lagrangian density. Thus the Noether current is

oL

JNA - —mAA\IJ = —\Ith'yu\Ij (327)

3Indices o should not be confused with spinor indices, which we normally omit.
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The next step in the discussion is to gauge the global symmetry that we have just
discussed. That is, we promote the group parameters 84 to be arbitrary functions of
space and time, 84 — 64(z). Field equations for the free spinor ¥ are not invariant
anymore under this symmetry, so we need to introduce a set of vector fields Aﬁ(m),
whose infinitesimal transformation is

5AN (z) = ;aue/*(x) 1 69(2) AP(2) oo, (3.2.8)

The vectors Aﬁ(a:) are also called non-Abelian gauge fields. The constant g is the
Yang-Mills coupling, and measures the strength of the interaction, in the same way
as the electromagnetic coupling e. The array of numbers fgoca = — fopa denotes the
structure constants of the group (we discuss them in Appendix .

The fields Af}(a:) enter the covariant derivatives, which are defined as

D,V =0, + gtaA})V, (3.2.9)
D,V =0,V — gUt, A7, (3.2.10)

Following the ideas of Section [3.1] we can obtain gauge invariant equations of motion
if we replace 9, — D,,. The action for the spinor field ¥ would become

S=— /de L=— /de (07D, ¥ — mTW], (3.2.11)
which leads to the equation of motion
V"D, — m]¥* = 0. (3.2.12)

In order to check this action is gauge invariant, we are going to prove that the in-
finitesimal gauge transformation of the covariant derivative D,V is the same as the
one for the field ¥. Namely, we are going to show that 0D,V = —QAtADM\If.

Proof. We will make use of the commutation relation of the Lie algebra, [ta,tp] =
fapete. We compute:

5D,V =0,(00) + gtad AL + gty ALSU
= — GAtAﬁulll + g@CAEtAfBCA\I/ - gQDAﬁtAtD\I/

= — 0740,V — 0" At pt sV +90S Al trfpeaV — g0° At fapete ¥
N———

D—A, A—»D D—C, A—»B, E—A
= — 0%t4(0, ¥ + gtp Al V) = 044D, V.

Now we are ready to show that the action (3.2.11)) is gauge invariant
55 = — / APz (894D, U + Ty*6D, ¥ — m(6TW + Vo))

— / APz [0t 44" D, U — Ty 044D, U — m(T0AE T — TOALLT)] = 0.
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3.2.1 Yang-Mills field strength and action

The first part of this section is aimed to find quantities that dictate how the fields
Afl(x) evolve independently. In Section we saw that the field strength F),
emerges as a consequence of the non-commutativity of the covariant derivatives. We
proceed to compute the commutator of the new covariant derivatives defined in the
previous section, to see if we can obtain an object analog to F},, in a similar fashion:

[Dy, D) =(0, + gts ALY (0,9 + gta A W) — (0, + gtaAy) (0, + gtp AL V)
=gt a0, ANV + ga ATV + gtp APOLU + g*tpta AT AN V-
—gt0, ADV —gtg ABOU — gt xAST U — Pt A ANV
—_——
B—A
=9(0,A) — 0,ANtAV + ¢° [tp, ta] ATAJU = gFt 4. (3.2.13)
——
fBactc
We have arrived at an expression for the so-called Yang-Mills field strength
Fiy = 0,A7 — 0,A, + gfpcad Ay (3.2.14)

This antisymmetric tensor is the non-Abelian generalization of the electromagnetic
field strength . An important difference with £, is that the Yang-Mills
strength is not gauge invariant. In fact, one can show that F), transforms as a
field in the adjoint representation:

§F;, =0°F) fpca. (3.2.15)

We have discussed the adjoint representation in Appendix [C.2] Another important
difference with the electromagnetic case is that F ;ﬁ/ is nonlinear in Al‘:‘.

Let us now formulate the equations governing the dynamics of Aﬁ. We consider the
presence of matter sources, described by current vectors J2. The following equations

DVME;, = 0" Fly, + gfpoaAMPES, = =T, (3.2.16)

which are both gauge and Lorentz covariant, are the equations of motion we are
looking for. These are the Yang-Mills equations, and are analogous to Maxwell’s
equations . A meaningful difference is that, even in the absence of sources
JA4 =0, (3.2.16) is still a complicated non-linear equation with non-trivial solutions
for Aﬁ. One can show that D¥D*F ;ﬁ/ vanishes identically, so the current needs to be
conserved under the covariant derivative

D'JA =0. (3.2.17)
The Yang-Mills field strength satisfies the Bianchi identity:
D,F;,+ D,F;, + D,Fi, =0, (3.2.18)

which is the analog of (3.1.10). We now proceed to prove it.
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Proof. We straightforwardly compute each of the three terms in (3.2.18)) separately.
The first one is

D, F;), = 0,0,A% — IauapAfl + 9 Boadu AT AT + 9 fpoa AT 0,AT + g froa AL 0, AT
L T ] 5 L 3 ] L = ] L m) ]
— 9fB0aA}0,AY + g° fecafpec AL AD ALY (3.2.19)
T 7

We enumerate each term in order to distinguish clearly the cancellations. We
obtain DVF;}L and DPF:}, by simply permutating greek indices in a cyclic way

D, F} = IayapA;‘I — IauauAﬁl +g fBCAaVAfAf;‘I +9 fBCAAfayASI g fBCAAfapAffl

3 1 10 6 9
- QfBCAAfauApC + ¢ fecafppc AT AV AL, (3.2.20)
5 7
D,F# = IapauA;“l - Iapa,,A;jl +9 fBCAﬁpAfAfI +9 chAAfapAfl +9 fBCAAfa#AfI
2 3 9 4 8
— 9fBcaAJ O, AL + ¢ facafpecA) A AL (3.2.21)
6 7

All the terms labeled with the same numbers cancel when summed (this becomes
clear when a relabeling of latin dummy indices is made). Note that the three terms
labeled by 7 vanish when summed (after relabeling of latin indices) because of Jacobi

identity (see Appendix[C.2]). Thus (3.2.18) is satisfied. O

We dedicate the last part of this section to discuss the action functional describing
the non-Abelian gauge fields Af} coupled to the set of Dirac fields ¥*. The gauge
invariant action is

S[A% T, 0°] = /deLi /dD [ SR G (4D, — m)ue| . (3.2.22)

We proceed to derive the equations of motion arising from this action. The functional
derivative respect to A;‘ is given by

0S oL oL
i3 = s~ (o) = 22

If we define F ;ﬁj = 0,A; — 8,,A;‘ and compute each term, we obtain:

oL _
| %
oL fBeaAMPFS, — g7 focafopc AMPAD AL — g0, t 4 U7, (3.2.25)

oAz~ Y
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Now, if we substitute the expression (3.2.14) for F/ﬁ/ into (3.2.16|), we realize that the
different terms we get are precisely those we have just found in (3.2.24) and (3.2.25)).

Thus, the equation of motion is
D#F;ﬁ/ = _gJIJ = _g\i]afyutA‘I]a- (3226)

Again, the spinor fields ¥ act as a source for the non-Abelian gauge fields. Finally,
the functional derivative respect to ¥, yields

5S oL ( oL
_ a1

N dadi — =) = mU® — g AT — A9 T = (). 3.2.27
5. = BT, au%) m g taA, Y0, ( )

This is precisely the gauge covariant Dirac equation in (3.2.12)).



Chapter 4

Introduction to SUSY

SUSY is a symmetry connecting bosons and fermions. In particular, SUSY proposes
that every particle has a partner, called superpartner. These superpartners are very
similar to standard particles. The main difference is that they have a spin that differs
by 1/2 from that of the conventional particles.

SUSY theories first appeared at the beginning of the 1970’s. In 1974, Julius
Wess and Bruno Zumino studied the first interacting quantum field theory which was
invariant under linear supersymmetric transformations [5].

SUSY is an active research field nowdays. The Minimal Supersymmetric Standard
Model (MSSM), which constitutes a supersymmetric extension of the Standard Model,
solves many current problems in particle physics, such as the naturalness problem or
the gauge coupling unification.

4.1 Why SUSY?

SUSY tells us that for each boson/fermion, one should find a fermion/boson with the
same mass and the same quantum numbers. The general rule is to prefix with "s"
the name of the superpartners of fermions and to suffix with "ino" the name of the
superpartners of bosons [[] For example, the superpartners of the electron and the
quarks are called selectron and squarks, respectively. In the same way, the superpart-
ners of the gluon, photon and Higgs particle are called gluino, photino and Higgsino,
respectively. In Figure [4.1] we show the SM particles and their superpartners.

However, these superpartners have not been observed in Nature so far. For ex-
ample, we have not observed any spin-0 particle with the same mass and the same
quantum numbers as the electron. Thus, if SUSY exists, it must be spontaneously
broken in order to allow superpartners to have bigger masses. This would explain why
they have not been detected yet in particle accelerators, such as the Large Hadron

LAn exception to this rule is the case of the neutrino, whose superpartner is called neutralino.

37
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Figure 4.1: The particles of the Standard Model and their corresponding superpartners.
Picture taken from [23].

Collider (LHC). But this is not new, since spontaneous symmetry breaking already
happens in the SM. For example, the exact symmetry of this theory, described by
the direct group product SU(3) x SU(2) x U(1), imply that all bosons are massless,
in contradiction with the observed masses of the W+ and Z bosons. One solves this
problem by spontaneously breaking the symmetry via the Higgs mechanism.

The MSSM describes spontaneously broken supersymmetry and answers many
open questions. Here we mention some motivating reasons for studying SUSY from
a phenomenological point of view.

e Naturalness problem. The mass of the Higgs boson, whose experimental
value is approximately 125 GeV, is very sensitive to quantum corrections, which
are estimated to be of the order of 10%° GeV. In order to keep the experimental
value of 125 GeV, an unnatural fine tuning procedure is required. However,
if SUSY is considered, contributions from bosonic and fermionic superpartners
cancel exactly the quantum corrections. This was one of the original motivations
for developing SUSY.

e Gauge coupling unification. There have been some attempts in constructing
a Grand Unified Theory (GUT), in which the three interactions of the Standard
Model are merged into a single one at high energies El This theory implies a
unified coupling constant. The problem is that the couplings in the Standard
Model do not seem to intersect (see Figure . With SUSY, the dependence
on the energy scale is modified and the couplings almost unify at the order of
1016 GeV.

2The variation of the coupling constants with respect to energy scale is determined by the 3
functions, that are studied in advanced courses of QFT.
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Figure 4.2: The strong, weak and electromagnetic couplings, with and without SUSY.
Picture taken from [24].

e Dark matter. The total energy contained in the universe is divided into ap-
proximately 4 % ordinary matter, 22 % dark matter and 74 % dark energy.
Despite the abundance of dark matter in contrast to ordinary matter, we still
do not know what are the particles that make up dark matter. However, SUSY
particles are natural candidates for dark matter. In particular, the neutralino
(the lightest particle of the MSSM) exhibits many of the necessary properties
required by experimental evidences.

e Quantum gravity. A special feature of SUSY is that internal and spacetime
transformations are mixed. Because of this, when invariance is imposed under
local SUSY transformations (that is, for parameters ¢, (x) that depend on space
and time), one is forced to introduce fields that reproduce General Relativity.
The resulting theory is called supergravity (SUGRA). Thus, in the same way
that gauging the U(1) symmetry leads to electromagnetism, gauging SUSY leads
to gravity. The hypothetical elementary particle that mediates gravity is the
graviton, a spin-2 particle, and his superpartner is a Spin—% particle called the
gravitino. Besides SUGRA, the supersymmetry algebra is contained in other
theories of quantum gravity, such as superstring theory.

e Further applications. Apart from theoretical physics, SUSY concepts have
been applied in many different areas. For instance, in the field of Integrated
Optics, certain branches of SUSY can be explored in accessible laboratory set-
tings [25]. Another example is Condensed matter physics, where SUSY has
been applied to disordered quantum systems [26].

4.2 Basic concepts in SUSY field theory

A supersymmetric transformation turns bosons into fermions and fermions into bosons.
We can schematically denote particle states of bosons and fermions by |Boson) and
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|Fermion). Thus, an operator () that generates supersymmetry transformation must
act in the following manner:

() |Boson) = |Fermion), @ |Fermion) = |Boson). (4.2.1)

From this, we note that the )’s change the spin, and hence the statistics of the
fields. Spin is related to rotations, so we can infer that supersymmetry is, in some
sense, related to spacetime transformations. Let us consider a simple example. Let
us assume U to be a unitary operator in the Hilbert space which corresponds to a
360° rotation around a particular axis. Then:

UQ |Boson) = UQU ~'U |Boson) = U |Fermion),
UQ |Fermion) = UQU U |Fermion) = U |Boson) .

However, we do know that fermions and bosons behave differently under rotations:
U |Fermion) = — |Fermion), U |Boson) = |Boson) . (4.2.4)

Then we must have:
UQU™ = -Q (4.2.5)

That is to say, the rotated symmetry generator () picks a minus sign, just as fermionic
states do. This is why () is a spinor operator. For simplicity, it is assumed that @) is
a four-component Majorana spinor, although there are other equivalent treatments
which consider two-component Weyl spinors (as in [27]). Therefore, we write in gen-
eral @', where « is a spinor index and ¢ = 1,..., N/ is an index labeling different
operators Q. Then, the number of )’s will always be a multiple of the spinorial com-
ponents, and A determines the multiple. Theories with N' > 2 are called extended
supersymmetric theories. Since the Q¢ generate supersymmetry transformations, they
are also referred as supercharges (we have discussed charges as generators of trans-
formations in Appendix . Here we consider the simplest case of N' = 1. We will
also assume dimension D = 4.

