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Abstract

Symmetries are the cornerstone of the modern development of theories in
particle physics. The Standard Model, which describes the strong, weak
and electromagnetic interactions is one of the most successful examples.
Supersymmetry (SUSY) is a new formulation which is based on a sym-
metry that relates two basic types of elementary particles: bosons, which
have integer spin, and fermions, which have half-integer spin. Since de-
veloped in the early 1970s, SUSY has drawn a growing attention, due to
the interesting consequences that proposes. Despite some relevant phe-
nomenological implications (as a suitable candidate for dark matter or the
cancellations of quantum corrections for the Higgs boson), we will review
some no-go theorems that leads us to consider SUSY as a suitable scenario
in which spacetime and internal symmetries can be unified.

In this work we are going to study SUSY theories that contain particles
with spin s ≤ 1. To do so, we firstly investigate the main aspects of bosonic
fields: scalar fields, Maxwell and Yang-Mills fields; and fermionic fields:
Weyl, Dirac and Majorana spinors. The treatment of these fields has
been done for any generic dimension. Finally, we have studied in detail
two N = 1 SUSY theories: we have considered the Wess-Zumino model,
and the SUSY Yang-Mills theory. Explicit calculations and other aspects
on group theory are provided in the various appendices.

In summary, we have learned the basics of SUSY theories, one of the
most relevant developments in modern theoretical physics. To that end,
we have studied the main properties of all the fields with spin s ≤ 1 in full
generality. We consider this work as a first step to address further open
problems in theoretical physics.
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Resumen

Las simetrías son la piedra angular en el desarrollo de teorías modernas
de física de partículas. El Modelo Estándar, que describe las interacciones
fuerte, débil y electromagnética, es uno de los ejemplos más exitosos. La
supersimetría (SUSY) es una nueva formulación basada en una simetría
que relaciona dos tipos básicos de partículas elementales: los bosones, que
tienen espín entero, y los fermiones, que tienen espín semientero. Desde
su desarrollo a principio de los años 1970, SUSY ha captado una creciente
atención, debido a las interesantes consecuencias que propone. Pese a
algunas de sus implicaciones fenomenológicas más relevantes (como una
candidata adecuada para la materia oscura o las cancelaciones de las cor-
recciones cuánticas al bosón de Higgs), revisaremos algunos teoremas de
imposibilidad que llevan a considerar SUSY como un escenario apropiado
en el que las simetrías internas y espaciotemporales pueden ser unificadas.

En este trabajo vamos a estudiar teorías SUSY que contienen partícu-
las con espín s ≤ 1. Para ello, investigamos primero los aspectos princi-
pales de los campos bosónicos: campos escalares, los campos de Maxwell
y de Yang-Mills; y los campos fermiónicos: espinores de Weyl, Dirac y
Majorana. El tratamiento de esos campos se ha hecho para dimensión
genérica. Finalmente, hemos estudiado en detalle dos teorías SUSY con
N = 1: hemos considerado el modelo de Wess-Zumino, y la teoría SUSY
Yang-Mills. Hemos provisto de cálculos explícitos y de otros aspectos de
teoría de grupos en los diversos apéndices.

En síntesis, hemos aprendido las bases de la supersimetría, uno de los
desarrollos más importantes en la física teórica moderna. Para este fin,
hemos estudiado las principales propiedades de todos los campos de espín
s ≤ 1 con total generalidad. Consideramos este trabajo como un primer
acercamiento para abordar otros problemas abiertos en la física teórica.
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Introduction

Since many decades ago, particle physicists have tried to make sense out of the rich
amount of data on elementary particles arising from high energy experiments [1]. To
carry out this task, symmetry has been used. One of the most successful examples
is the Standard Model (SM), which describes the electromagnetic, strong and weak
interactions. This model is based on the symmetry group SU(3) × SU(2) × U(1),
that dictates and sculpts the SM Lagrangian.

But what is a symmetry? In few words, it is a transformation that leaves some
system invariant. For example, a 90 degree rotation is a symmetry of the square. In
a similar way, we say that some physical laws are invariant under certain symmetry
transformations. For instance, Einstein’s special theory of relativity shows that all
physical laws have to be invariant under Lorentz transformations.

Despite the very recent discovery of the Higgs boson [2, 3], which plays an impor-
tant role in the SM, there exist some physical phenomena in Nature that the SM does
not explain: dark matter, the hierarchy problem, the matter-antimatter asymmetry,
the description of gravity,.... This has led theorists to consider extensions of the
SM. Formulations of this type are referred as physics beyond the SM. Some examples
of these theories are grand unified theories, supersymmetry, brane-world scenarios,
supergravities or superstrings, among others.

In this work we are going to study supersymmetry (SUSY), which is a new sym-
metry that enlarges the type of symmetries of the SM. SUSY is a transformation that
exchanges bosons by fermions and viceversa, thus stating that the physical laws are
invariant under these transformations. This simple idea solves in an elegant manner
some of the present enigmas of the SM all at once: it provides new particles as suit-
able candidates for dark matter, it implies the cancellation of the radiative corrections
to the Higgs mass and it predicts the unification of the coupling constants at high
energy scales [4]. Furthermore, SUSY seems to be a necessary ingredient to formulate
a unification theory with gravity, as it brings the possibility of mixing internal and
spacetime symmetries.

The goal of this work is to analyze in detail two SUSY theories: the Wess-Zumino
model [5] and the supersymmetric Yang-Mills theory [6]. While the former involves
spin-0 and spin-1

2 particles, the later contains spin-1
2 and spin-1 fields. To carry
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out this task, we previously need to study the most general aspects of bosonic and
fermionic fields. For future research purposes, we study the conditions that dimen-
sionality imposes on the fields when we consider arbitrary dimensions. In this work
supersymmetry is considered at a classical level, since the construction of Lagrangians
is essential for a quantum treatment. A further motivation is that it is precisely classi-
cal Lagrangians those which are required for the path integral formulation of quantum
field theory.

Let us comment on the methodology of this work. We will study the main bibli-
ographic references and explicitly reproduce the main results. Such calculations will
be done analytically by hand and by using the Mathematica scientific software. We
will make use of the open access repository arXiv and the programming language
LATEX for edition.

The thesis is organized as follows:
In Chapter 1 we present the Klein-Gordon scalar field, which describes bosons with

spin s = 0. We discuss its equation of motion, as well as its internal and spacetime
symmetries.

In Chapter 2 we explore the most significant features of spinors, which we apply
to describe fermions with spin s = 1

2 . The discussion starts with Dirac spinors, and
continues later with Majorana spinors, that can be regarded as Dirac spinors with a
reality restriction. Majorana spinors are basic for the study of SUSY. Furthermore,
we find that not all types of spinors exist in certain dimensions. This is a key aspect
to formulate supersymmetric theories in dimensions higher than 4.

In Chapter 3 we analyze gauge fields describing bosonic particles with spin s = 1.
We firstly study the Maxwell field, which enjoys an Abelian U(1) gauge symmetry.
Afterwards, we investigate Yang-Mills theory, which is a generalization of electromag-
netism when other non-Abelian symmetry groups are considered. Yang-Mills theories
constitute the basis for understanding the SM, since the groups SU(3) and SU(2) are
non-Abelian.

In Chapter 4 we firstly ellaborate on further reasons to study supersymmetry.
Then we discuss two important no-go theorems to introduce the superPoincaré alge-
bra, which is an extension of the Poincaré algebra that mixes spacetime and internal
symmetries in a non-trivial way. Finally we discuss two important N = 1 SUSY theo-
ries that contain all types of fields studied in the previous chapters: the Wess-Zumino
model and SUSY Yang-Mills.

Several appendices are provided. In Appendix A we present our notation. In
Appendix B we develop the tools provided by Lagrangian and Canonical formalism.
In Appendix C we review important concepts of group theory. In Appendix D we
study basic notions of Clifford algebras and we apply them to study spinors in general
dimension. Finally, in Appendix E we present some of the Mathematica code used.



Chapter 1

The Klein-Gordon scalar field

Scalar fields assign an scalar value to each point in space and time. For instance,
the pressure distribution in a fluid is a scalar field. In this chapter we study the
Klein-Gordon scalar field, owing his name to O. Klein and W. Gordon, who in 1926
used it to describe relativistic electrons. Although this scalar field exhibits Lorentz
invariance, today we know it describes spin-0 particles, so it cannot account for the
properties of the electron. The only elementary spin-0 particle known to date is the
Higgs boson, in addition to other some non-elementary spin-0 particles in Nuclear
Physics [7].

1.1 Equations of motion
We first consider the Klein-Gordon action for a set of real Klein-Gordon scalar fields
φi(x) for i = 1, ..., N , defined on a D-dimensional Minkowski spacetime:

S =
∫

dDx L = −1
2

∫
dDx [ηµν∂µφi∂νφi +m2φiφi]. (1.1.1)

The equations of motion are obtained by δS

δφi
= 0. We proceed to derive them :

∂L
∂φi

= −m2φi, (1.1.2)

∂L
∂ (∂µφi)

= −η
αβ

2
(
δαµ∂βφ

i + δβµ∂αφ
i
)

= −ηµν∂νφi, (1.1.3)

∂µ

(
∂L

∂ (∂µφi)

)
= −ηµν∂µ∂νφi = −�φi, (1.1.4)

where � ≡ ∂µ∂µ = ηµν∂µ∂ν = −∂2
t + ∇2

D−1 is the d’Alembertian operator in D

dimensions. Thus we arrive at

(�−m2)φi = 0, i = 1, ...N. (1.1.5)

3



1.2. SYMMETRIES OF THE SYSTEM 4

Each of the fields φi satisfies the equation of motion (1.1.5), commonly known as
the Klein-Gordon equation. Because we have not considered any interaction interac-
tion terms in our discussion, (1.1.5) is also referred as the free Klein-Gordon equation.
It is instructive to look at its solutions [8].

The plane wave eip·x = ei(−Et+~p·~x) constitutes a solution, as we obtain:

�eipαx
α = ηµν∂µ

(
ipνe

ipαxα
)

= −ηµνpνpµeipαx
α = m2eipαx

α

, (1.1.6)

where we have made use of the relativistic dispersion relation pµpµ = ηµνpνpµ =
−E2 + ~p2 = −m2. Because of the linearity of the Klein-Gordon equation, any sum of
solutions yields a new solution. We use this in order to write the general solution as
a Fourier transform in the plane waves

φi(~x, t) =
∫

dE
∫ dD−1~p

(2π)D−1 δ(E
2 − ~p2 −m2)φ̃i(E, ~p)ei(−Et+~p·~x)

=
∫ dD−1~p

(2π)D−12E
(
a(~p)ei(−Et+~p·~x) + a∗(~p)ei(Et+~p·~x)

)
. (1.1.7)

The factor 1/2E arises from the following property of the δ distribution

δ(f(x)) =
∑
x0

δ(x− x0)
|f ′(x0)| , for all x0 such that f(x0) = 0. (1.1.8)

In our classical framework, the complex amplitudes a(~p) and a∗(~p) of the (D − 1)
dimensional Fourier transform are simply functions of spatial momentum ~p. In the
quantized theory, they become anihilation and destruction operators for the particles
described by the fields operators φi(x), which commute at different points of space
[φ(~x, 0), φ(~y, 0)] = 0.

1.2 Symmetries of the system
In this section, we are going to study different continuous symmetries associated with
the Klein-Gordon field, as well as their corresponding Noether currents and charges.

1.2.1 Internal symmetries
We consider the mapping φi (x)→ φ′i (x) = Ri

jφ
j (x), where Ri

j is a N ×N matrix
of the special orthogonal group SO(N) 1. This global symmetry acts as a rotation on
the internal space of the fields φi. This tranformation leaves the Klein-Gordon action
invariant. For example, for the mass term we have

φ′iφ′i = Ri
jR

i
kφ

jφk = δjkφ
jφk = φjφj. (1.2.1)

1For a brief introduction on Lie groups, see Appendix C.2. A further discussion of the SO(N)
group is in Appendix C.2.2.
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The same holds for ∂µφ′i, as Ri
j does not depend on x. From the theory of Lie

algebras, we know that a matrix Ri
j of the SO(N) group can be given in terms of its

generators (tA)ij by matrix exponentiation

R = e−θ
AtA , (1.2.2)

where θA for A = 1, ..., N(N − 1)/2 are the independent parameters characterizing
the transformation. This helps us to compute the corresponding Noether current
using the general expression that can be found in Appendix (B.1.11). Identiying the
parameters εA → θA, we see that the infinitesimal variation is given by

δφi ≡ (δij − θA(tA)i j)φj − φi = −θA(tA)i jφj = εA∆Aφ
i −→ ∆Aφ

i = −(tA)i jφj.

In addition,
∂L

∂(∂µφi)
= −∂µφi. (1.2.3)

As for this symmetry the Lagrangian density is invariant, we have that Kµ
A = 0. The

Noether currents are therefore

JµA = −∂µφi(tA)i jφj . (1.2.4)

And the conserved charges

QA =
∫

dD−1~x J0
A = −

∫
dD−1~x ∂0φ

i(tA)i jφj. (1.2.5)

Let us consider a particular example, where N = 2. Thus, we can consider the SO(2)
group, whose unique generator is

t =
(

0 −1
1 0

)
. (1.2.6)

We explicitely check that this generator leads to a rotation 2× 2 matrix upon expo-
nentiation

R = e−θt = 1− θt+ θ2t2

2 − θ3t3

6 +O(θ4) =
(

cos θ − sin θ
sin θ cos θ

)
. (1.2.7)

The transformation acts on the two fields as(
φ′1
φ′2

)
= R

(
φ1
φ2

)
=
(
φ1 cos θ − φ2 sin θ
φ1 sin θ + φ2 cos θ

)
. (1.2.8)

It is interesting to note that the same result can be obtained if we consider a single
complex field given by φ = φ1 + iφ2 and the following transformation

φ′ = eiθφ = (cos θ + i sin θ)(φ1 + iφ2) = φ′1 + iφ′2. (1.2.9)
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The complex number eiθ is an element of the Unitary group U(1). Now, inserting the
generator t of (1.2.6) in the general expression (1.2.5) for the Noether charge, we get

Q = −
∫

dD−1~x (∂tφ2φ1 − ∂tφ1φ2) = −1
2

∫
dD−1~x (∂tφφ∗ − ∂tφ∗φ) . (1.2.10)

When the scalar fields are quantized, the quantity ∂tφ1φ2 − ∂tφ2φ1 is seen to be an
electric charge density and so Q has the natural interpretation of an electric charge
(for more details, see chapter 7 in [7]). In the case of a single real scalar field, N = 1,
there is no internal space and so it cannot possess a conserved charge arising from any
internal symmetry. That is why it is said that charged particles can only be described
by complex fields.