Generators of transformations have to fulfill a certain algebra, so we can ask
ourselves: what is the algebra satisfied by @7 To answer this question, we have
to extend the symmetry of generators to a more general structure. So far, all the
generators we have seen obey commutation relations. For example, the generators
Jiw) and P, of the Poincaré group, which describes spacetime symmetries, satisfy the
relations [l

[ Jipot) = Mpd o = Mup o) = Moo Jjpp) + Mo Jival
[‘][prﬂv PM} = Pollop — Loty
[P,,P,] = 0. (4.2.6)

3These relations are discussed in Appendix
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Moreover, the generators T, of a certain Lie group which contain internal symmetries
satisfy in general
[Tm Tb] = fabch (427)

where f.. are the structure constants of the group. Generators with a commutator
structure are said to be bosonic (B). But we can also consider the possibility that
they satisfy anticommutation relations, in which case the generators are said to be
fermionic (F). The later has to be the case of the generators @, since they are spinors.

However, there are two important theorems that limitate the type of generators
and algebras that can be realized in an interacting relativistic quantum field theory.
Concerning bosonic generators we have the Coleman-Mandula (CM) theorem
[28]. Under the assumption of a discrete spectrum of massive one-particle states with
positive energies, this theorem states that the symmetry group G of the theory can
only be of the form G = Poincaré group x Internal Symmetries. That is to say, the
associated Lie algebra of G' can only be the direct sum of the Poincaré algebra (4.2.6)
and the Lie algebra of internal symmetries. Because G is a direct sum, these algebras
commute:

(Tu. P = [T, Jyuy) = 0. (4.28)

It is worth noting that the assumptions of the CM theorem are satisfied in the Stan-
dard Model, and the internal symmetries of the gauge group of the theory, which is
SU(3) x SU(2) x U(1), do not mix with spacetime symmetries.

Thus, if we were to suggest the possibility of combining spacetime and inter-
nal symmetries in a non-trivial way, that is, having for example [T}, Jj,.j] # 0, the
CM theorem would seem to prevent us of doing so. Nevertheless, there is a hid-
den assumption in the CM theorem: we assume Lie algebras, which restricts our
generators to satisfy commutation relations. If we allow the presence of anticommu-
tators (and thus of fermionic generators) the CM theorem can be avoided. Then the
Haag—Y.opuszanski—Sohnius (HLS) theorem [29] comes into play.

The HLS theorem, under the same hypothesis of the CM theorem, states that
bosonic and fermionic generators can join in a new structure called superalgebra [1
The schematic structure of the superalgebra is

[B,B|=B, |[B,F|=F, {FF}=B8. (4.2.9)

4A superalgebra or graded Lie algebra is a particular case of a more general mathematical struc-
ture, called graded algebra.
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In particular, the so-called Super Poincaré algebra, which is a minimal supersymmet-
ric extension of the Poincaré algebra (4.2.6)), exhibits this structure:

{Qa. Q%) =0, {Qa, @7} = (), 7P,
i)y Qal = () "Qs: [Py Q] = 0. (4.2.10)

Here the bar over ) denotes either a Dirac adjoint or a Majorana conjugate (which,
as shown in , are equivalent for a Majorana spinor) and vy, = Y. So we
have finally shown that we have to extend the notion of a Lie algebra to a graded Lie
algebra, or superalgebra, to accomodate the fermionic generators.

The parameters of SUSY transformations are constant 4-component Majorana
spinors 5oﬂ. As the parameters do not depend on space and time, we will be talking
about global SUSY transformations E| Note that, since €, is not a field, there is no
particle associated with it.

Using the canonical formalism (see Appendix ), one is able compute the field
variations of an arbitrary field ® once the explicit form of the supercharges is known,

5 = —i[E°Qq, (z)]. (4.2.11)

Let us explore some consequences of (4.2.10)). We are going to compute the commu-
tator of succesive variations 0y, 05 of ®, with parameters ; and &5, respectively. We

will use that £Q = Qe for Majorana spinors (see (D.2.4) in Appendix [D.2.1)). We get
61, 8] D () = 6,(0,D) — 65(6,D)
= - [nga {Q{f?a @(33)” + {5_2@7 [Q{fla (IA)(‘:E)H
= &1 [{Qa, Q%}, 0(2)] £25 = —E17"£20,®(2). (4.2.12)
In the second line we have used the so-called superJacobi identity []and to reach the
last line we have made use of the second relation in (4.2.10f). Notice that in the right
hand side of (4.2.12)) we have the expression of an infinitesimal spacetime translation,

with parameter a# = —&;v"e5. We have thus arrived at a remarkable result: after
performing two succesive SUSY transformations on a field, we obtain the same field

This is because they normally appear contracted with @Q so, in order to have a Lorentz scalar
quantity, the only possibility for £, is to be also Majorana spinors. In Appendix [D.2.1] we show that
two spinors X and x can form a Lorentz scalar quantity by the contraction Ay.

6We are not considering the case in which Ou€a # 0, which has important implications for the
unification of gravity and internal symmetries, as we discussed.

"In a superalgebra, for any pair of fermionic operators I, and F, and a bosonic operator B, the
following generalised Jacobi identity holds:

[Flv[FQ’BH - [FQ’ [FlaBH = [{F17F2}’B]'
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but evaluated at a different coordinate than it was initially. This elucidates that
supersymmetry is deeply related with spacetime transformations!

Another important consequence of arises from the last commutator, which
is [P, Q] = 0. This implies that the states transformed by Q,, namely |Boson) and
|Fermion), have the same momentum and energy. Hence, because of E? = p? + m?,
they also need to have the same mass, so mp = mp. This stops being true when one
considers spontaneous SUSY breaking, whose formalism is not discussed here. It is
also a key result that the number of bosonic and fermionic states coincide. We now
proceed to prove this.

Proof. Let us consider a fermion number operator Ng, satisfying Ng |Fermion) =
|Fermion) and Ny |[Boson) = 0. This means that the operator (—1)* has eigenvalue
+1 and —1 on bosonic and fermionic states respectively

(—)* |Boson) = + |Boson) , (=)™ |Fermion) = — |Fermion) . (4.2.13)

Then the operator (—1)F anticommutes with Q, (—1)"*Q = —Q(—1)"F, as we can
check:
(=1 Q + Q(—1)"*] [Boson) = (—1)* |Fermion) + @ [Boson)
= — |Fermion) + |Fermion) = 0. (4.2.14)

We now compute the following trace:
Tr ()" {Q,Q}] = Tr [(-1)™ (QQ + QQ)]
=Tr [-Q(-1DYQ+Q(-1)™Q| =Tr[o] =0.  (4.2.15)

We have used the linear and cyclic properties of the trace, that is Tr(A + B) =
TrA+TrB and Tr(AB) = Tr(BA), and also that (—1)VF anticommutes with Q. But

because of (4.2.10) we also know that {Q, Q} = 7, P*, which means

Tr (-1 {Q,Q}| = . Tr {(-1)"r P} = 0. (4.2.16)

In order to avoid a zero momentum P,, we must have Tr(—1)"# = 0. This implies
that there is an equal number of eigenvalues +1 and —1. In other words, there must
be an equal number of bosonic and fermionic states. O

Therefore the single-particle states of a global SUSY theory can be grouped in
multiplets, which contain equal number of bosons and fermions. The simplest multi-
plets are

1. The chiral multiplet, which contains a spin-1/2 fermion described by the
Majorana field x(x), plus its spin-0 bosonic partner, the sfermion, described by
the complex scalar field Z(x).
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2. The gauge multiplet, which consists of a massless spin-1 particle, described
by a vector gauge field A,(x), plus its spin-1/2 fermionic partner, the gaugino,
described by a Majorana field A(x).

We are going to discuss two theories related to these multiplets in the following
section. We end this part by simply stressing that there is an alternative approach
to supersymmetry, called the superspace formalism, that we have not covered here.

4.3 Supersymmetric Lagrangians

4.3.1 The Wess-Zumino model

In this section, we are going to consider the Wess-Zumino model, which is the simplest
example of interacting supersymmetric field theory. It is a chiral multiplet containing
a complex scalar field Z(z) and a Majorana field y(x). For simplicity we are going
to consider only its left-chiral projection Ppx(x) = X, since from Section we
know the situation is equivalent.

In order to understand the form of the SUSY transformations of this chiral multi-
plet it is convenient to firstly discuss the dimensions of the quatities we are going to
deal with. We are using natural units, so both ¢ and A become adimensional numbers
equal to 1. From this we can infer that the dimensions of time and length are the
same and equal to dimensions of inverse of energy, i.e., [T] = [L] = [E]~!. Taking into
account that £ = mc? becomes F = m, we see that energy and mass have the same
dimensions, [E] = [M]. Everything is thus expressed in terms of powers of energy,
[E]™, so we will express the units in terms of n. Therefore we write:

T =[L]=-1, [M]=1. (4.3.1)

This means that the dimensions of a derivative is [0,] = 1. The action S = [ d*z L
is dimensionless, so the Lagrangian density must have dimension [£] = 4. From this
we can obtain the dimension of the fields. For example the kinetic term of a scalar
field ¢ is given by 0,¢00"¢, which means that a scalar field has dimensions [¢| = 1.
On the other hand, if we consider the mass term of a spinor field ¥, which is m¥¥,
we see that spinors need to have dimension [V] = 3/2.

Let us now introduce the infinitesimal supersymmetric transformations of the
chiral multiplet:

07 = éPLX,
d(Prx) = 0" (Pre)0,Z.
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Equivalently, using that P, = P P;,, we have

67 = ELXy, (4.3.4)
5XL = o—“sR@Z.

We are going to argue why and are actually the correct transformations.
The first thing to notice is that the variation of Z gives rise to x; whereas the variation
of x; involves Z. This was to be expected, because this is the whole idea of SUSY:
bosons are transformed into fermions, and viceversa. Moreover, these transformations
are linear in the fields. Non-linear transformations could have also be considered, but
this would considerably complicate the computations.

Secondly, we can check that both sides of equations (4.3.4) and (4.3.5]) transform
in the same way under Lorentz transformations, as they should. For example, the

contracted quantity €;x; transforms as a Lorentz scalar, just as Z. On the other
hand, x; is a left-chiral spinor, so the quantity o#€r0,Z should also transform as a
left-chiral spinor. If we rewrite it as 0%, Zer and remember equations we see
that this does transform as a left-chiral spinor (since the fact that the derivative acts
on the scalar field Z does not affect the behaviour under a Lorentz transformation).

Finally, let us check the dimensions. In order for equation to have the cor-
rect dimensions, the infinitesimal SUSY parameter needs to have dimensions [e] =
—1/2. This is consistent with the dimensions of ([{1.3.5)), as [o#egd, Z] = -1 +1+1 =

% =[x
Let us study now the action of the massless, non-interacting Wess-Zumino model:
Skin = /d4SC (Escalar + Efermion)a where
*Cscalar = _aMZ*auZ7 *Cfermion = _XaPLX = _)_(Ra-’uaMXL' (436)

We want to show that this simple action, containing only kinetic terms, is invariant
under the transformations (4.3.4) and (4.3.5). After this, we will add interaction
terms. For the present task we have to obtain the conjugate of the transformations

(4.3.4) and (4.3.5)). Using the results developed in Appendix [D.2.4] we get:

87" = Epxp, (4.3.7)
SXp = —EL0"0, 7"

Let us now compute the infinitesimal transformations of Licalar and Leermion Separately.
For the scalar part, we find

0 Lscatar = —0, 2O (82)" — D' Z*0,(6Z) = —ErD"X uOuZ — 0" Z*€10,xy.  (4.3.9)
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For the fermion part, we obtain

O Lsermion = —(0X )0 0uX 1, — Xr0"0,(0x 1) = €L070, Z% "0, X1, — X 0" 0" 0,0, Z¢eR.

(4.3.10)

We are going to show that dLg.aar precisely cancels 6 Leormion. We need to change

the position of the derivatives in . With the help of the identity we see

that #0"0,0, = 0"0,. Using this and integrating by parts, we can rewrite
as

0 Lsermion = O Z €10, X1, + ERO*X RO, Z+
+ 0, (eroto"x 0, 2" —ex 0" Z" + erx ' Z). (4.3.11)

The two first terms cancel exactly against 0 Lqcaar, and the remaining total derivative
vanishes under the action integral after applying Gauss theorem. Therefore we have
shown the invariance of the action under SUSY transformations

5 S = / A2 (0Locatar + 0 Liormion) = 0. (4.3.12)

But we still have not finished showing that the action (4.3.6)) is supersymmetric. We
need to check that the algebra of transformations agrees with . A way of
doing so is taking the field Z and computing the commutator of two succesive SUSY
variations. Using (4.3.4)) and (4.3.5), we find

01,052 = 61(82x,) — 02(EL ;) = E20tehd, 2 — ELo”e%0, 2

= — [ehote] +elote}] 0.2 = —E1v"e20, 2, (4.3.13)

where we have used the identity g2otel, = —ghLot e and the Weyl representation
for v#. This equation agrees with , as we expected. But notice that we
should obtain the same result for the field x ;. If one computes [d1, d2]x,, it is found
that it only agrees with if the equations of motion arising from the action
(4.3.6) are used. It is then said that the superalgebra only closes on-shell (this means
that equations of motions are satisfied). For many reasons (see [17]), it is normally
wished that the superalgebra closes off-shell (that is, for arbitrary field configurations,
without imposing equations of motion). In order to solve this problem, one needs to
add what is called an auxiliary field F'. This is a complex scalar field that carries
no dynamics and simply helps in the intermediate steps. It is added to the kinetic
action Sy, in the following manner

Skin - /d4ZE <£scalar + Efermion + FF*) . (4314)

In this way, the equations of motion describing F' are algebraic (that is to say, they
do not contain derivatives) so F' can be eliminated at a later stage. Notice that
the dimension of F' is [F] = 2, unlike Z. As we want to take advantage of the



4.3. SUPERSYMMETRIC LAGRANGIANS 47

supersymmetric transformation of F' for making the superalgebra close off-shell, one
possibility is to take 6 F" as a multiple of the equations of motion (which are 0#9,Z = 0
and 0#0,x;, = 0). If we consider the infinitesimal transformation

§F = era"d,x1, (4.3.15)

then the transformation (4.3.5) for x; needs to be modified in order to maintain the
invariance of Syiy:
oXp = a“sRﬁﬂZ + e, F. (4316)

So far, we have shown a theory of free fields that is invariant under supersymmetric
transformations. But if we are looking for a realistic model, we need to introduce
interaction terms among the fields in the Lagrangian, and this is what we are going

to do now. The interaction action Si,; that we seek needs to have the following general
form [

1 < * Tk 1 * =
Sint = /d4$ (WIF - §W11XLXL + Wi E" — 2W11XRXR) ’ (4.3.17)

where Wy = W1 (Z,Z*) and Wy, = Wy, (Z, Z*) are arbitrary functions of the scalar
field. Notice that the presence of the conjugate of Wi F — %WHXLXL is justified
to make the action real. We are going to find, by imposing invariance under super-
symmetry transformations, that the yet unspecified functions W; and Wy, are related.