1.2.2 Spacetime symmetries
Spacetime translations

The spacetime translation

φi(x)→ φ′i(x) = φi(x+ a), (1.2.11)

for a constant vector aµ, is a transformation that also leaves the Klein-Gordon action
invariant, so it is a symmetry of the system. In order to obtain the Noether current
we identify εA → aν , with ν characterizing the transformation. In this case, Kµ

ν 6= 0
as

aν∂µK
µ
ν = δL = aν∂νL → Kµ

ν = δµνL → Kµν = ηµνL. (1.2.12)

The infinitesimal transformation ∆Aφ
i now corresponds to ∂νφi. With this, we obtain

that the Noether current is the so-called Energy-momentum tensor of the system

JµA = Tµν = ∂µφ
i∂νφ

i + ηµνL . (1.2.13)

This tensor is important in physics, as it encompasses the density and the flux of both
energy and momentum. For example, the element T00 represents energy density. The
conserved charges are

Pµ =
∫

dD−1~x T0µ. (1.2.14)

It is worth noting that the charge

P0 =
∫

dD−1~x T00 =
∫

dD−1~x

[
∂L

∂(∂0φi)
∂0φ

i − L
]

= 1
2

∫
dD−1~x

[
(∂tφi)2 + |~∇D−1φ

i|2 + (mφi)2
]

(1.2.15)

is to be identified with the energy E of the system, which in this case is the same as
the Hamiltonian H (we have given a definition of H in Appendix B.2). One can check
that both the positive and negative frequency solutions appearing in (1.1.7) lead to
a positive P0.
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Lorentz transformations
We take a matrix Λ of the Lorentz group 2. The transformation of a scalar field

is given by:
φi(x)→ φ′i(x) = φ′i(Λx). (1.2.16)

Here Λx is a shorthand notation for Λν
µxν . The Klein-Gordon action is invariant

under this transformation, and thus it is another symmetry of the system. We are
going to prove this.

Proof. First note that the Klein-gordon Lagrangian density can also be expressed
as L = −1

2(∂µφ∂µφ + m2φ2) (we omit the index i because it does not play any role
in the derivation). We are going to use that the derivative ∂µφ(x) and the derivative
∂µφ(x) follow the general transformation rules for covariant and contravariant vectors,
respectively. Namely,

∂µφ(x)→ (Λ−1)µσ(∂σφ)(Λx), ∂µφ(x)→ (Λ−1)µν(∂νφ)(Λx) (1.2.17)

These rules simply arise from the chain rule. For example, notice that ∂
∂x′ν

= ∂xρ

∂x′ν
∂
∂xρ

=
(Λ−1)ν ρ ∂

∂xρ
. We will also take into account the property Λµ

ν = (Λ−1)νµ. With all of
this in mind, and calling xµ = Λµ

νx
ν , we compute S[φ′(x)]

S[φ′(x)] = −1
2

∫
dDx

[
(Λ−1)µσ(Λ−1)µν∂σφ(x)∂νφ(x) +m2φ2(x)

]
= −1

2

∫
dDx

[
Λσ

µ(Λ−1)µν∂σφ(x)∂νφ(x) +m2φ2(x)
]

= −1
2

∫
dDxJ(x, x)

[
∂νφ(x)∂νφ(x) +m2φ2(x)

]
. (1.2.18)

Now we need to compute the Jacobian. We will use that for an invertible matrix A
we have detA−1 = (detA)−1. We get:

J(x, x) =
∣∣∣∣∣det

(
∂xµ

∂xα

)∣∣∣∣∣ =
∣∣∣∣∣det

(
∂xα

∂xµ

)∣∣∣∣∣
−1

=
∣∣∣det (Λα

µ

)∣∣∣−1
. (1.2.19)

But since we always consider proper Lorentz transformations, det Λ = 1 and so
J(x, x) = 1. In conclusion, the action is invariant S[φ′(x)] = S[φ(x)].

The last step is to obtain the Noether current corresponding to this symmetry.
We make the identification εA → λρσ/2, where λρσ are antisymmetric numbers λρσ =
−λσρ, denoting the D(D − 1)/2 independent parameters of the Lorentz group. Note
that

δL = λρσ

2 ∂µK
µ
[ρσ] = L(xµ + λµνxν)− L(xµ) = ∂ρL λρσxσ. (1.2.20)

2For a more detailed summary of the Lorentz group, see Appendix C.2.3.
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Now, using the antisymmetry of λρσ, we can express the previous equation in the
following way:

λρσ

2 ∂µK
µ
[ρσ] = λρσ

2 (xσ∂ρL − xρ∂σL) . (1.2.21)

This allows us to infer Kµ
[ρσ]:

Kµ
[ρσ] = xσδ

µ
ρL − xρδµσL. (1.2.22)

Finally, taking into account that the infinitesimal transformation corresponds in this
case to ∆Aφ

i = − (xρ∂σ − xσ∂ρ)φi, we obtain the following Noether current:

JµA = Mµ
[ρσ] = −xρ∂µφi∂σφi + xσ∂

µφi∂ρφ
i + xσδ

µ
ρL − xρδµσL, (1.2.23)

which can be rewritten as:

Mµ
[ρσ] = −xρT µσ + xσT

µ
ρ . (1.2.24)

Mµ
[ρσ] is conserved, ∂µMµ

[ρσ] = 0, if Tµν is both conserved, ∂µT µν = 0, and symmetric
Tµν = Tνµ. The conserved charges are given by

M[ρσ] ≡
∫

dD−1~x M0
[ρσ]. (1.2.25)



Chapter 2

Dirac and Majorana spinors

Spinors describe all the fermionic spin-1
2 particles existing in Nature, such as the

electron and quarks. They were first introduced by the mathematician Élie Cartan
in 1913 [9], but it was not until the 1920s that physicists started to use them to
describe half-integer spin particles. In 1928 Dirac wrote his eponymous equation [10],
considered as one of the greatest triumphs in physics. This equation assembled quan-
tum mechanics and special relativity, explained the origin of the spin and predicted
antimatter.

After Pauli had proposed neutrinos in 1930 to explain conservation of energy in
beta decay experiments, it was suggested that neutrinos are their own antiparticles.
During 1937 Majorana was pioneer in the study of such fermions [11].

2.1 Mathematical prelude
The Dirac equation requires a special representation of the Lorentz group, called
spinor representation. The explicit description of spinor representation in dimension
D = 4 is given through the homomorphism between the group of 2 × 2 complex
matrices of unit modulus determinant, SL(2,C), and the Lorentz group SO+(3, 1)
(for the notation, see Appendix C.2.3). But before exploring this homomorphism
between groups, it is convenient to see another important consequence of the case
D = 4 at the level of the algebras: the study of the algebra of the Lorentz group,
so(3, 1), can be reduced to the study of the algebras of the SU(2) group, su(2). Let
us investigate this powerful connection.

For D = 4, the Lorentz group contains six independent matrix generators m[µν],
labelled with the antisymmetric indices [µν]. They consist of three spatial rotations
Ji ≡ −1

2εijkm[jk] and three boosts Ki ≡ m[0i] (for further details of these transforma-
tions, see Appendix C.2.3.1). The following generators Ik and I ′k

Ik = 1
2(Jk − iKk), I ′k = 1

2(Jk + iKk), k = 1, 2, 3, (2.1.1)

9
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satisfy the commutation relations of two independent copies of the Lie algebra su(2):

[Ii, Ij] = εijkIk,

[I ′i, I ′j] = εijkI
′
k,

[Ii, I ′j] = 0. (2.1.2)

We have included the proof for this at the end of Appendix C.2.3.1, due to its length.
Because of (2.1.2), we see that the complexified Lie algebra of so(3, 1) is related
to su(2)⊕ su(2). The algebra of SU(2) is well known from the theory of quantum
angular momentum. This theory shows that the spin can be described by a basis
|jm〉, where j = 0, 1/2, 1, 3/2, ... and m = −j,−j + 1, ..., j − 1, j. Each j labels a
different irreducible representation, and the number of m’s gives the dimensionality
of the representation.

Therefore, any finite and irreducible representation of so(3, 1) can be obtained
as a product of two representations of su(2) and classified by the pair of numbers
(j, j′). The (j, j′) representation has dimension (2j + 1)(2j′ + 1). This explains why
a 4-dimensional representation of the generators of the Lorentz group is denoted by
(1

2 ,
1
2). This important result elucidates that the concept of spin is originated in

Lorentz symmetry.

2.1.1 The homomorphism SL(2,C)→ SO+(3, 1)
We study the 2 : 1 homomorphism 1 between the SL(2,C) group and the Lorentz
group SO+(3, 1), which will allow us to obtain the generators of the (1

2 , 0) and (0, 1
2),

the most basic spinor representations. The first remark is that an arbitrary 2 × 2
Hermitian matrix x can be parametrized as:

x =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

The second remark is that the determinant of x is minus the Minkowki norm,

det x = −(−x0x0 + x1x1 + x2x2 + x3x3) = −xµηµνxν . (2.1.3)

Therefore, the vector spaceH of Hermitian 2×2 matrices and 4-dimensional Minkowski
vector spaceM seem to have some type of connection. We proceed to show that there
is an isomorphism 2 between them. For this task, we introduce two sets of 2× 2 ma-
trices:

σµ = (−1, σi) , σµ = σµ = (1, σi) , (2.1.4)
1A homomorphism is a map between two algebraic structures of the same type that preserve the

operation of the structures. When two different elements of an algebraic structure are mapped into
a solely element of the other structure, we speak about a 2 : 1 homomorphism.

2An isomorphism is a bijective homomorphism, that is, it has an inverse. It is always 1 : 1.
Do not confuse the isomorphism between H and M with the homomorphism between the groups
of transformations acting on those spaces, namely SL(2,C) and SO+(3, 1), which we discuss here
afterwards.
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where 1 is the unit matrix, and the three Pauli matrices are:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.1.5)

The following identities hold:

σµσν + σνσµ = 2ηµν1, (2.1.6)
tr (σµσν) = 2δµν . (2.1.7)

Using (2.1.7), we find

x = 1x0 + σ1x
1 + σ2x

2 + σ3x
3 = σµx

µ, (2.1.8)
1
2tr (σµx) = 1

2tr (σµσνxν) = 1
2tr (σµσν)xν = xµ. (2.1.9)

This gives the explicit form of the isomorphism between spaces. We are almost ready
for obtaining the desired homomorphism. Let A be a matrix of SL(2,C), and consider
the linear map:

x→ x′ ≡ AxA†. (2.1.10)

The corresponding 4-vectors are related through

x′µ = 1
2tr (σµx′) = 1

2tr
(
σµAxA†

)
= 1

2tr
(
σµAσνA

†
)
xν ≡ φ(A)µνxν . (2.1.11)

φ(A)µν is the homomorphism we were looking for. Transformation in (2.1.10) pre-
serves the determinant, since detx′ = detA detx detA† = detx. Therefore, the
Minkowski norm is invariant under this transformation, and we can connect the ho-
morphism with a transformation matrix Λ of the Lorentz group

φ(A)µν = 1
2tr

(
σµAσνA

†
)

= (Λ−1)µν . (2.1.12)

Note that, for a given Λ−1, there are two transformations corresponding to it, since
there is a freedom in sign (as detA = det(−A)). Thus, φ(A) = φ(−A) = Λ−1, and this
is why we call this a 2 : 1 homomorphism. Furthermore, we can convince ourselves
that this is a homomorphism by showing that φ(A)φ(B) = φ(AB). For this purpose,
let us consider the map x′ = (AB)x(AB)† = Ax̃A† where x̃ ≡ BxB†. Then,

x′µ = 1
2tr

(
σµAσνA

†
)
x̃ν = 1

2tr
(
σµAσνA

†
) 1

2tr
(
σνBσρB

†
)
xρ ≡ φ(A)µνφ(B)νρxρ.

Two specially important relations are

AσµA
† = σν(Λ−1)νµ, A†σµA = σνΛν

µ. (2.1.13)
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They can be proven without many difficulties. For example, x′ can be expressed in
two ways:

x′ = AxA† = AσµA
†xµ,

x′ = σνx
′ν = σν(Λ−1)νµxµ.

Then we straightforwardly read off the first identity. Equations (2.1.13) provide the
recipe for obtaining a Lorentz transformation Λ from a matrix A of the SL(2,C)
group.

For the next step of the discussion, we present two sets of matrices, given in terms
of σν and σµ as:

σµν = 1
4 (σµσν − σνσµ) , (2.1.14)

σµν = 1
4 (σµσν − σνσµ) . (2.1.15)

The commutator algebras of these matrices are the same as those of the Lorentz
group. For example, using (2.1.6) one can show

[σ[µν], σ[ρσ]] = ηνρσ[µσ] − ηµρσ[νσ] − ηνσσ[µρ] + ηµσσ[νρ]. (2.1.16)

According to (2.1.1), the commutators of Ik = −1
2(1

2εijkσij+iσ0k) and I ′k = −1
2(1

2εijkσij−
iσ0k) should satisfy (2.1.2). This is the case if Ik = 0. We thus arrive at the impor-
tant conclusion that the matrices σµν and σµν are generators in the (0, 1

2) and (1
2 , 0)

representations. Their exponentiation gives a representation of the Lorentz group,
but acting in the space H of Hermitian matrices instead of the Minkowski space M .
This is precisely the mapping involving A in (2.1.10), so we can identify

A = e−
1
2λ
µνσµν , (2.1.17)

A† = e
1
2λ
µνσµν , (2.1.18)

where λµν are the parameters of the transformations. Notice that this identification
is consistent since σ†µν = −σµν .

2.1.2 Spinors are not vectors
Spinors, which we may call as ψα, are two-component complex objects. That is,
they live in C2. What is characteristic about them is their transformation proper-
ties. Spinors transforms under the SL(2,C) group which, as we have just seen, is
homomorphic to the Lorentz group. This is called the spinor representation. Strictly
speaking, the SL(2,C) group is the universal covering group of the Lorentz group
(for a formal definition of universal covering group, see [12]).
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Figure 2.1: A spinor visualized as an arrow pointing along the Möbius strip. Picture taken
from [13].