For this task, we will call £; = W1 F and L, = —%WHXLXL- Our aim is to show
that 0L, and 0L, cancel against each other (leaving at most a total derivative term).
We will not need to compute the conjugate terms; if the terms of 6L, and 6L, cancel
out, their conjugates will cancel out as well. We first compute 6L;:

0Ly = OWLF + WidF = <88Vgl 07 + gVZVj 52*) F+WoF
oWy _ oW _ _
aZl sLXLF + 82*1 €RXRF + W1€RUM8MXL . (4318)
—_———
v N 1T
For L5, we obtain:
1 _ oW oW~ L) _
0Ly = _§5W11XLXL Wixrox. = ( GZH 07 + 8Z115Z > XXt — WuXxroxp
10Wh, _ _ 10Wh _ _
75 aZHELXLXLXL 2 97 — oo ERXrX XL — WX 0"er0,Z — WuxeLl'.
ne e VI VII
(4.3.19)

8The reason for having this form is that this is the most general interaction action that can lead
to a renormalizable theory when quantized [I7]. The factor f% is added just for simplicity in the
calculations.
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We have labeled the terms with Roman numbers in order to make it easier to refer to
them. Let us discuss each term separately. The term IV contains €;,x; XX, Which
is identically zero because it contains the square of a Grassmann anticommuting
number. The term V contains €rX XX, Which is not zero, but it cannot cancel
with any other term, so we must impose

oW .
oz

(4.3.20)

This means that the complex function Wi; does not depend on Z*, that is to say,
W11 is a holomorphic function of Z. In the same way, if we have a look at the term
IT, we see there are no other terms that could possibly cancel against it, so we need

to impose again that
oW

0Z*
Thus W is also a holomorphic function of Z. We are still left with four terms. We

— 0. (4.3.21)

group the two terms containing derivatives to see if they cancel out

II1+ VI = WléRa'MaNXL — WHXLUMERaNZ
= W15R5“8MXL + WnéR&“xLOMZ. (4322)

We proceed to integrate by parts the first term. We will obtain a total derivative
term which vanishes under the action integral. We get

II1 + VI = _8MW15R6-MXL + WlléRW‘XL@MZ + 8# (WléRa'“XL) . (4323)
The first two terms cancel out provided that we impose
WnauZ - 8HW1. (4324)

This is the relation between Wi, and W; we mentioned earlier. Applying the chain

rule we have 9,W; = 6‘? 0,7, so the condition (|4.3.24]) can alternatively be expressed

as

Regarding the remaining two terms

oW,
0z

oW
[+ VII = ;éLXLF — WllXLELF = (

97 — WH) éLXLF = 0, (4326)

where we have used €;,x; = X €. Therefore we have finally shown that the kinetic
and the interaction actions are independently invariant,

0Skn =0,  6Su =0, (4.3.27)
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under the supersymmetric transformations (4.3.4)), (4.3.15) and (4.3.16]). It is often
convenient to introduce a new function of Z related to W; by

oW

W1:a7.

(4.3.28)

W(Z) is called the superpotential. We write in detail the total supersymmetric action:

S = Siin -+ Sint = / diz Loy

ow 10°W
= /d4I (—8“2*(9#2 — )_(R(T“@uXL + FF* + 67F — §WXLXL + CC) ,
(4.3.29)

where cc denote the conjugate terms. Ly 7 is known as the interacting Wess-Zumino
Lagrangian density. In particular, Wess and Zumino considered the following super-
potential (see [5]):
1 1

W(Z) = ngQ + 6923, (4.3.30)
The first part gives rise to the mass terms whereas the second part is the coupling.
The equation of motion for the auxiliary field is simply F' = —0W?*/0Z, which can
be substituted back in (4.3.29) in order to eliminate F' and F™.

4.3.2 SUSY Yang-Mills theory

SUSY Yang-Mills theory is another interacting supersymmetric theory, in which the
inclusion of a gauge multiplet is considered. It contains the gauge vector fieds Af}(:c)
and its superpartners, the gauginos A4, which are massless Majorana spinors. The
gauginos A\? transform in the adjoint representation of a non-Abelian group G (we
have discussed the adjoint representation in Appendix . The action is given by

1 . 1<
S = / dz (—4F“ ARA _ 2)\A7“Du}\“‘) , (4.3.31)
where D, A\ = 9\ + ngCAAf)\C. The equations of motion are

1 _
DMFy, = —§ngCA)\B%)\C> (4.3.32)
YDA =0, (4.3.33)
while the gauge fields also satisfy the Bianchi identity:
D,F;,+ D,F}, + D,F, = 0. (4.3.34)

In this case, we follow a different approach from what we did in the Wess-Zumino
model. The idea is to make use of Noether’s theorem (see Appendix [B.1.2)). If an
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action is invariant under a certain continuous transformation, Noether’s theorem tells
us that there exists an associated conserved current.

The conserved current related with a supersymmetric transformation must have
a spinor nature, since its spatial integral needs to give rise to a supercharge. Thus it
is a vector-spinor object, called supercurrent J!. The procedure consists of finding
a supercurrent that is conserved when equations of motion are imposed. Then the
supercharge can be computed as

Qo = /d3x TN(Z,t). (4.3.35)

After this, making use of (4.2.11)) one can obtain the SUSY transformations that
leave the action invariant.

Let us proceed in this way for SUSY Yang-Mills theory. The supercurrent, omit-
ting spinorial indices, is given by

H=APFAAY | (4.3.36)

We are going to prove that it is conserved.

Proof. The supercurrent in (4.3.36)) has only one free index, u (and a spinor index
a in A4 that we do not write). Thus, because the current will be a scalar under the
Yang-Mills group, 0,J" = D,J*". Taking advantage of this fact, we compute

OuT" = D, J" = Dy F 7"y A + 4P F " DA
= D Fpy"Py# At = —2DFFi A A
= gfapcV MNP = gfapey’ NANEy, AT = 0. (4.3.37)

Note that in the second line we have used the Bianchi identities (4.3.34]) and the
relation v*# = y¥~y? — n"?1. The term in the last line vanishes due tobecause of the

Fierz identity (D.2.21)) we have proved in Appendix |D.2.3] H
Therefore we have shown that the action (4.3.31]) is supersymmetric.



Conclusions

The goal of this thesis was to analyse two fundamental SUSY theories: the Wess-
Zumino model and the supersymmetric Yang-Mills theory. After an extensive study
of the fundamental concepts of bosonic and fermionic fields, we have been able to
achieve this goal. We have seen that SUSY provides a natural extension to the sym-
metries of the SM that is mathematically self-consistent. We have also seen that
this new formulation offers many advantages, such as the unification of internal and
spacetime symmetries or solutions to the many open problems in particle physics.

In Chapter [1| we have studied the Klein-Gordon field for two reasons. The first
one is that it describes spin-0 bosons, which certainly plays a role in SUSY theories.
The second one is that, given its simplicity, it is a feasible scenario to investigate the
conserved quantities through the Noether formalism.

In Chapter [2| we have studied the basic concepts concerning spinors, in order to
properly describe spin—% fermions. We have showed the deep relation between spin
and Lorentz symmetry, and we have understood the important concept of the spinorial
representations of the Lorentz group. We have studied three types of spinors: Dirac,
Weyl and Majorana spinors; and we have seen that the existence of the last two is
restricted for certain dimensions. The concept of Majorana spinor has been proved
to be essential for developing SUSY.

In Chapter |3| we have investigated gauge fields, which are needed to describe spin-
1 bosons. We have seen that these theories describe interactions between particles,
that arise from imposing invariance under local transformations. We have studied the
Maxwell field, based on an Abelian U(1) gauge symmetry, and later the Yang-Mills
fields, which are a generalization of electromagnetism that considers non-Abelian
gauge symmetries.

In Chapter [d we have finally studied SUSY, which was the main objective of this
thesis. We have seen that SUSY offers the only loophole to the Coleman-Mandula
theorem, which forbids spacetime and internal symmetries to be blended. We have
studied the Wess-Zumino model and SUSY Yang-Mills theory, which are able to
describe renormalizable interactions. We have also enumerated several motivating
reasons for studying SUSY.

o1
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Throughout the different appendices, we have developed all the necessary tools for
this work. For instance, we have seen the main aspects of Lagrangian and canonical
formalism, we have learned the basics of Lie groups (with emphasis in the Lorentz
group) and we have investigated some basic notions of Clifford algebras and their
application to spinors in arbitrary dimension.

The methodology has consisted of analytical calculations by hand, and the use of
the Mathematica software when necessary. In order to acquire a solid understanding
of the subject, around fifty exercises proposed in the first 5 chapters of [30] have been
done by the author. For finding bibliographical sources we have made use of the open
access repository arXiv.

Let us comment now some prospects of this work. It is premature to conclude
wether the Large Hadron Collider will detect SUSY particles or not, since it has
recently started to run at a doubled energy (14 TeV in total) and there are still
hundreds of data to collect. The precise values of the superpartners masses are not
known, but they may sit at a few TeV, which is perfectly accessible by the LHC
[31]. What is clear is that finding SUSY would mean a revolution in the current
understanding of Nature. This would not only deserve a Nobel price but it would
also mean a strong support for unified theories such as supergravity or superstrings.

The fact is that even not finding SUSY would have strong implications: the MSSM
is the only model that currently solves the three problems of naturalness, gauge cou-
pling unification and dark matter all at once, so ruling it out will force to consider
other better alternatives. It is also worth saying that SUSY has worked until now
as an ideal toy model for theorists and has helped to develop new proposals. For
example, N = 4 SUSY Yang-Mills has lead to the most succesful realization of the
holographic principle. In any case, it may take long until we certainly know if SUSY
becomes a physical fact, in the same way it took a century to discover the gravita-
tional waves proposed by Albert Einstein.

We would like to finish saying that this work has had a positive impact on the
educational background of the author, since he has learned some tools that are used
by theoretical physicists in a daily basis. For instance, he has become comfortable
with group theory and he has learned tensorial calculus with skill. Ultimately, he
has understood how to work in arbitrary dimension and the advantages of it. We
interpret this work as an introductory project on supersymmetry which will open the
door to futures researches in theoretical physics.



Appendix A

Conventions

In this appendix we establish the conventions that have been followed doing this
document.

e Natural units for which h = ¢y = ¢ = 1 are used throughout the work.

e We consider the D-dimensional Minkowski metric according to the "mostly-
plus" signature 7, = diag(—,+,...,+). It has D — 1 spatial dimensions and 1
time dimension.

e We denote Cartesian coordinates by z#, u = 0,1, ..., D — 1 with time coordinate
2% = t. We use relativistic notation, so spacetime coordinates are labeled with
greek indices. We often write fields as ¢(z), which is a shorthand notation for
o2, 2t . 2P,

e Einstein summation convention is assumed, so summations for dummy indices
are removed. For example, we write 2 = n"/z,,.

e We denote Lie algebras in the same way as the corresponding group G, but
using gothic letters, g.

e Matrices are multiplied with dummy indices in up-down position. For exam-
ple, (AB)*, = A*,B?,. ldentity matrix is always written as 1, no matter its
dimension.

e We use square brackets to emphasize the antisymmetry of two indices. For ex-
ample 7 = 1 (44" — 474*). Round brackets () denote symmetry of indices.

e We use arrows for the spatial components of vectors, so we write z# = (t, ).
Scalar product are written as A- B =n*¥A,Bs (a« =0, ...,D — 1). Arrows are
only used for the scalar product of the spatial parts, for example A- B = A'B;
(i=1,..,D—1).



Appendix B

The alphabet of Classical Field
Theory

In this appendix we develop some basic tools of classical field theory. The results
exposed here are valid for any spacetime dimension D.

In the context of physics, a field ¢ (or a set of fields {¢i}i:1,..., ~ ) is a function
(or a set of functions) exhibiting a dependence on space and time. Depending on
the Lorentz representation under which the fields transform, they can be classified as
scalars, spinors, vectors or tensors. A field can also be regarded as classical or
quantum. The former is described by complex or real numbers, whereas the later is
represented by an operator in Hilbert space. Here we address classical fields.

The fields are assumed to take values over a D-dimensional flat spacetime, de-
scribed by the metric tensor 7,,. The metric tensor 7,, is used to lower vector
indices whereas the inverse metric n* raises them. Upper and lower indices denote
contravariant and covariant tensors, respectively.