Thus, as spinors transform according to the SL(2,C) group and not the Lorentz
group, it should be not surprising that they don’t behave as normal vectors. So as to
exemplify this, let us consider a rotation of 2π around the 3-axis. We take (2.1.17)
for an antisymmetric parameter λ21 = −λ12 = ϕ. Thus,

A = e−
1
2 (λ21σ21+λ12σ12) = e−

ϕ
2 (σ21−σ12) = e−

ϕ
4 (σ2σ1−σ1σ2) = ei

ϕ
2 σ3 , (2.1.19)

where in the last step we have used the property [σi, σj] = 2iεijkσk. Remembering the
general formula for the matrix exponential of Pauli matrices, eiaσj = 1 cos a+iσj sin a,
we see that for a rotation of ϕ = 2π we get

A = 1 cos π + iσ3 sin π = −1. (2.1.20)

This means that under a rotation of 360o a spinor reverses its direction, ψα → −ψα,
which it is definitely not what happens to a vector! In fact, a spinor needs a rotation
of 720o in order to return to its original position. We can get an intuitive picture of
this if we imagine the spinor as an arrow sliding across a Möbius strip (see Figure
2.1 ).

2.2 Dirac spinors
Here we follow a different approach from what we did for the Klein-Gordon scalar
field. We first discuss the equation of motion and its implications, and later we
construct a suitable action for the theory.

2.2.1 The Dirac equation
Dirac postulated that a free electron is described by the following equation of motion
3

/∂Ψ(x) ≡ γµ∂µΨ(x) = mΨ(x) . (2.2.1)

3This is the classical Dirac equation. The quantum version of this equation includes a factor i in
front of the derivatives because of the pressence of the hermitian momentum operator.



2.2. DIRAC SPINORS 14

Here Ψ(x) is a complex multicomponent field that transforms under some represen-
tation of the Lorentz group. It is closely related to the basic spinor representations
we have discussed in the previous section. In fact, for D = 4, we are going to see that
Ψ is formed by two spinors, and it is normally called bispinor or Dirac spinor. The
quantities γµ, µ = 0, 1, ..., D − 1, are a set of square matrices that satisfy

{γµ, γν} = γµγν + γνγµ = 2ηµν1. (2.2.2)

The Dirac equation mixes up different components of Ψ through the matrices γµ, but
each individual component itself solves the Klein-Gordon equation. To see this, we
write

(γν∂ν +m)(γµ∂µ −m)Ψ = (γµγν∂ν∂µ −m2)Ψ = 0. (2.2.3)
But because of (2.2.2) we see γµγν∂ν∂µ = 1

2 {γ
µ, γν} ∂ν∂µ = ∂µ∂µ, so (2.2.3) becomes

the Klein-Gordon equation for each component Ψα.

Although we are not going to enter into explanatory details, it is worth saying
that after canonical quantization, the fields Ψ(x) become operators that anticommute
at different points in space, as opposed to the scalar field φ(x), which becomes a
commuting operator. This is a manifestation of the spin statistics theorem 4. But
even in the classical case, the components of Ψ are required to be anti-commuting
Grassmann numbers 5, satisfying

{Ψα(x),Ψβ(y)} = 0. (2.2.4)

We will understand this requirement later, when studying Majorana spinors.
The condition (2.2.2) is the defining condition for the generators of a Clifford

algebra. The structure of this algebra is discussed in Appendix D. We now write a
well-known representation of the γ-matrices for D = 4, called Weyl representation,
in which the 4× 4 γµ have the 2× 2 matrices of (2.1.4) in off-diagonal blocks:

γµ =
(

0 σµ

σµ 0

)
. (2.2.5)

There are block off-diagonal representations of this type in all even dimensions, as we
show in Appendix D.1.2. We are going to prove that the following commutators

Σµν ≡ 1
4[γµ, γν ] (2.2.6)

satisfy the commutation relations (2.1.16) and, as a consequence, they form also a
representation of the Lie algebra of the Lorentz group.

4This theorem states that multiparticle states described by fermions and bosons need to be
antisymmetric and symmetric under interchange of two particles, respectively. It is then said that
fermions obey Fermi-Dirac statistics whereas bosons obey Bose-Einstein statistics. For a detailed
discussion, see [14]

5Grassmann numbers θi are real numbers that belong to an algebra in which all elements anti-
commute between them, θiθj = −θjθi.
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Proof. First we need to show [Σµν , γρ] = γµηνρ − γνηµρ. Note we can write the
following γµγν = 1

2 {γ
µ, γν}+ 1

2 [γµ, γν ] = 1ηµν +2Σµν . Since the identity 1 commutes
with everything, for any matrix X we have:

[X,Σµν ] = 1
2[X, γµγν − 1ηµν ] = 1

2[X, γµγν ]. (2.2.7)

If we now use the matrix identity [A,BC] = {A,B}C − B {A,C} and (2.2.2), we
have:

[γρ, γµγν ] = {γρ, γµ} γν − γµ {γρ, γν} = 2ηρµγν − 2ηρνγµ, (2.2.8)

Then [Σµν , γρ] = −1
2 [γρ, γµγν ] = γµηνρ−γνηµρ. Now we compute the term [γργσ,Σµν ]:

[γργσ,Σµν ] = γρ[γρ,Σµν ] + [γρ,Σµν ]γσ

= γρ (ησµγν − ησνγµ) + (ηρµγν − ηρνγµ) γσ

= ησµγργν − ησνγργµ + ηρµγνγσ − ηρνγµγσ

= 2ησµΣρν − 2ησνΣρµ + 2ηρµΣνσ − 2ηρνΣµσ.

And in conclusion, using the symmetry of ηµν and the antisymmetry of Σµν , we have

[Σµν ,Σρσ] = −1
2[γργσ,Σµν ] = ηνρΣµσ − ηµρΣνσ − ησνΣµρ + ηµσΣνρ. (2.2.9)

In the Weyl representation, one sees that the matrices Σµν are expressed in terms
of the 2× 2 matrices σµν and σµν as

Σµν =
(
σµν 0
0 σ̄µν

)
. (2.2.10)

From (2.2.10), we see that the 4-dimensional representation of so(3, 1) given by Σµν is
block-diagonal and therefore reducible. Actually, it is a direct sum of the irreducible
(1

2 , 0) and (0, 1
2) representations given by σµν and σµν that we discussed in the previous

section. Lorentz transformations on Dirac spinors are implemented as

L = e
1
2λ
µνΣµν (2.2.11)

In Appendix D.1 we give an explicit construction of the γ-matrices, which shows
they are necessarily complex. Moreover, the matrix γ0 is Hermitian while the rest of
matrices γi are anti-Hermitian. This explains why the Dirac field needs to be complex.
In other words, if it was chosen to be real, then any arbitrary Lorentz transformation
would transform it into a complex one.

We check now that the Dirac equation is Lorentz covariant, as it should be. This
means that, if Ψ(x) is a solution, then Ψ′(x) = L−1Ψ(Λx) is also a solution.
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Proof. In the first place, we have to prove LγρL−1 = γσΛσ
ρ. We will use the

Hadamard Lemma, which states that for any 2 matrices A and B

e−BAeB = A+ [A,B] + 1
2[[A,B], B] + .... (2.2.12)

So, by choosing A = γρ and B = −1
2λµνΣ

µν , and taking into account that [γρ, B] =
−λµν

2 [γρ,Σµν ] = λµν
2 (γµηνρ − γνηµρ) = λµ

ργµ, we have:

L(λ)γρL(λ)−1 = γρ + [γρ, B] + 1
2[[γρ, B], B] + ... = γρ + λµ

ργµ + 1
2λα

ρλν
αγν + ...

= γσ
(
δρσ + λσ

ρ + 1
2λα

ρλσ
α...
)

= γσΛσ
ρ. (2.2.13)

Now we compute
(
γµ∂′µ −m

)
Ψ′(x) and we make use of the previous relation in order

to check that this is zero(
γµ

∂

∂x′µ
−m

)
Ψ′(x) =

(
γµ

∂

∂x′µ
−m

)
L−1Ψ(x′) =

(
γµ
∂xν

∂x′µ
∂

∂xν
−m

)
L−1Ψ(x′)

=
(
γµ(Λ−1)µν

∂

∂xν
−m

)
L−1Ψ(x′) = [(Λ−1)µνγµL−1]∂νΨ(x)− L−1mΨ(x′).

If we multiply by L−1 each side of (2.2.13), we get γµL−1 = L−1γσΛσ
µ. Introducing

this relation above we see(
γµ∂′µ −m

)
Ψ′(x) = [Λσ

µ(Λ−1)µν︸ ︷︷ ︸
δνσ

L−1γσ]∂νΨ(x′)− L−1mΨ(x′)

= L−1 (γν∂ν −m) Ψ(x′) = 0. (2.2.14)

2.2.2 Constructing the Dirac action
We need to build a suitable Lorentz invariant action. For this purpose, we have
to introduce a bilinear form that satisfies Lorentz invariance. This is some scalar
quantity, formed by the product Ψ†βΨ, with β a square matrix to be found. Under
an infinitesimal Lorentz transformation, the variations of Ψ and Ψ† are:

δΨ(x) =− 1
2λ

µν
(
Σµν + L[µν]

)
Ψ(x) = −1

2λ
µνΣµνΨ(x) + λµνx

ν∂µΨ(x),

δΨ†(x) =− 1
2λ

µνΨ†Σ†µν + λµνx
ν∂µΨ(x)†. (2.2.15)

Lorentz invariance requires

δ(Ψ†βΨ) = λµνx
ν∂µ(Ψ†βΨ) = δΨ†(βΨ) + (Ψ†β)δΨ

= −1
2λ

µνΨ†
(
Σ†µνβ + βΣµν

)
Ψ + λµνx

ν∂µ
(
Ψ†βΨ

)
. (2.2.16)
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Therefore the following condition needs to be fulfilled:

Σ†µνβ + βΣµν = 0. (2.2.17)

We look for a real bilinear form, so we choose a Hermitian matrix β = β†. If the
Lorentz group were compact, it would have finite-dimensional unitary representations,
which would imply that the generators of its Lie algebra are all anti-Hermitian [15].
Then in (2.2.17) it would be enough to choose β as the identity, so that Ψ†Ψ would
be the Lorentz scalar. The problem is that the Lorentz group is non-compact and
therefore it has no finite-dimensional unitary representations. The required anti-
Hermitian property holds for spatial rotations

Σij = 1
4[γi, γj] = 1

4

(
σiσj − σiσj 0

0 σiσj − σiσj
)

= i
εijk

2

(
σk 0
0 σk

)
→ Σ†ij = −Σij

but not for boosts

Σ0i = 1
4[γ0, γi] = 1

2

(
−σi 0

0 σi

)
→ Σ†0i = Σ0i

which are Hermitian. Therefore β cannot be the identity. An alternative is to take
β to be any multiple of γ0, since then (2.2.17) is satisfied. We check this. First we
compute

γ0γµ(γ0)−1 =
(

0 −1
1 0

)(
0 σµ

σµ 0

)(
0 1

−1 0

)
=
(

0 −σµ
−σµ 0

)
= −(γµ)†,

(2.2.18)
which in turn implies

γ0Σµν(γ0)−1 = 1
4
(
(γµ)†(γν)† − (γν)†(γµ)†

)
= 1

4 (γνγµ − γµγν)† = −Σ†µν .

It is convenient to choose β = iγ0. With this, we can define the Dirac adjoint (a row
vector) by

Ψ̄ ≡ Ψ†β = Ψ†iγ0, (2.2.19)

so that we can write the invariant bilinear form as Ψ̄Ψ. We have everything we need
to define the action of the free Dirac field:

S[Ψ̄,Ψ] =
∫

dDx L =
∫

dDx [−Ψ̄γµ∂µΨ +mΨ̄Ψ]. (2.2.20)

Integrating by parts and setting to zero the term with a total derivative, this action
can equivalently be written as

S[Ψ̄,Ψ] =
∫

dDx [∂µΨ̄γµΨ +mΨ̄Ψ]. (2.2.21)
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The condition that the action is stationary, δS[Ψ̄,Ψ] = 0, leads, by using (2.2.21) and
(2.2.20), to the two equations of motion

∂L
∂Ψ − ∂µ

(
∂L

∂ (∂µΨ)

)
= 0 → ∂µΨ̄γµ −mΨ̄ = 0, (2.2.22)

∂L
∂Ψ̄
− ∂µ

 ∂L
∂
(
∂µΨ̄

)
 = 0 → [γµ∂µ −m]Ψ = 0. (2.2.23)

One of them is the already discussed Dirac equation. The other one is its conjugate.

2.2.3 Left or right?
The representation we saw in (2.2.10) for D = 4 is reducible, so we can always write

Ψ =
(
χ
η

)
. (2.2.24)

Here χ and η are spinors that transform according to (2.1.17) and (2.1.18), whereas
the Dirac spinor Ψ transform according to (2.2.11). Actually this can be done for any
even dimension D = 2m, since off-diagonal block representations for γµ exist for all
even dimensions. Spinors χ and η, that transform under irreducible representations,
are more fundamental objects than the Dirac spinor, and they are tipically called
Weyl spinors (we will normally writen them in bold). In even general dimension, γµ
are 2m × 2m matrices (as we show in Appendix D.1), so Dirac spinors have to have
2m components and Weyl spinors 2(m−1) components.

Weyl spinors have a definite chirality. Chirality is described by the eigenvalues
of the chiral matrix (for the details, see Appendix D.1.2). In D = 4 the chiral matrix
is the so-called γ5 and in the Weyl representation is given by

γ5 =
(
1 0
0 −1

)
. (2.2.25)

Notice that setting either χ or η to zero in (2.2.24) yields eigenstates of γ5:

γ5

(
χ
0

)
= +

(
χ
0

)
, γ5

(
0
η

)
= −

(
0
η

)
. (2.2.26)

Particles with positive chirality, such as χ, are said to be left-chiral, whereas particles
with negative chirality, such as η, are said to be right-chiral. That is why sometimes
we find ΨL and ΨR as an alternative notation for χ and η. As we show in D.1.2, one
can define the matrices PL,R ≡ 1

2(1± γ5), which project a Dirac spinor onto some of
the two representations. For example, ΨL = PLΨ. As we see, chirality tells us under
which representation of the Lorentz group a spinor is transformed. It can be shown
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that left-chiral and right-chiral particles are related through a parity transformation.

Let us express Dirac equation (2.2.1) in terms of the Weyl fields. In the Weyl
representation (2.2.5) for the γ-matrices, Dirac equation splits up in the two equations

σ̄µ∂µχ(x) = mη(x), σµ∂µη(x) = mχ(x). (2.2.27)

We see that Dirac equation in general couples the Weyl spinors χ and η. Interestingly,
in the case of zero mass m = 0, equations are decoupled:

σ̄µ∂µχ(x) = 0, σµ∂µη(x) = 0. (2.2.28)

These are called Weyl equations. As these equations are independent, we can now
think of χ and η as describing two different particles, instead of two states of a single
particle. In fact, there are theories that can contain only left-chiral or right-chiral
particles. This is the case of the Standard Model, which contains only left-chiral
neutrinos 6.