B.1 Lagrangian formalism

From Lagrangian mechanics, we know that all the dynamical information about the
fields ¢’ is contained in the Lagrangian density £, which generally depends on the
field and its first derivatives

L(z,¢',0,0"), (B.1.1)

being 9,¢" = g%;. The action S is a functional, a real number that depends on the
configurations of the fields. It is given by

S[¢] :/Qde Lz, ', 0,8), (B.1.2)

D—-1

where Q is a spacetime region and d”z = d2%dz! - - - dz is the volume element in

Cartesian coordinates. The frontier of 2 is denoted by 0f). An infinitesimal variation

II
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of the fields, which can be expressed in terms of a parameter € by d¢' = eA¢?, induces
an infinitesimal variation on the action, §S. This can be defined as

b5 = [ a7 25 g gy 1010 e S )

e—0 £

(B.1.3)

Here §5/d¢" is the so-called functional derivative of the action (following the approach
given in [32])

B.1.1 Euler-Lagrange equations

The principle of least action is a variational principle used for obtaining the equa-
tions of motion of a system. For field theory, it states that the action S must be
stationary, S = 0, under an arbitrary variation ¢’ of the fields. We are going to use
this in order to derive the Euler-Lagrange equations

65 =t > [ % {£ (2,6 (2) + e, 0,6 (1) + 20, A0) — £ (2,6 (2), 8,0 ()}

e—=0¢ JO
o 1f0C oL
= Qd xllilcl)g{ 8¢ZA¢ +e (a¢)8 A¢'+ O(e )}

ol o (PE a o (P s
= [ g (5050 ) -2 (aigam) 2

D 8£ i e 0,6 .
_/d {5¢Z u(W)}A¢ + an Ly 0(8M¢i)A¢ = 0. (B.1.4)

In the third line, integration by parts has been used, and in the last line, the term with

the total derivative has become a boundary term after applying Gauss Theorem. The
principle of least action requires that the fields are fixed at the boundary, so A¢* = 0
in Q. Finally, taking into account that A¢® are independent and that the region €
is arbitrary, we arrive at

0S oL oL
= — -0, | ==— | =0} B.1.5
gt Ot . (8(@@’)) ( )

These are the so-called Euler-Lagrange equations, which govern the dynamical
evolution of the system.

B.1.2 Noether’s Theorem

We say that, for fields ¢'(z) satisfying the equations of motion (B.1.5), a transforma-
tion ¢'(z) — ¢"(x) is a symmetry if ¢'/(x) also satisfies the equations of motion.
This transformation can correspond to a spacetime symmetry, which affects the co-
ordinates x, such as translations ¢'*(x) = ¢'(x + a), or an internal symmetry, like
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rotations in the internal space of the fields ¢"(x) = R';¢’(x). For most of the sys-
tems we will study, symmetry transformations simply leave the action invariant

Sl¢"] = S[e']. (B.1.6)

Noether’s theorem relates continuous symmetries with conservation laws and it is one
of the major results in theoretical physics [33]. We proceed to derive it. Firstly, we
extend the previous definition of infinitesimal variation of the fields to the case where
there are many independent transformation parameters, labeled by A =1, ..., p:

66 (1) = e*Apd (). (B.1.7)

This formula includes the two different cases of spacetime and internal symmetries
E|. We are going to impose that is a symmetry of the theory, i.e. that it
satisfies . Then, the transformed and the original Lagrangian densities differ
by a total derivative 0L = £19,K’]. This leads to a boundary term (after using
Gauss Theorem), which can be set to zero because of the assumption that the fields
¢' vanish at large distances. The variation of £ is

0L =L(x,¢" + e Aud’, 0,0" + 20, (And")) — L(x, ¢',0,0")
A [ ggf Aadi + a(g%au<AA¢i>] — 1, K%, (B.1.8)
w

Now, by using the Euler-Lagrange equations (B.1.5):

oL oL i oL i
220 + (Wm) %ﬁﬂ =0 (BLY)

Therefore we can read the following continuity equation:

9,74 =0, (B.1.10)

where the conserved quantities J are called Noether currents, given by

oL ,
Jh = Kt — WAM)’. (B.1.11)
w

For each conserved current one can define a Noether charge,
Oa = /delzz T, 1). (B.1.12)

which is a constant of motion (that is, independent of time), provided that fields are
damped at large distances

Qs = /dD‘l:E 00 = — /dD—lf ) (B.1.13)

Tt is also said that a spacetime symmetry is non-local, because it depends on the point z, whereas
an internal symmetry is local.
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We have made use of the continuity equation, d,.J4 = 9yJ + 9;J4 = 0 and of Gauss
Theorem for converting the (D — 1)-dimensional divergence 9;J% into a boundary
integral. Noether currents are not unique. One can add terms like:

Ji=Jh+ AJY = Jh + 9,57, (B.1.14)
where S™, is any arbitrary antysimmetric function, S, = —S"*,, since:
0, J" = 0,04 +0,, (0,5™) = 0,0,5™, = 0. (B.1.15)
——

=0

The term 0,0,5™, is zero because it is a contraction of a symmetric part 0,0, with
an antisymmetric one S™,.

B.2 Canonical formalism

The canonical formalism is an alternative formulation in classical field theory, which
describes systems by a set of canonical coordinates and momenta, forming the so-
called phase space. One of the advantages that it offers is that it can be very easily
generalized to the quantum theory. Here we just sketch some results of interest. At a
fixed time ¢ = 0, the canonical fields ¢ and the canonical momenta ;(Z,0) are given

by
oL

= if,(), T = =T 75 -
o 900 (7.0)
The Hamiltonian H of the system is obtained by integrating the Hamiltonian

(B.2.1)

density H, which is a Legendre transformation of £
o= / AP17 H(z, &, ;) = / 4P (w0 — L) (B.2.2)

From H one can obtain the equations of motion using the so-called Hamilton equa-
tions. However, for us it is more important the fact that H is a conserved quantity
emerging from time translation symmetry.

We consider special cases of symmetries in which the time component of the vector

K'y in (B.1.11))is zero. Therefore, the formula (B.1.12)) for the Noether charges reduces
to

[ p-1. OL i [ ap-1= i
Qs = /d X G(GOQS")AAqb = /d T mA a0 (B.2.3)

The Poisson bracket of any two observables A(¢, 7) and B(¢, ) at two different points
x and y is defined

SA(F)OB(J)  SA) 53@) (B.2.4)

{A(@), B(y)}p = /d . §<5¢1(§‘) omi(5)  omi(5) 06 (3)
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. . . . SA _ 8A 9A . .
where a functional derivative is used 55 = o5 oy ( 30, ¢)). One of the basic basic

Poisson brackets is

(6@ @)}, = /dD—lg(éasi(f) 5r() 60 (E) m AT

505(3) 5mi(5)  5t3) 60K (5)

1. 09' om; .
_ D-1g = I 57— 3) = 65PN (7 — 7). B.2.
J 7S G 0 =9 S 6~ 8) = 87w ) (B.2.5)
8t 5

An important result is that the infinitesimal symmetry transformation of a field
A 4¢' is obtained by its Poisson bracket with the Noether charge Q 4:

Aad' () = {Qa, 0" (@)} | (B.2.6)

Proof.
{Quo@}, =~ [a"7 {m@ad @), 6@},
= — [ ({n@. 6@}, a0 (@) + {Aadd (47 700))
— [aP715 56771 F AW () = Dad' (7). (B.2.7)
O
The result is also valid for time translations, in which case takes the form

Axd' () = 06/ (x) = {H,¢'(2)} ., (B.2.8)

but the computations needed to show this are a little bit more tedious (for the details,
see [34]). It is worth mentioning that the Poisson brackets of the Noether charges
obey the Lie algebra of the symmetry group

{Qm Qb}P = fachc- (B29)

Here f,;. denote the structure constants of the group. Thus, since Noether charges
generate infinitesimal transformations and contain the information about the fu.,
they provide a representation of the generators of the symmetry group.

These results can be generalized without many difficulties to the quantum case. In
the quantum theory, for each classical observable A there is a corresponding operator
in Hilbert space (distinguished with a hat, fl), and the Poisson bracket becomes a
commutator. For instance

{A,B},=C — [A,B]=iC, (B.2.10)

using that A = 1. With this recipe, called canonical quantization, it is possible to
obtain the quantum versions of the classical fields.



Appendix C

Basic notions of group theory

Group theory is a fundamental tool in theoretical physics, as it is deeply related to
the notion of symmetry. A quotation from Sir Arthur Stanley Eddington perfectly
summarises the importance of Group theory [35]:

"We need a super-mathematics in which the operations are as unknown
as the quantities they operate on, and a super-mathematician who does
not know what he is doing when he performs these operations. Such a
super-mathematics is the Theory of Groups".

In this appendix we review the most important concepts of group theory [36],
making emphasis in the theory of Lie groups, and specially, in the Lorentz group.

C.1 Basic definitions

We firstly give some basic definitions

Definition C.1.1. A group, G, is a set with a rule for assigning to every (ordered)
pair of elements EL a third element, satisfying:

1. If f,g€ G then h= fg € G.

. For f,g,h € G, f(gh) = (fg)h.

3. There is an identity element, e, such that for all f € G, ef = fe = f.

[\)

4. Every element f € G has an inverse, =%, such that ff~' =e.
A group is finite if it has a finite number of elements. Otherwise it is infinite.

Definition C.1.2. The order of a group G is the number of elements of G.

IThis rule is sometimes called multiplication law of the group.

VII
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Definition C.1.3. A group H whose elements are all elements of a group G is called
a subgroup of G.

Definition C.1.4. An Abelian group is one in which the multiplication law is
commutative

9192 = 9291, Ygi1,90 € G.

Definition C.1.5. A Representation of G is a mapping, D, of the elements of G
onto a set of linear operators with the following properties:

e D(e) = 1, where 1 is the identity operator in the space on which the linear
operators act.

e The group multiplication law is mapped onto the natural multiplication in the
linear space on which the linear operators act, i.e. D(g1)D(g2) = D(g192)-

The dimension of the representation is the dimension of the space on which it
acts.

Definition C.1.6. A representation is reducible if it has an invariant subspace,
which means that the action of any D(g) on any vector in the subspace is still in the
subspace. In terms of a projection operator P onto the subspace this condition can be
written as

PD(g)P = D(g)P, Vg e G.

A representation is irreducible if it is not reducible.

C.2 Lie groups

A continuous group is a group G whose elements g(«) depend smoothly on a set of
continuous parameters o = {a,},_; . If the continuous group is in addition a
differentiable manifold, it is called a Lie group.

Definition C.2.1. Given a representation D(«) of a Lie group that depends on a
set of N real parameters, we define their generators X, as

0
Xo= g D) (C.2.1)

We normally refer to the dimension of a Lie group, dim G, as the number N of

a=0

generators. This should not be confused with the dimension of a certain representation
of the group, labeled by R, which we call dim R.

Group generators are very useful because they keep all the information of the
group but, unlike the group elements, they form a vector space, as they can be added
together and multiplied by real numbers. They also satisfy some important relations,
as it is shown in the following theorem.
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Theorem 1. Generators of a group form a closed commutator algebra, which means
[XmXb] = fachca (622)
where fue are constants called the structure constants of the group.

Structure constants are the same for all different representations, as they simply
encode the multiplication law of the group. The fact that, in general, generators
do not commute, arises from the non-commutativity of the multiplication law. For
unitary representations, the structure constants f,;,. have two important properties

e They are real.

e They are completely antisymmetric.

A proof of these properties can be found in [36]. Note that for an Abelian Lie
group (such as U(1), the group of phase transformations), the commutativity property
implies that all the structure constants of the group are zero.

The superposition of generators, a®*X,, which are closed under commutation, is
the general element of what we call the Lie algebra.

Definition C.2.2. A Lie algebra is a vector space g equipped with an alternating
bilinear map

gxg — @
(z,y) = [2,9],
satisfying the Jacobi identity
[, [y, 2] + [y, [z, @]] + [2, [z, y]] = 0. (C.2.3)

We stated before that generators keep all the information of the group, without
specifyng in which manner they are related. The following theorem provides this
relation.

Theorem 2. The relation between an element of G in a representation D(«) and its
corresponding element a*X, of the Lie algebra g is given by exponentiation

D(a) = e "%, (C.2.4)

a®Xa 7aaX; —

This means that, for unitary representations, in which D! = ¢ =e

D', the generators are anti-Hermitian, X} = —X,. ]

2Tt is common to find in the literature a different convention in the definition (C.2.1)) of group
generators, which includes a factor . With this, D(a) = e’ Xa and thus generators are Hermitian
for unitary representations, X = X,, instead of anti-Hermitian.
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One important representation is the adjoint representation, of dimension dim R =
dim G, in which the generators are related to the structure constants by (X,)% = faea
E|. Note that d and e denote row and column indices of matrix X,, respectively. We
now prove that this is indeed a representation, i.e. that they satisfy

Proof. The Jacobi relation (C.2.3) for the generators can be given in terms of the
structure constants if one uses ((C.2.2)):

0= [Xaa [XbaXcH + [Xba [XC>Xa]] + [XC> [Xa>XbH
= fbcdfadeXe + fcadfbdeXe + fabdfcdeXe — fbcdfade + fcadfbde + fabdfcde =0.

(C.2.5)

We can now express ((C.2.5)) in terms of matrices X, of the adjoint representation,
taking into account the property fewda = —facd

(Xa) a(Xo)e = (Xp)a(Xa) e = = fede fava = fava(Xa) . (C.2.6)

This is the e row and the ¢ column matrix element of
XXy — Xo X0 = [Xa, Xo| = faraXa- (C.2.7)
O]

In this representation, we can always pick a basis of the Lie algebra in which the
generators are trace orthogonal:

TI'(XaXb) = —C(Sab, (C28)

for a positive constant c.

C.2.1 Special Unitary group SU(N)

SU(N) groups are very important for the Standard Model of particle physics. In
particular, SU(2) and SU(3) are the symmetry groups of the ElectroWeak theory
and Quantum Chromodynamics (QCD), respectively.