It is the moment to introduce helicity. Helicity is defined as the projection of the
spin along the direction of motion of the particle. If we take the spin operator ~S = 1

2~σ

and the momentum operator ~p = (∂1, ∂2, ∂3), we can define the helicity operator h as

h ≡ ~S · p̂ = ~S · ~p
|~p|
. (2.2.29)

Now, equations (2.2.28) can be reexpressed in terms of the 4-momentum operator
Pµ = ∂µ, or in components P = (p0, ~p). Using that for massless particles p0 = |~p|, we
can write Weyl equations as

hχ = +1
2χ, hη = −1

2η. (2.2.30)

Thus, in the massless limit, Weyl spinors are eigenstates of helicity. Particles with
+1

2 helicity eigenvalue are said to be left-handed, as opposed to particles with −1
2 he-

licity eigenvalue, called right-handed. As we see, helicity and chirality are equivalent
concepts only for the massless case. In general, for massive particles, the right-chiral
and left-chiral spinors χ and η will be linear combinations eigenstates of helicity.

We can understand this from a physical point of view: for a massive particle, it
is always possible to boost to a reference frame where the direction of motion is seen
reversed. Therefore, an observer can see a left-handed particle but other may observe
that the particle is right-handed. For massless particles, this is not possible since they
travel at the speed of light [17].

6Only left-chiral neutrinos are allowed because parity is violated in weak interactions. Until two
decades ago, the Standard Model considered neutrinos to be massless. However, neutrino oscillation
experiments have showed that neutrinos actually have mass (see [16]). Thus they cannot be Weyl
fields. It has been suggested that they may be Majorana particles because of their neutral charge,
but the experimental situation remains inconclusive.
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2.2.3.1 Solution of the Dirac equation for D = 4

As we have explained, each component of the Dirac spinor solves the Klein-Gordon
equation independently, so the Dirac equation also accepts plane-wave solutions. We
write positive and negative frequency solutions as u(~p, s)ei(~p·~x−Et) and v(~p, s)e−i(~p·~x−Et),
respectively. The momentum space functions u(~p, s) and v(~p, s) denote independent
column vectors, with the same number of components as Ψ. The new feature is the
discrete label s. Why do we need to introduce it? What are their values? Let us
pause and discuss the degrees of freedom of the Dirac spinor first 7.

The number of degrees of freedom of a system is half the dimension of the phase
space. As a consequence of the fact that the Dirac equation is of first order, the
momentum is not proportional to the derivative of Ψ. In fact, using (2.2.20)

π = ∂L
∂(∂tΨ) = iΨ† (2.2.31)

Thus, the configuration space has 8 real dimensions (since Ψ has four complex compo-
nents) and we can conclude that the number of degrees of freedom is 4. Two of them
are given by positive and negative frequency solutions. The other two are encoded in
the label s, so s run over two values 8. Exploiting the linearity of the Dirac equation,
a general solution can thus be expressed as the Fourier expansion

Ψ(x) = Ψ+(x) + Ψ−(x), with

Ψ+(x) =
∫ d3~p

2E(2π)3 e
i(~p·~x−Et) ∑

s=1,2
c(~p, s)u(~p, s),

Ψ−(x) =
∫ d3~p

2E(2π)3 e
−i(~p·~x−Et) ∑

s=1,2
d(~p, s)∗v(~p, s). (2.2.32)

c(~p, s) and d(~p, s) are complex quantities that simply denote the coefficients in this
expansion. In the quantum theory, d(~p, s)∗ becomes the creation operator for particles
and c(~p, s) the anihilation operator for antiparticles. Their complex conjugate would
denote the opposite actions, namely d(~p, s) would become anihilator of particles and
c(~p, s)∗ a creator of antiparticles. An antiparticle and a particle are almost identical,
the only difference is that an antiparticle has opposite charges.

By inserting (2.2.32) in the Dirac equation, one can find the explicit expression
for the vectors u(~p, s) and v(~p, s). We just write the final result here (a proof can be
found in [14]):

u(~p,±) =
 √

E ∓ |~p|ξ(±)
i
√
E ± |~p|ξ(±)

 , v(~p,±) =
 √

E ± |~p|η(±)
−i
√
E ∓ |~p|η(±)

 . (2.2.33)

7For any field theory, the number of degrees of freedom is infinite. What we are really counting
here is the number of degrees of freedom per spatial point.

8After quantization, one can associate two of the degrees of freedom labelled by s with spin up and
spin down states. The other two degrees of freedom are associated with particles and antiparticles.



2.2. DIRAC SPINORS 21

We have used ± for the index s. ξ(±) and η(±) are simply two-component
arbitrary spinors. We can interpret them as the defining spin states of the particles.
For example ξT (+) =

(
1 0

)
would represent a particle with spin up along the 3-axis.

It is often convenient to choose spin states to go along the direction of motion of the
particle, i.e. to be eigenstates of helicity. Thus,

hξ(±) = ±1
2ξ(±). (2.2.34)

We also choose
η(±) = −σ2ξ

∗(±). (2.2.35)
Let us show that η(±) are also eigenstates of the helicity, hη(±) = ∓1

2η(±).

Proof. We will make use of the identity σ2~σ
∗ = −~σσ2. We compute

(~σ · ~p) η(±) = −piσiσ2ξ(±)∗ = piσ2σ
∗
i ξ(±)∗ = σ2( ~σ∗ · ~p)ξ(±)∗

= ±σ2|~p|ξ(±)∗ = ∓|~p|(−σ2ξ(±)∗) = ∓|~p|η(±). (2.2.36)

And after dividing by 2|~p| we get the desired result.

For the massless case, where E = |~p|, the spinor u is greatly simplified

u(~p,−) =
√

2E
(
ξ(−)

0

)
, u(~p,+) =

√
2E

(
0

iξ(+)

)
. (2.2.37)

Similarly, for massless spinors v,

v(~p,−) =
√

2E
(

0
−iη(−)

)
, v(~p,+) =

√
2E

(
η(+)

0

)
. (2.2.38)

2.2.4 U(1) symmetry for Dirac spinors
Let us consider a global U(1) phase transformation on the Dirac field,

Ψ(x)→ Ψ′(x) ≡ eiθΨ(x). (2.2.39)

Notice that the transformation for the adjoint field is then Ψ̄ = iγ0Ψ′† = e−iθΨ̄ and
because of that Ψ̄′Ψ′ = Ψ̄Ψ. With this, we clearly see that the free Dirac action in
(2.2.20) is invariant under this phase transformation.

We compute the Noether current associated to this one-parameter transformation,
considering the general formula (B.1.11). Because of the invariance of the action, we
see that Kµ = 0. On the other hand ∂L/∂(∂µΨ) = −Ψ̄γµ. Thus the conserved
Noether current is

Jµ = iΨ̄γµΨ. (2.2.40)
The time component is given by J0 = Ψ†Ψ. Precisely, one of Dirac’s original moti-
vations for his equation was that, unlike the Klein-Gordon equation, the quantity J0

could be seen as a positive probability density.
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2.3 Majorana spinors
Let us study now Majorana fields, which are Dirac fields that satisfy a reality con-
dition. This restriction reduces the number of degrees of freedom by a factor of 2.
Thus, like Weyl fields, a Majorana spinor field is a more fundamental object than a
Dirac spinor.