SU(N) is the special case of a more general group called the Unitary group U(N)
(we follow [37]). This is the group of N x N complex matrices A that are unitary

AAT =1, (C.2.9)
where AT = (AT)* is the Hermitean conjugate of A. Because of (C.2.9)) we see that

det(AAT) = (detA)(detAT)* = (detA)(detA)* = |detA|* = 1. (C.2.10)

3In the literature it is also typical to find an extra factor —i in the definition of adjoint represen-
tation.
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This means that det A has unit modulus, and we can further impose that detA = 1.
The group of N x N complex unitary matrices with the restriction detA = 1 is what
we call SU(N), which is a subgroup of U(N). The generators of this group are N* —1
traceless matrices. The fact that the dimension of the group is dim SU(N) = N? —1
can be proven as follows:

Proof. We need to find the number of independent generators (i.e., the dimension of
the group). We can count how many independent real matrix entries the generators
have. We first proceed in this manner for U(1).

As we have previously discussed, the unitarity of the group means that the gen-
erators are anti-Hermitian, X' = —X. The i** row and the j* column of this matrix
condition is expressed as XJ; = X;;. Thus, for the entries on the diagonal

Xy = —X;

)

(C.2.11)

meaning that the diagonal entry is purely imaginary. On the other hand, the entries

above the diagonal are the complex conjugates of the corresponding entries below the

diagonal. Taking into account those two restrictions, the number of independent real
entries is

dim U(N) = 2;V+W\;_D = N2, (C.2.12)

For the case of SU(NN) one needs to impose the extra real condition det A = 1,

which means

dim SU(N) = N? — 1. (C.2.13)
O

SU(2)

The SU(2) group has dimension dim SU(2) = 22 — 1 = 3. Therefore, it possesses
3 parameters and 3 generators. The generators are given by { X = ioy} k=123 where
oy, are the Pauli matrices

0 1 0 —i 1 0
01 = <1 O) y 09 = (l OZ> y O3 = (O _1> . (0214)

Remembering the useful relation that the Pauli matrices satisfy

0i0; = igz’jk + (Sij]l, (C215)
it is immediate to show that [X;, X;| = —2¢;;, Xk, so that the structure constants
of SU(2) are

Although we are not going to discuss SU(3) group, it is worth saying that the 8
generators of these groups are proportional to the Gell-Mann matrices, which serve
to study the internal rotations of the gluon fields.
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C.2.2 Orthogonal group O(N)

O(N) is the group of N x N real matrices R that are orthogonal
RR" =1. (C.2.17)

Orthogonal matrices represent isometries, that is to say, transformations that preserve
the distances E| Examples of isometries are rotations, reflexions, etc. The determinant
of those matrices satisfies det R = +1, since

det(RR") = (detR)(detR”) = (detR)* = 1. (C.2.18)

We can restrict to the subset of matrices for which detA = +1. They represent
proper rotations. The Special Orthogonal group, SO(NN), is the group of N x N real
orthogonal matrices R with unit determinant, and it is a subgroup of O(N). The
dimension of this group is dim SO(N) = N(N —1)/2.

Proof. The dimension of SO(N) can be computed by counting the number of inde-
pendent equations that (C.2.17) imposes on a general real N x N matrix (note that
detR = +1 does not impose any extra real condition). As RRT is symmetric, then
(C.2.17)) contains N (NN + 1)/2 independent equations. This means that

N(N+1) N(N-1)

dim SO(N) = N? — 5 = SR (C.2.19)

]

Now, in order to introduce the Lie algebra of the SO(N) group, we expand the

i'" row and the j** column of the matrix R up to first order in parameter e:

Rl] _ (6—87“)Zj — 5; _ Eri]’ + O<52)7 (0220)

where r’; is the matrix generator. In order for (C.2.17)) to be fulfilled, or equivalently,

J .

R, R, = §),, the generator needs to be antisymmetric r;'- =—rl:

[(5,’; — 67%} [(5} - sril} =60 —¢ [7‘2(5}; + (5}7“1';{} + O(e?)
~ 5lk — &£ [T’kl + le} = 5lk-

The basis for the Lie algebra of SO(N) is formed by the N(N — 1)/2 generators
r. A useful basis for the Lie algebra is given by

T 5 = 0303 — 0305 = =7y 5 (C.2.21)

4This can be seen from the fact that the scalar product is preserved. Taking (C.2.17) into account,
note that a transformed vector u’ = Au has the same norm as u, since |v/|? = v RT Ru = |u|?.
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Indices 7, j label the generators, whereas indices 4, j label the matrix elements.
Both pairs of indices run over N(N — 1)/2 independent values E|
The conmutators of these defined generators are:

(g1 7)) = (03055 — 050, (678 — 67034) — 161035 — 6107,)(07651 — 26]

L k7l i
=0; 53’]‘5% Ojf = 0; 533‘512 O — 5} 5%]‘5% O, + 5;- 5%3'5; Otk
95k I3 8 &y
03 03303 03 + 0}, 04,07 Oy + 0} 07,07 O — 0} 07,05 O
S~~~ ——" —— N
O o O 8
= 53'1%7°[2ﬂ - 5%1%7"[3'51 - 55'?7’[21;] - 5zi7“[3;;} . (C.2.22)

This equation specifies the structure constants of the Lie algebra.

SO(3)

We are going to check that for N = 3, expression ((C.2.21]) reduces to the generators
of the well-known rotation matrices in 3-dimensional space. For this case we have
3(3 — 1)/2 = 3 generators, that we label with the 3 independent antisymmetric
combinations {[E}] = 21, 32, 13}. Using we obtain the explicit form of the
generators

0 10 0 0 0 00 -1
rq=Xa=|[—-1 0 0], r2=Xp=1|0 0 1|, rm3=Xe=1[0 0 0
0 0O 0 —1 0 1 0 0

(C.2.23)

We are going to compute e %4 for one parameter § among the three, to find that
this leads to a rotation around the axis corresponding to the 3-direction of space H

X2 X3 1—60%/24+... —0+603/6+... 0

Ry =e %4 =1 —0X, + o= 0-064+... 1-6%/2+.. 0
2 6
0 0 1
cost) —sinf 0
=|sinf cosf Of. (C.2.24)

0 0 1

This is indeed the matrix of a rotation about the 3-direction (or z direction) of
space.

5This is the number of independent component of an antisymmetric N x N matrix.
®Here we have used the definition of the exponential of a matrix, e = > >7 | An—:z, being A% =1
the identity.
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O(p,q)
The defining condition (C.2.17)) for the O(N) group can also be written as

R0y R = 6. (C.2.25)

This equation expresses the fact that the transformations of the O(N) group leaves
the Euclidean metric g;; = d;; invariant. But we can think of a more general group
that leaves the following diagonal metric

9ij = diag(_a"'a_7+>"-a+) (0226)
q times p times

invariant. We normally say that a metric of this kind has (p, q) signature. The pseudo-
orthogonal group, O(p, q), is the group of N x N real matrices, with N = p + ¢, that
leaves a metric g;; of signature (p, ¢) invariant

Rikginjl = gki- (0227)

The dimension of this group is dim O(p,q) = N(N — 1)/2. This group is specially
important for the study of the Lorentz group, as we will see soon.

C.2.3 The Lorentz and Poincaré groups

The Lorentz group deals with the space-time symmetry of all known fundamental
laws of Nature. Here we review the most important concepts.

The Lorentz group is the set of homogeneous linear transformations of coordi-
nates in D-dimensional Minkowski spacetime that preserve the norm of any vector
[30]. We write the transformations as

= A " o = (A" (C.2.28)

By requiring that |z|* = z#n,,2" = 2/#n,,2" = |2/[>, we arrive at the condition

27N on, Ny’ = a2’ which in turn implies:

Aua'n;wAVp = Nop |- (0229)

This is the property that characterizes A matrices. Note that is the
defining condition of the pseudo-orthogonal group O(D — 1,1). We proceed to see
more consequences of this equation. In matrix form, (C.2.29) is n = ATyA. Taking
determinants and using detA” = detA we have:

detn = detA detn detA  —  detA = +£1. (C.2.30)
On the other hand, taking the 00 entry of ((C.2.29) we realize that:

— 1= o = Mm% = (o) — (A%)° = [A%] > 1. (C.2.31)
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Proper Improper
detA =1 detA = —1
Ortochronous Proper rotations C .
A% > 1 Boosts Spatial inversion P
Non-ortochronous Time inversion T Spatial and time
A% < —1 inversion PT

Table C.1: Ezamples of transformations for each of the four categories of the Lorentz group.

We can classify the transformations of the Lorentz group according to conditions
and [38]. Lorentz transformations with detA = 1 (—1) are said
to be proper (improper). The case A% > 1 (< —1) corresponds to orthochronous
(non-orthochronous) Lorentz transformations. Examples of these transformations are
shown in Table [C.2.3]

The property A% > 1 excludes the possibility of time inversions 7' = diag(—1,1,1, 1),
whereas the property detA = 1 excludes the possibility of spatial inversions P =
diag(1,—1,—1,—1). Lorentz transformations that satisfy either detA = —1 or A%, <
—1 or both simultaneously are said to be the disconnected components of the Lorentz
group.

The set of Lorentz transformations characterized by the restrictions detA = 1
and A% > 1, (i.e. transformations that preserve orientation and direction of time) is
denoted by SO (D —1,1) and it is a subgroup of O(D — 1,1). This is the connected
part of the Lorentz group. |Z| We are specially interested in SO (D — 1, 1), not only
because it includes proper rotations and boosts (these are, changes to inertial refer-
ence frames), but also because it is possible to obtain its Lie algebra. For this reason,

unless it is specified, when we speak about the Lorentz group, we will always refer to
SOT(D —1,1).

There are some useful relations that can be deduced from (C.2.28)) and ((C.2.29):

= (AN, A = (ATH) 2, (C.2.32)

v v

z, = (A w, =z, A, (C.2.33)

Proof. We take equation ((C.2.29) and lower the index of the left A matrix using the
metric, yielding A,,A", = 1,,. Then we raise the p index at each side and we get:

AupAVU = np()' = 770”771/0 = 55’

(C.2.34)

By comparing this expression with (A™1)?,AY, = ¢ we infer (A7')?, = A or,

equivalently (A71),? = A?,. Now we take (C.2.29) and lower the index of the right A

"The connected part of a group is the one that can be given as the exponentiation of an algebra.
If this is not possible, we talk about disconnected components of the group.



C.2. LIE GROUPS XVI

matrix with 7,,, to obtain A® A, = 1,,. After raising the p index at each side (by
contracting with the metric), we arrive at:

ANy =1, = 67 (C.2.35)

o g

Then, by comparing this expression with A*?(A™1),, = 67, we infer that (A™1),, =
A,-. Finally, we proceed as:

o't = mﬂm = nuu(A_l)Vpxp = UMV(A_l)VpinxT = (A_l) [Ty = (A_l) Ty

So as to introduce the Lie algebra of the Lorentz group, we expand the
transformation A up to first order in a, yet unspecified, parameter A:

A, = (™M), = 6 4 A, + O(N?). (C.2.36)

Following the same reasoning we did for the generators of the SO(N) group, ((C.2.36))
satisfies to first order in A\ as long as the generator is antisymmetric in its
two lower indices m,,, = —m,,. The basis of the Lie algebra is thus formed by the
D(D —1)/2 independent generators m,,,. A useful representation is

m[po’]#l/ = (5;:7%0 - 5g77pu = _m[(,p]'uy- (0237)

Again, the indices in brackets [po] label the generators whereas the indices p and v
label the matrix elements. Both pairs of indices run over D(D — 1)/2 values. We
need to label D(D — 1)/2 real parameters X of the algebra, and a way of doing so is
using an antisymmetric pair of indices so that A\*? = —\??. With all of this in mind,
an ortochronous proper Lorentz transformation can be written as

A = e2 Mol (C.2.38)

so that
po

A
Ay = 8+ (8 = Smp) + O(N) = 8+ Ny £ O(V). (C.2.39)

v

In an analogous way as for the generators of the SO(N) group, the commutator of
the generators in ((C.2.37)) is shown to be

(M) M) = MpMio) = MupMvo] = MooMipp) + NuoMup)- (C.2.40)

Equations ((C.2.40) specify the structure constants of the Lie algebra, which we can
read off as:
Siwlipo] = 811 arar] (C.2.41)

viul Yol
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Proof. If we expand the right hand side of expression ((C.2.41]) for each antisymmetric
pair of indices, we will get eight terms for the structure constants. Introducing the
structure constants in their defining expression, we obtain

1 [k7] m[m‘]
7201 Mo = 5 Fuifpe) e = 5 X

X (Mo 0307 = o030} — o505 + Nou0505 — 0505 + NowO05 + Npu0L05 — 10,0505

Ury; Nov n No
= 5 (Mio] = Miop)) == (Mpg) = Mppyg) =05 (Mivo] = Miow)) +35 (Ml = M)
2M 0] 2] 2my0) 2my )
= NvpMuo] — NupMve] — TvaMup] + Nuo ™M v p]- (C242)

]

Let us study now how the Lorentz transformations are implemented when acting
on fields. The following differential operator is important for studying the infinitesimal
Lorentz variations on fields.

Lipo) = 2,05, — 250, = —Ligy), (C.2.43)

These operators have a commutator algebra that it is isomorphic to that of m,y.

Proof. We will make use of the fact that d,x, = 0,(14a2) = 1Muds = M. We
compute the following:

(L) Lipo)l = (200 — 2,0, 205 — 250,] = 2,0,(2,05) — 2,0,(250,) — 2,0, (2,0,)
+ 2,0,(2,0,) — 2,05(x,0,) + 2,0,(2,0,) + 250,(2,0,) — x50,(x,0,,). (C.2.44)

We note that each of those terms will give another two terms when taking the
derivative: one will contain the metric and the other a cross-derivative. For example,
the first term will give z,1,,0, + ©,2,0,0,. We notice that all the resulting terms
with cross-derivatives cancel each other, so we finally get:

[L[IW]’ L[pa}] = TupOs — TpuMvoOp — TuMupOs + TuuoOp — TpNopdy+
+ ZpNovOu + TollpuOy — TopOu = NupLius] = NupLive] = Mo Lipg) + Nuo Livg)-

]

We start considering the transformations on scalar fields ¢(x), which are the
simplest kinds of fields. A scalar field ¢(z) is transformed under the mapping U(\)
as

¢(z) = ¢'(z) = U(A)g(z) = ¢(Ax). (C.2.45)
Az is a short-hand writing of A, #z". We need an explicit form for the mapping U(A).

The differential operator
1

U(A) = e 2" Lierl (C.2.46)
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satisfies ((C.2.45)). This is not surprising, as we just showed that L,,) was an imple-
mentation of the Lie algebra in the form of differential operators, acting on scalar
fuctions rather than on coordinates. By expanding the exponential and neglecting
terms above first order we get the infinitesimal variation
1 v

So(x) = U(N)p(z) — () = - Lwo(z) + O(N\?). (C.2.47)
Proof. We are going to prove that (C.2.46|) is the correct mapping for scalar fields
up to first order, i.e. it satisfies (C.2.47)), so we neglect O(\?) terms during this
calculation. First note that

UM)g(x) = p(A2") = ¢ ([0) + A ]2") = o(a” + Na,) (C.2.48)

Now we are going to show that ¢(z* + \*x,) = @(a#) — A Lyo¢d(xt). First,
we notice that by performing a Taylor expansion up to first order ¢(z# + M x,) =
o(zt) + N7Px,0,¢(x#) + O(N?). Now this last term can be expressed in the following
way:

1
NPz ,0,¢(z") = 3 (A7Px,0,0(xt) + X\7Px,0,p(xH)) . (C.2.49)

Using the antisymmetry of A?” for the second term and relabeling the dummy indices
we notice that:

op

A
NPx,0,¢(z") = T(xp&, — 2,0,)p(x!") = —;)\ngpggb(x“). (C.2.50)
0

The next case we consider is the transformation rules for covariant and
contravariant vector fields. The transformation for a general covariant field W,,(z)
1s:

Wu(z) — W, (z) = UMW, (z) = (A1), W, (Ax), (C.2.51)
whereas for a general contravariant vector field V#(z) the transformation is of the
form:

Vi(z) — Vi(z) = UA)V* () = (A% V(Ax). (C.2.52)

These definitions are consistent. For example, for the scalar quantity V#(z)W,(z), the
equation V*(x)W,(x) = V*(Azx)W,(Az) is satisfied, as it was required. A difference
with respect to the case of scalar fields, is that the transformation now affects not
only in the spacetime coordinates z*, but also the fields themselves. We need now to
determine the correct form of the mapping U(A), which is a matrix. The appropiate
form is given by (omitting matrix indices for simplicity)

U(A) = e~ 2N ioel, (C.2.53)
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where the Jj,q are defined to act on contravariant and covariant vector fields as

Joo)VH (@) = (Lipo)0", + myp) )V (@), (C.2.54)
J[po—}Wy(fL') = (L[po—]éuu + m[pU]VH)W#(JJ). (C255>

Again, by expanding the exponential and neglecting second order terms, we get the
infinitesimal variation §V* = U(A)V* — VF = —iX7J,,V* 4+ O(A?). Note that
we are always omitting the matrix indices and writing them only just when we are
interested in showing the explicit form of the transformation.

The Poincaré Group is defined by adding global spacetime translations to the
Lorentz Group. In this case, the non-homogeneous transformations of coordinates
are given by :

2" = (ATH" (27— a”). (C.2.56)

For spacetime translations z# — z'* = z# — ¢*, the mapping is more easily

-----

or the different parts of a multi-component field

Yie) = (@) = ¢ie +a) = Ul (a), (C.2.57)
being U(a) = e* " with P, =0, = 52; (C.2.58)

Here P, is the generator and U(a) is called the translation operator. The mappings
of Poincaré group are given by operators U(a,A) = U(A)U(a), which act as follows
(we are omitting matrix multiplication indices):

W(x) = (@) = Ula, Np(z) = UMNU(a)p(z) = e 2 ™eodp(Az + ). (C.2.59)

There are D(D — 1)/2 generators Ji,, and D generators P,, so in total the Poincaré
group has D(D + 1)/2 generators. The infinitesimal variation of the fields 1° is given
by

1
0 =UN)U(a)Y(x) —¢Y(x) = |a"P, — §APUJ[M Y (x) + higher order terms
(C.2.60)
The Lie algebra is specified by the following commutation relations
[Tty Jipol] = Mopduo = Nupdive) = Mvo ) + Mo g (C.2.61)
oo Pu| = Pottoy = Py, (C.2.62)

[P,,P,] =0. (C.2.63)



C.2. LIE GROUPS XX

Proof. The last commutator is the simplest: its zero value comes from the fact that
the partial derivatives are always assumed to commute. The commutator is
isomorphic to that of m,,], and that is why we say this is another representation of
the generators of the Lorentz group. This commutation relation is rapidly seen to
be satisfied, as J,,) is formed by m,s and Ly, which obey the same commutation
algebra (as we already showed). We proceed to derive

[J[pob P;J = Jipo1 i = Pudipo) = Jjpo) Py = PoLipol
= LigotF + (mjpo1 )" P — BoLga] = 0,00 — 651p0) F

= Bolop — Polpp-

C.2.3.1 The Lorentz group for D =4

We are going to check that for the more familiar case of spacetime dimension D = 4,
expression ((C.2.37)) reduces to the generators of the well-known boosts and rotations
matrices. For this case we have 4(4—1)/2 = 6 generators, that we label with the 6 in-
dependent antisymmetric combinations {[po] = 01, 02,03, 21,32, 13}. Using
we obtain the explicit form of the commutators

0 0 00 00 0 0 000 0
0 0 10 00 0 0 000 —1
man=1g 1 9ol ™2=]g0 0 1|°™3=|00 0 o] (©2069
0 0 00 00 -1 0 010 0
0100 0010 0001
1000 0000 0000
=19 000> "™2T1 000 "™ o000 (C.2.65)
0000 0000 1000

The three generators in correspond to the proper rotations in the three
spatial directions. They are just those we already found at , with an extra
time dimension which is unaffected by the rotation. The other three generators at
(C.2.65)) correspond to boosts in the three spatial directions. In Appendix [E| we have
proved shown with the help of Mathematica that these generators actually satisfy
(C.2.40). If we call {J;},_, , 4 to the three rotations and {K;},_, , 4 to the three boosts,
a compact way of writting these antisymmetric combinations is J; = —%ajkmjk and
K; = myy;). In order to check that does correspond to boosts, we compute
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e P = e~ P10l for one parameter p out of the six:

p2m?  pPmd

A=e™=1—-pm+ 5 T 6 +..=

14+p%/2+... —p—p3/6—... 0 0 coshp —sinhp 0 0

| —p=pPf6—.. 1+p*/2+.. 0 0| | —sinhp coshp 0 0

N 0 0 10 0 0 10

0 0 0 1 0 0 01
(C.2.66)

If we now call

cosh p = 7, sinh p = (7, (C.2.67)

where 3 = 2 and v = \/11?, we see that in (C.2.66|) we recover the usual expression

for a Lorentz transformation or boost along the 1-direction (or z direction). Notice
that the identification (C.2.67) is possible as cosh? p — sinh? p = 42 — 3%~4% = 1. The
parameter p is conventionally called the rapidity.

Here we include the proof that the six generators in (2.1.1)), formed by complex
linear combinations of the six generators above, satisfy the commutation relations of
two independent copies of su(2).

Proof. We begin with the proof of the first commutator in (2.1.2]). We introduce the
defining expression of I; into its conmutator expression:

L, 1] = i (s Jj) + (K, K] 5, T + i, K. (C.2.68)

We compute each commutator separately, using structure constants for the commu-

tator algebra of my,,; (see (C.2.40)):

€irt€jsu €irt€jsu n l cn

[Jir i) = = [ty mgsu] = =55 o gy = €irt5sulslt0 )0 M
1

= S €jsubirtNstMypy = §Ejsu€irt58tmru = §€jsu€irsm[ru]- (0269)

2

Since the Levi-Civita symbol only involves spatial indices and no time indices, we can

SU,. T

freely raise and lower them to write €;s,6,rs = €;°%¢;,";. Then, by making use of the

identity e“"‘iqkl"'kpejl,,,jqklmkp = —plq! 5;1:::;‘;, we realize that:
1 us T ur S ur 1 S ur
[Jiu Jj] = —563‘ € sMpru] = 5]-1- Mipy) = —€ji €5 Mpy] = —561‘]‘ €s Miyr] = €ijst~

Repeating this process for the other commutators, we obtain:

. 1€ TS 1€ TS n . n
ilJj, Ki] = _#[m[rs]vm[m]] = - i Frsion"™mypn = _2l€jrsn[0567[~l(si]]m[ln}

= —lfjrs (7703mm' - msmro) = iﬁjrimro = iGjirm[or] = iEjirKr; (C‘2-70)
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where in the last step we have set €;,s70s to zero since s can only take values from 1
to 3. We notice that i[J;, K;| = i[K, J;]. For the last commutator:

1 n I en 1 len
[, 1) = [mpogy, mpon] = 5 floson ™ min) = Anyogg 04y 0 Mofpn) = 56][- 57 M)
1 1
= iejiselnsm[ln] = §€jis€slnm[ln} = _EjisJ& (C271)

where in the last step we have used (5][!(5;1 = €"¢;;5. Finally, inserting everything in
(C.2.68)), we have:

1 ) €ij
i, I;] = 1 (€iji T — €jin i + 2ien Ki) = ;

(Jk — ZKk) = eijkjk- (0272)
In the same way, for the third commutator in (2.1.2), we see:

1, 1) =

77

([is 3] = [y, B — i[K, T + Ly, K) = 0. (C.2.73)

A



Appendix D

Basic notions of Clifford algebras

The Dirac equation is a first order equation in space and time derivatives that is
invariant under Lorentz transformations . Dirac managed this achievement thanks to
a set of y-matrices, satisfying the following property

AP At = 2 (D.0.1)

These y-matrices generate an specific Clifford algebra, a mathematical structure that
had been created by W.K. Clifford half a century before Dirac wrote his famous
equation. Clifford algebras are widely used nowdays in geometry, theoretical physics
and digital image processing [39].

In the first part of this appendix, we introduce some basic notions of Clifford
algebras, whereas in the second part, we study some properties of the spinors as
an application of Clifford algebras. These concepts are necessary for the study of
Majorana fermions and supersymmetry [30].

D.1 The Clifford algebra

The generating elements
A general and explicit construction of the y-matrices in arbitrary dimension D
can be given in terms of Pauli matrices

V=i 9101® ...,
71 =0 R1®1® ...,
V=030 13 ..,
V=001 ..,
V=030 03R0 ® ...

S (D.1.1)

where ... means that the construction continues with the same pattern, for in-
creasing dimension D. These y-matrices all square to 1 (except 7, which squares to

XXIII
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—1 because of the pressence of the i) and they mutually anti-commute. This follows
from the fact that Pauli matrices o; square to 1 and anti-commute. In Appendix [E]
we have shown with the help of Mathematica that the y-matrices in satisfy
, as it is required. Let us study now what is the dimension of these matrices
for a general spacetime dimension D.

Suppose an even dimension, that is, D = 2m for some natural number m. In order
to get 2m different v*’s, we need to have m Pauli matrices in the tensor products of
each y* in . And since the Pauli matrices are 2 x 2, the representation has
dimension 2™ = 2P/2,

For odd dimension, D = 2m+1, one additional matrix y2™+!

is required. However,
there is no need to add more Pauli matrices in the tensor products, so we still have m
factors in each v*. As there is no increase in the dimensions when going from D = 2m
to D = 2m + 1, we can conclude that in general the dimension of the representation
in (D.1.1)) is 2/P/2 where [D/2] means the integer part of D/2 . Regarding the
Hermiticity

e ¥ is anti-Hermitian, (7°)" = —4°.
e yifori=1,..,D — 1, are Hermitian (y")" = ~.

The Hermiticity property can be summarized as
(7)1 = 2", (D.1.2)

since (7°)F = (79)24° = —4% and (v))" = —7%(7")? = 4. The representations in which
holds are called Hermitian representations. From (D.1.1)) we also see that, for
a generic dimension D, the ~-matrices are complex.

Up to conjugation, 7/# = Sy#S~1 (where S is any unitary matrix), there is a
unique irreducible representation of the Clifford algebra for even dimension. For odd
dimension, there are two inequivalent irreducible representations. A proof of this,
which uses some well-known results of finite group theory, can be found in [40].

The full Clifford algebra

The complete Clifford algebra is composed of the identity 1, the D generating
matrices v*, and all independent products of these generating matrices. We need to
reject symmetric products, as they reduce to a product containing fewer y-matrices.

This can be seen by looking at (D.0.1), which implies v#~"¥ = n*1 for symmetric

L An interesting corollary of this result is that the spacetime dimension D is in general different
from the dimension of the y-matrices. For example, they coincide for D = 4, but for D = 10, the
y-matrices are 32 x 32.
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products, and therefore v~ = 0 for u # v. Thus, only antysimmetric products are
considered. We define

1
AL — 7[#1_”7%] = m Z,}/Mlmvﬂr7 (D13)

where o denotes the set of r! signed permutations of indices pu1, ..., .. Because of the
antisymmetry, the only non-zero components of those products are

izt — a2 ~lTowhere py # pe F - F g (D.1.4)

All matrices of the Clifford algebra are traceless, except for the lowest rank r = 0,
which corresponds to 1, and the highest rank matrix with » = D, which is traceless
only for even D. Let us prove this last statement.

Proof. First we need to show that the higher rank y-matrices can be expressed as
the alternate commutators or anti-commutators

1

" =50l
7#1#2#3 :; {’7”1,’}/#2%} 7
7#1#2#3#4 :;[7“1>7u2u3“4]7
ete. (D.1.5)

The first identity is trivial, since by definition v** includes a commutator. For the
second identity, notice that

;{,yﬂl’,ymm} — i {7H1’,7H27H3 _ 7#37@} — i {’7“1,’7”2’}/“3} _ i {7“1,7”3’}/“2},

where we need to assume o # pz in order to avoid a trivial result. We see that we
also need to assume pq; # po and g # 3, because otherwise we would get a zero
anti-commutator value. Thus
1 M1 A H213 1 H1 A M2 A H3 12 A M3 A 1 M1 A M3 A M2 H3 A2 A1
g Iy} = Z(yiyinfe ottt — gttt gl — it ) =
—_—— =
—7”27”3 —7!"27“3
— i(QWMVM’V“B + 2’)/“2’7“3’7“1) — ,ym,ym,ylm — 7#1#2#3.
———

fy/»‘l 7#2#}/#3
In general, we can write the identity

,y/ilmuD — } (/-y.“'l,y/JQ-n/JD _ (_)D,yu2~~/$D,yu1)
2 )
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which covers all the different cases of (D.1.5)), as

For  D=2m — (=)P=+4 — Af#0 = [yl qlebo],

For D=2m+1 — (=)P=— — A0 = _ [y yl2iD]

Now, using the linearity and the cyclic property of the trace, we see that, for even

dimension 1 1
Tr(’y“l"'“D) _ 5Tr(,ym,yuz---uD) _ = Tr(7“2"'“D7“1) = 0. (D.1.6)

o 2
Tr(y1442-4D)

]

The next step is to guess the dimension of the Clifford algebra, i.e. the number
of independent elements, for even dimension. Notice that there are CP independent
index choices at rank r (it is a binomial number because there are C'P different ways
of choosing sets of r elements out of a set of D elements). Therefore, by virtue of the
Binomial Theorem . .

];)Cgrk zlg)(Z) rF = (147", (D.1.7)
and taking into account that for D = 2m all the y-matrices are linearly independent,
we see that the dimension of the Clifford algebra for even dimension is

D
d CP =2, (D.1.8)
r=0

Useful relations involving y-matrices
Here we show some tricks to multiply y-matrices, that we will be using later. For
example, it is worth remembering the general order reversal symmetry rule

r(r—1) r(r—1)

,_YIA...I/T — 71/1 . _,}/Vr _ (_) 3 Fyl/"‘ .. _,.)/Vl = (—)T’yur"'ul, (D19)

We have used the anti-commutativity of the y-matrices a number C} = T(T; U of
times. Another interesting contraction is

YWY =7, 201 — A4YAH) = (2 — D)y*. (D.1.10)

Proceeding in the same way,

VY =Y = (20 — ) = 29—, (201 — APy
= =29 = 29" Pt = (D — At (D.1.11)

In general, one has
VT = (=)(D = 2r)yet (D.1.12)



D.1. THE CLIFFORD ALGEBRA XXVII

D.1.1 Basis for even dimension

Restricting to even dimension D = 2m, an orthogonal basis of the Clifford algebra
can be denoted by the following array {FA} of matrices

{1"‘4 = 1, A#, ypakz ypakzbs 77“1""“’} ) (D.1.13)

Index values satisfy p1 < pg < ... < p,. It will be convenient to define a basis {I'4}
as the one containing the same elements as {FA} but in reverse order:

{FA =1, Vs Vpapas Vpspaprs * " 7,VHD-~~H1} . (D‘1'14>

Next we derive the trace orthogonality property. If we consider the product I'“I'g, we

see that for different elements A # B we get another arbitrary element of the Clifford

algebra different from 1, which is traceless, as we previously discussed. For the same

elements A = B, we always end up with the identity 1 (without sign changes involved

because of the way we have defined I'g), whose trace is 2™. This can be summarized
as

Tr(TAT5) = 2™05. (D.1.15)

The list in (D.1.13) contains 2 trace orthogonal matrices, which is the same

as the number of elements of a matrix M of dimension 2™ x 2™. Therefore {FA}

constitutes a basis of the space of matrices M of dimension 2™ x 2™, and we can

write the expansion

M =3 maI. (D.1.16)
A

It is easy to obtain the coefficients m 4 of the expansion with the help of the orthog-
onality property

1 1 1
o TH(MT ) = o T (Z mBFBFA> = gn 2 msTr (PPra) =ma  (D.1.17)
B B

For odd dimensions, D = 2m + 1, the situation is somewhat different, because
not all the y-matrices are independent, as we discussed before. In fact, a basis of the
Clifford algebra for odd dimension only contains the matrices in (D.1.13]) up to rank
m. For a further discussion, see [30].

D.1.2 The highest rank Clifford algebra element

The highest rank element of the Clifford algebra has special importance in physics,
as it is deeply related to the chirality of fermions. We define the quantitity

e = (=)™ 071 D1, (D.1.18)

which satisfies ¥2 = 1 in every even dimension, and it is Hermitian v/ = ~,. We
proceed to prove those properties.
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Proof. For the first property

= (1)
—_———
—(—)Db/2

YoY1---YD-17Y071---YD-1

D(D-1)

D D?
= ()20 Ap-11p-1-mn(=) T 2 = (=) 7T =1, (D.1.19)

whereas for the Hermiticity property

. .D D(D-1)
/71 = K—Z>m+1]T7TD71'”VI’YS =12 +1(_> 2 YoV1---YD-1
N——
—YD—1--70
D? D_q.

=(=)z(=)> i1 Y0Y1--- YD1 = Vs (D.1.20)

(,)m+1im+1

[]

For dimension D = 4 the matrix ~, is typically called ;. The matrix -, is related
to the unique highest rank element in (D.1.13)) by

-m+1 _ _ _
" i Ve = Epnpanpup YOVL-- YD1 = Epapnpup V01D = Vpirpizeopps  (D-1.21)

where the Levi-Civita tensor reproduces the complete antisymmetry of v, . up-
Since 72 = 1 and Try, = 0, it follows that one can find a representation such that

b= (3 _0]1> . (D.1.22)

With this, we see that the Weyl fields 1) and x can be obtained from a Dirac field ¥
by applying the chiral projectors:

P, = ;(1 +) = (% 8) , Pp= ;(n — ) = (8 ]01> . (D.1.23)

Therefore,

YL\ _ 0 _
( . > = PV, (W) = PpU. (D.1.24)

Matrices in indeed project to orthogonal subspaces, since they satisfy Pr, Py, =
PL, PRPR:PR andPLPR:O.

We are going to show that both the anti-commutator {,,y*} and the commutator
(74, "] are zero. This result will prove to be useful soon. We compute the anti-
commutator, taking into account that v* anticommutes with all matrices o, v1...vp_1
except with one, which has the same index value p

{77} = (—i)mH (Yoy1-- D" + 00 Yp-1)
= (=)™ ((—)D_lv“%%.--w;_l + 7“70%---%_1) = 0. (D.1.25)
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Repeating the same procedure for the commutator

e, v = (=)™ (o1 Yp=17" — ¥ Y071 YD-1)
= (=)™ ()" D1 — ¥ Y0%-Ap-1) =0. (D.1.26)

We next consider a general block form

A B
n—
¥ (C D) : (D.1.27)
for the y-matrices in a representation where (D.1.22)) holds. Because of (D.1.25]) we
have v, v* = —y#~, or, in matrix terms,

A BY)_ (A -B

-C -D) C —-D)°
This means that A = —A and D = —D and thus A = D = 0. We have arrived at
the important result that the +* can be given in a block-off diagonal form

. (0 %") , (D.1.28)

ok

The matrices o* and ¢* can be thought of as 271 x 2™~ generalizations of the Pauli
matrices. In an analogous way, by using (D.1.26]) it can be shown that the matrices
" take the block diagonal form

1 [(ol5Y — FV5H
A = = (" o oe 0 > . (D.1.29)

2 0 oto¥ — g¥oH

D.1.3 The charge conjugation matrix

The charge conjugation matrix, C', is defined as the unitary matrix satisfying that
each matrix CT is either symmetric or antisymmetric. Symmetry depends only on
the rank r of the matrix I'4, so we can write:

(CTNT = —t,cT™, t, = +1, (D.1.30)
being I'™ a rank 7 matrix in the basis (D.1.13)) . For rank » = 0 and 1, one obtains
CT = —toc, ")/MT = toth’y“C_l (D131)

We have used that ¢, = 1/t, and that (AB)T = BT AT for any two matrices A and
B. These relations are enough to determine the symmetries of all Cy#*# and thus
all coefficients t¢,. For example,
(Cyre)t = el O = —toy" 21 O = — gy Ty C = —t, Oy,
to(t0t1)(tgtl)Cva_lC’y“lC_lC' = tQC’YMl/yluv
toCyH = Oy 2 — [ty = —to . (D.1.32)

2The — sign in (D.1.30) is introduced just for convenience in the calculations.
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In a similar way one can show that t3 = —t;. In general, t,,4 = t,. The following
matrices are valid charge conjugation matrices for even dimension,

C,=01R00y®0, ®03® ..., for the cases in which tyt; =1, (D.1.33)
C_.=09y®0, Q0301 ..., for the cases in which tgt; = —1. (D.1.34)

We can check for example that C satisfies (D.1.31). Taking into account that (A ®
B)T = AT @ BT for any two matrices A and B, we see that

Cl=01®(—09) ®01 @ (—02) ® ... (D.1.35)

So we have indeed CT = —t,C, and this shows clearly that #, depends on the dimen-
sion. Now we choose 7 from (D.1.1]), and make use of the fact that (A ® B)™! =
At'w B!

C+73C';1 = (alagafl ® 0201051 ® al]lafl ® ) = (—alagafl & —0201051 RI® )
(03001 018..)= (0] ®0] ®1®...) = (+*)" (D.1.36)

The values of t, and t; (and thus all ¢.) depend on the spacetime dimension
D mod8 and on the rank r mod4. That is, their values are repeated every eight
dimensions D and every four ranks r. The later can be seen from t;.4 = t.. The
former can be seen by looking the matrices Cy. For example, let us pick D = 2. In
this case, to = £1 for C. If we start increasing the dimension, we won’t get ¢, = £1
for C'; again until D = 10.

In the Table we give the values r mod4 for which ¢, = £1, for each D mod8.
Notice that, as t, = —ty and t3 = —t;, we will always have a pair of values corre-
sponding to ¢, = —1 and another pair corresponding to ¢, = +1. These entries in
the table are determined by counting the number of symmetric and antisymmetric
matrices in every dimension. For even dimension C', and C_ are possible choices. For
odd dimension, C' is unique. In fact, it is either C; or C_ (see [41]). This explains
why in the Table there are two possible choices for even dimension. The Table
is fundamental to explain why Majorana spinors can only exist in certain dimensions.

The symmetry property of a y-matrix fixes also its complex conjugation property.
To see this, we define

B = ityCA°, (D.1.37)

which is unitary, as B~! = i71ty(7?)1C~! = ityn°CT = B'. Important identities
involving B are
W = —tot; By* B!, B*B = —t;1. (D.1.38)

Proof. By taking the complex conjugate of (D.1.31)) we have y*1 = tot,C*y**C~1*.
We solve for v#* using that C* = —t,C~! and C~1* = —¢,C

’}/’u* = tothV“TC'fl = totl(—ito)(ito)cvo’}/#’yocil = —totlB’Y'uBT = —tOtIB’y’uBil
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| D (mod8) [ t, = —1|t, = +1]
0 0,3 2,1
0,1 2,3
1 0,1 2,3
2 0,1 2,3
1,2 0, 3
3 1,2 0, 3
4 1,2 0,3
2,3 0,1
5 2,3 0, 1
6 2,3 0, 1
0,3 1,2
7 0,3 1,2

Table D.1: Symmetries of v-matrices. The entries contain the matriz ranks r mod4 for
which t, = £1, corresponding to each spacetime dimension D mods.

Now, in order to prove B*B = —t;1, we first compute B*
B* = —ityC* (/") = itqC*° = —itaC 14" = —iC 14",

In this way
B*B = t,01y°0~° = 2t,(7°)"7" = t1(7")? = —t1 1.

D.2 Spinors in arbitrary dimension

D.2.1 Spinor bilinears

As it is discussed in the section , spinor components are anti-commuting Grass-

mann numbers
U, Vs =—-UsV,. (D.2.1)

Throughout the rest of this appendix, when writing a bar ove a spinor, we are as-
suming the Majorana conjugate , not the Dirac adjoint. Consider two different
arbitrary spinors x and A. We can build a general bilinear form using matrices from
the Clifford algebra:

S"Ymu.m)é (D.2.2)
This is indeed a bilinear form, i.e. it takes two "vector-like" quantities A and x and

returns a scalar value. We can express it in a different way by making use of ({D.1.30)

Mo X = N Cpy e X = —t; A CTx

’Yﬂl---ﬂr

T —
= (=) =t (X OV A) = XV A (D.2.3)
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In the last step we have used that the transpose operation doesn’t affect a scalar
quantity (a extra minus sign is coming from (D.2.1])). The term Majorana flip relation
is used to refer to (D.2.3).

The previous relation also mean the following rule. For any relation between
spinors including ~-matrices, there is a corresponding relation between the barred
spinors. To see this more clear, note that, by

X1X2 = toXa2X1 (D.2.4)

Then, if we have the relation between spinors x5 = V., A, because of (D.2.4) we
see there is a corresponding relation between barred spinors

X1X2 = toXoX1 = X1 Vu1ir A = trxfym...uer - X2 = totrj"ﬁu...m‘ (D'2'5)

Using the spin part of an infinitesimal Lorentz transformation dx = —i)\“”yuyx,
we can prove that the spinor bilinear Ax is a Lorentz scalar.

Proof. We simply compute the transformation, taking (D.2.5)) into account for the
expression of dA:

- - - — - | A
I(AX) =0AX + Adx = 0Ax + Adx = —1)\’“’%,)\)( — Z)\W%”X =

1 . Y A A
= — ZAWtOQ)\’YWX _ Z)‘W'YWX — +Z>‘W7WX _ Z)\W%“’X = 0.

D.2.2 Spinor indices

Although frequently omitted, spinor indices are sometimes necessary. Tipically, the
components of basic spinors A are indicated as A\, and the components of barred
spinors A as A“. We introduce a matrix to raise indices such that

A = C\g. (D.2.6)

<T
Since A" = CT X, we note that C** are the components of CT. We can also introduce
a lowering matrix

PED (D.2.7)
In order for these two equations to be mutually consistent,
Ao = NCs, = CPN\,Cha, (D.2.8)

we must impose

C¥Cp=6,",  CgaC? =5, (D.2.9)
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When operating with y-matrices, spinor indices are written as (7,)s”. Their indices
can also be raised or lowered using the charge conjugation matrix. For instance

(Yudag = (Yu)a”Cop- (D.2.10)

From ([D.1.30)), we see that y-matrices with all spinor indices upstairs or downstairs
are either symmetric or antisymmetric

(fym-..,ur)aﬁ = _tr(’y,ul...,uT)ﬁa~ (D211)

It is intriguing that raising and lowering indices can produce a minus sign depending
on the dimension, as opposed to what happened with spacetime indices. In fact,

Ao = —toC XX (C™ ) 0a = =106, " XaX" = —toAaX™. (D.2.12)

In D = 4 for example we have \*x, = —A,x".

D.2.3 Fierz reordering

Fierz reordering is a technique that exploits the fact that the Clifford set {FA} forms
a complete basis of any 2™ x 2™ matrix M, in order to obtain expressions involving
the products of spinor bilinears, called Fierz identities. These identities are important
in SUSY theories.

We derive now the basic Fierz identity. We take §,76,°, which can be considered
as a matrix in the indices 7 and 8 with the indices o and 0 having the function of

labelling different matrices. We apply (D.1.16)) to this matrix

6.76,0 =3 (ma) (I, (D.2.13)

The coefficients are (m4)% = 27" Tr(6,76,°(T4),%) = 27™8476,°(T'4),*. Inserting
this in (D.2.13]) we get

0,70,° = ;n S 0,7 (Ta),20,°(0), 7, (D.2.14)
A

or, equivalently

1
0,69 = o ST(Ta)a’(TH),7 | (D.2.15)
A

This is the basic Fierz identity. The next point is to derive an important identity
which is needed for SUSY Yang-Mills theories. Instead of the matrix 6,70,°, we
consider the matrix (7*),”(7,),°, with the indices a and § playing again the role of
labelling different matrices. Proceeding in the same way as before we get

1

~oom ('Yu)aT(FA)TP(Vu)pJ(FA)vB' (D.2.16)

(’7”)0/8('7#)76
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Taking into account the result (D.1.12]), we can express ((D.2.16)) as

(1) (), =

= gm 2.(2)"(D = 2r4)(Ca)a’ (04),7, (D.2.17)
A

where r4 is the rank of the element I'y. Now we lower the indices $ and § and we
consider the fully symmetric part in (8v0):

1

(Yt (Vvo) = 5 > (=)™ (D = 2r4) (T a)a@(T)5). (D.2.18)

Writing the indices in this way we can use the symmetry/antisymmetry property
(D.2.11)), taking the form (y.)as = —t1(Yu)ga. If we expand (7)a(s(7u)re) in its
six terms, we see all of them cancel by pairs if the y-matrices are antisymmetric
(Yu)ag = —(Vu)ga- Thus, (v*)as(Vu)ys) does not vanish only for the dimensions in
which ¢; = —1. By checking Table [D.1.3] we see this only happens for D = 3, 4. Let
us restrict to D = 4. From the right-hand side of , we see that for D = 4
the term (D — 2r4) is only non-vanishing for r4 = 1. Thus only rank 1 matrices
contribute to the right-hand side, and so we can write as

1
(V) a(s(Vu)re) = _5(%)04(5(7“)75)7 (D.2.19)
or using the symmetry property
("")a(s(Yu)s) = 0. (D.2.20)

Finally, if we multiply this equation with three spinors )\f , A3 and )\g, we can write

(D.2.20]) as

VA1 A2 Az =0, (D.2.21)

where the symmetry of the indices in (D.2.20) has become antisymmetry among the
three spinors because of their anti-commutativity property.

D.2.4 Charge conjugation of spinors

Charge conjugation is an operation that acts on spinors, analogous to complex con-
jugation. It is certainly possible to apply also complex conjugation to spinors, but it
turns out to be much easier to consider the operation of charge conjugation, which
acts in the same way for scalar quantities. The charge conjugate of any spinor A is
defined as

A = BN, (D.2.22)

where B is the matrix defined in (D.1.37]).
The charge conjugate of a 2™ x 2™ matrix M is defined as

M¢=B"'M"B. (D.2.23)
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In the same way as complex conjugation, charge conjugation does not affect the
order of the matrices: (MN)® = B~'M*N*B = MYNC. The charge conjugate of a
~v-matrix is actually very simple

(1) = B~ B = (—tot1) - (D.2.24)

The rule for the complex conjugate of a spinor bilinear with an arbitrary matrix M
1S

(XMN)* = (XM = (—tot1)xCMEXC. (D.2.25)
Proof. We compute the following
(—tot ) XC MO = (—tot1) = (—tot))(x9) ' CB'M*BB~'\*,

On the other hand, CB™! = —ityCyC~! = —it17vy, as 7§ = o, and it is also true
that (B~Y)T = B* = ityC*~,. We introduce these relations in the previous equation:

(-totl)FMcAC = (—totl)(B_IX*>TCB_1M*A* = ito(x*>T(B_1)T’}/0M*A*
— (X*)TC*M*)\* — ()ZM}\)* _ (XM)‘)C- (D.2.26)

]

Any spinor X and its conjugate A® transform in the same way under a Lorentz
transformation. We proceed to derive this important fact.

Proof. The spin part of an infinitesimal transformation of any spinor A is A =
—i)\“"%l)\. Now, taking the charge conjugate of this equation we have
AR AR A
6)\02—7 VAC:— _Bi1 1/)\*:_
where we have used the definitions (D.2.22)) and (D.2.23)). But taking into account
(D.2.24)), notice that, for u # v

uv
e

C
4 IY‘L,LZIA )

By, BBT'A" =

v5, = (3 w)C =75 = (=tot)*uve = V-

(for 4 = v, v = 1 and it is clear that it is its own conjugate). Thus JA° =

—AZV VW)\C, i.e. the conjugate A transforms in the same way as . O

Finally, we compute the charge conjugate of the highest rank Clifford algebra

element ~,:
(7)€ = iy AG = (—tot)P e o1 = (=) P, (D.2.27)
—_———
+1
Thus, for dimension D = 4 for example, one has (7,)¢ = —7,, which means

(PL)C = PR.



Appendix E

Mathematica code

In this Appendix we show the Mathematica notebooks that have been used to obtain
the specific expression for the generators of the Lorentz group/Clifford algebra, and
also to check their commutation/anticommutation relations. Comments and expla-
nations are included.

XXXVI



A basis of -matrices in D = 10

We consider D=10. We use the general and explicit construction of y -matrices.

nz- | GammaO = i » KroneckerProduct[PauliMatrix|[1], IdentityMatrix|[2],
IdentityMatrix[Z] , IdentityMatrix[Z] ) IdentityMatrix[Z] ] £

In(3]:= Gammal = KroneckerProduct [PauliMatrix[Z] , IdentityMatrix[Z] ,
IdentityMatrix[2], IdentityMatrix[2], IdentityMatrix[2]];

Inf4]:= Gamma2 = KroneckerProduct [Pau'LiMatrix[3] , PauliMat rix[l] ,
IdentityMatrix[2], IdentityMatrix[2], IdentityMatrix[2]];

s~ | Gamma3 = KroneckerProduct [PauliMatrix[3], PauliMatrix[2],
IdentityMatrix[2], IdentityMatrix[2], IdentityMatrix[2]];

In(6]:= Gamma4 = KroneckerProduct [Pau'l.iMatrix[3] , PauliMat rix[3] ,
PauliMatrix[1], IdentityMatrix[2], IdentityMatrix[2]];

In[7):= Gamma5 = KroneckerProduct [PauliMatrix[3] , PauliMatrix[3] ,
PauliMatrix[2], IdentityMatrix[2], IdentityMatrix[2]];

Ins] Gamma6 = KroneckerProduct [PauliMatrix[3] , PauliMat rix[3] ,
PauliMatrix[3], PauliMatrix[1], IdentityMatrix|[2]];

In[9):= Gamma?7 = KroneckerProduct [Pau'LiMatrix[3] , PauliMatrix[3] ,
PauliMatrix[3] , PauliMat rix[Z] ) IdentityMatrix[Z] ] ;

In[10]:= Gamma8 = KroneckerProduct [PauliMatrix[3] ) PauliMatrix[3] ,
PauliMatrix[3] , PauliMatrix[3] , PauliMatrix[l] ] ;

Inf11]:= Gamma9 = KroneckerProduct [Pau'LiMatrix[3] , PauliMatrix[3] ,

PauliMatrix[3] , PauliMatrix[3] , PauliMatrix[Z] ] ;

We check the dimension of the matrices
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As an example, we just show the 32x32 matrix I

GammaO // MatrixForm
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We define a function that groups all the matrices

mezz)- | Gam[u_] := KroneckerDelta[u, 1] Gamma@ + KroneckerDelta[u, 2] Gammal +
KroneckerDelta[u, 3] Gamma2 + KroneckerDelta[u, 4] Gamma3 +
KroneckerDelta[u, 5] Gamma4 + KroneckerDelta[u, 6] Gamma5 +
KroneckerDe'Lta[u, 7] Gammab + KroneckerDelta[u, 8] Gamma7 +
KroneckerDelta[u, 9] Gamma8 + KroneckerDelta[u, 10] Gamma9

Now we define the Minkowski metric:

nes- | et = DiagonalMatrix[{-1,1,1,1,1,1,1,1,1,1}];

We define a expression for the identity to be checked. If the identity is satisfied, this expression
needs to be zero.

nza)- | Identit[mu_, nu_] := (Gam[mu].Gam[nu]) + (Gam[nu].Gam[mu]) -
(2et[[mu, nu]] IdentityMatrix|[32])

nes- | Bigequation = Table[Identit[mu, nu], {mu, 1, 10}, {nu, 1, 10}];

In the variable Bigequation we have written a 10x10 table, with each entry containing a 32x32
matrix. All these matrices should be zero. The command Tally[Flatten[ Bigequation]] gives me the
number of zeros appearing in this table, which should be 100x32x32=102400.

Tally [Flatten[Bigequation] |

[{e0, 162400} }




The Lie algebra of the Lorentz group SO(3,1)inD =4

We consider spacetime dimension D=4. Let’s obtain the specific expression for the generators
of the Lorentz group in the basic representation. First we define the Minkowski metric:

wz- | et = DiagonalMatrix[{-1, 1, 1, 1}];

In(3]:= et // MatrixForm

Out[3)//MatrixForm=

(ol SN oNo]
[l cNoNO)

[cNoN T No]

-1
0
0
0

Now we define this representation for the generators of the Lorentz group:

In[5:= m[rho_, sigma , mu_, nu_] 1= KroneckerDelta[mu, rho] et[[nu, sigma]] =
KroneckerDelta[mu, sigma] et[[rho, nu]]

We define the commutator between two different generators

Infe] comm[mm_, nn_, rr_, Ss_] :=

(Array[m, {1, 1, 4, 4}, {mm, nn, 1, 1}][[1, 1]].
Array[m, {1, 1, 4, 4}, {rr, ss, 1, 1}][[1, 1]]) -

(Array[m, {1, 1, 4, 4}, {rr, ss, 1, 1}][[1, 1]].
Array[m, {1, 1, 4, 4}, {mm, nn, 1, 1}][[1, 1]]);

We now define the explicit theoretical expression for the commutator:

In[7]:= res[mi , i, ri, si_] 1=
et[[nl r1]] Array[m, {1, 1, 4, 4}, {mi,. si,. 1, 1}] [[1, 1]]
et[[ml r1]] Array[m, {1, 1, 4, 4}, {nJ.., S:!., 1, 1}] [[1, 1]]
et[[ni, si]] Array[m, {1, 1, 4, 4}, {mJ.., I":!., 1, 1}][[1, 1]] +
et[[mi, si]] Array[m, {1, 1, 4, 4}, {ni, ri, 1, 1}][[1, 1]];

We check that, for the same set of indices values, both lead to the same result




2 | Ex4-gfanb

Manipulate[comm[ma, na, ra, sa] //
MatrixForm, {ma, 1, 4, 1}, {na, 1, 4, 1}, {ra, 1, 4, 1}, {sa, 1, 4, 1}]

na B
= 0
Sa D
0 -1 00
-1 0 00
O 0 00
0O 0 00

Manipulate[res[ma, na, ra, sa] //
MatrixForm, {ma, 1, 4, 1}, {na, 1, 4, 1}, {ra, 1, 4, 1}, {sa, 1, 4, 1}]

man

na D

ra O
sa M
J

0 -1 00

-1 06 00

O 0 00

O 0 00

To check all the generators simultaneously, we impose define the equation eq=res - comm, which
has 4x4x4x4=256 matrices of size 4x4. In total, this variable has 256x4x4=4096 components

eq = Table[res[ma, na, ra, sa] - conm[ma, na, ra, saj,
{ma, 4}, {na, 4}, {ra, 4}, {sa, 4}];

We check that all its components are actually zero

Tally[Flatten[eq] |

{{0, 4096} }
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