2.3.1 Definition and properties
Firstly we introduce a definition for row vector different from the Dirac adjoint in
(2.2.19), called the Majorana conjugate, which sometimes is more convenient. The
Majorana conjugate of any spinor Ψ is defined as

Ψ̄ ≡ ΨTC. (2.3.1)

In order to avoid confusion between Majorana and Dirac conjugate, we may write
sometimes Ψ̄Dirac and Ψ̄Major. The matrix C is called the charge conjugation matrix
and its definition and properties are discussed in Appendix D.1.3. This matrix has
mathematical importance, as it establishes the symmetries of the γ-matrices and also
aids raising and lowering spinor indices. But it is also important from the physical
point of view, because as we will see, it helps us to relate particles with antiparticles.

For immediate purposes, we only need to make use of the relations

CT = −t0C, γµT = t0t1Cγ
µC−1. (2.3.2)

Here t0 and t1 can only take the values ±. These values depend on the spacetime
dimension D. Let us see what happens if we impose that the Majorana conjugate is
equal to the Dirac adjoint

Ψ̄Major = Ψ̄Dirac =⇒ ΨTC = iΨ†γ0. (2.3.3)

Using (2.3.2) we can rearrange (2.3.3) as

Ψ = −it1γ0C−1Ψ∗ = −(t0t1)B−1Ψ∗, (2.3.4)

where we have introduced the inverse of the matrix B ≡ it0Cγ0. This matrix satisfies

γµ∗ = −t0t1BγµB−1, B∗B = −t11. (2.3.5)

We have proved these identities at the end of Appendix D.1.3. This matrix B is
needed to introduce the charge conjugate of a spinor, defined as ΨC ≡ B−1Ψ∗. As
we discuss in Appendix D.2.4, the operation of charge conjugation generalizes com-
plex conjugation, and the definition of B is consistent with the complex conjugation
properties. Notice that ΨC will contain d(~p, s) and c(~p, s)∗, so we can anticipate that
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ψC describes antiparticles. We are now ready to talk about Majorana spinors. A
Majorana spinor is a Dirac spinor satisfying the reality restriction

Ψ = ΨC = B−1Ψ∗, i.e. Ψ∗ = BΨ . (2.3.6)

This is exactly what we have in (2.3.4) provided that −(t0t1) = +1. Furthermore,
if we take the complex conjugate in (2.3.6) we see that Ψ = B∗Ψ∗ = B∗BΨ, so
this reality condition is only consistent if B∗B = 1. From (2.3.5), we see that this
requires t1 = −1 and thus t0 = 1. Having a glance at the Table of AppendixD.1.3,
this happens only for dimensions D = 2, 3, 4 mod 8. This explains why Majorana
spinors can only exist in certain dimensions.

As we see, the Majorana conjugate and the Dirac adjoint are equivalent operations
when acting on a Majorana spinor. It is worth noting that the reality condition (2.3.6)
does not imply in general that a Majorana spinor has real components. However there
are representations in which the γ-matrices are explicitely real. For example, a real
representation for D = 4 is given by:

γ0 =
(

0 1

−1 0

)
, γ1 =

(
1 0
0 −1

)
, γ2 =

(
0 σ1
σ1 0

)
, γ3 =

(
0 σ3
σ3 0

)
. (2.3.7)

In such representations, γµ∗ = γµ and because of (2.3.5) we have B = 1. Therefore
in these representations the Majorana spinor is real as the Majorana condition (2.3.6)
becomes Ψ∗ = Ψ. Moreover, if B = 1 then C = iγ0. We have already discussed many
different operations applied to spinors as well as several spinor types, so we include
them in the diagram 2.3.1 for more clarity.

Now we are going to prove that, if Ψ(x) satisfies the free Dirac equation /∂Ψ = mΨ
for D = 4, then the charge conjugate field ΨC satisfies the same equation.

Proof. First notice that, as /∂Ψ = mΨ, the complex conjugate of this equation is
(γµ)∗∂µΨ∗ = mΨ∗. Using that (γµ)∗ = BγµB−1 for D = 4, we compute

/∂ΨC = γµ∂µ(B−1Ψ∗) = B−1BγµB−1∂µΨ∗ = B−1(γµ)∗∂Ψ∗ = mB−1Ψ∗ = mΨC .

In Appendix D.2.4 we have also proved that ψ and ψC transform in the same way
under Lorentz transformations, so the Majorana condition is compatible with Lorentz
covariance.

The Majorana condition(2.3.6) implies that Majorana particles are their own anti-
particles, mathematically expressed as c(~p, s) = d(~p, s). Before showing this, we need
to prove that v = uC = B−1u∗ for the functions u and v appearing in the expansion
(2.2.32).
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We compute B−1 for D = 4, using the representations (D.1.33) and (D.1.1) that
can be found in Appendix D:

B−1 = iγ0C−1 = iγ0C† = i(iσ1 ⊗ 1)(σ1 ⊗ σ2) =
(
−σ2 0

0 −σ2

)
. (2.3.8)

Then, remembering the choice for η in (2.2.35), we have

B−1u∗ =
(
−σ2 0

0 −σ2

)√E − |~p|ξ∗
i
√
E + |~p|ξ∗

 =
√E − |~p|η
i
√
E + |~p|η

 = v. (2.3.9)

Now we apply the reality condition to the Dirac spinor, (Ψ+)C + (Ψ−)C = Ψ+ + Ψ−.
We compute (Ψ+)C ,

(Ψ+)C = B−1Ψ∗+ =
∫ d3~p

(2π)32Ee
−i(~p·~x−Et)∑

s

B−1u∗(~p, s)︸ ︷︷ ︸
v(~p,s)

c(~p, s)∗. (2.3.10)

As both Ψ± and (Ψ±)C are linearly independent, we can identify (Ψ+)C with the
other term that contains a negative exponential, i.e. Ψ−:

Ψ− =
∫ d3~p

(2π)32Ee
−i(~p·~x−Et)∑

s

v(~p, s)d(~p, s)∗. (2.3.11)

From here we can conclude c(~p, s)∗ = d(~p, s)∗ or equivalently c(~p, s) = d(~p, s). Since
in the quantized theory, d∗(~p, s)/c∗(~p, s) become the creation operators of parti-
cles/antiparticles, this proves that Majorana particles are their own anti-particles.

2.3.2 Majorana action
Majorana and Dirac fields obey the same equation of motion, namely the Dirac equa-
tion. Moreover, Majorana spinors have half of the degrees of freedom of a Dirac
fermion, so the action is written as

S[Ψ] = −1
2

∫
dDxΨ̄[γµ∂µ −m]Ψ. (2.3.12)

Because of the new barred spinor, ψ̄ = ψTC, we see that the mass and kinetic terms
are proportional to ψTCψ and ψTCγµ∂µΨ, respectively. Let us suppose that the field
components commute. Since C is antisymmetric, the mass term vanishes:

Ψ̄Ψ = ΨTCΨ = −ΨTCTΨ = −ΨT Ψ̄T = −(Ψ̄Ψ)T = −Ψ̄Ψ → Ψ̄Ψ = 0. (2.3.13)

On the other hand, Cγµ is symmetric, and so the kinetic term is a total derivative:

Ψ̄γµ∂µΨ = ΨTCγµ∂µΨ = ΨT (Cγµ)T∂µΨ = (∂µΨTCγµΨ)T = γµ∂µΨ̄Ψ = γµ

2 ∂µ(Ψ̄Ψ).
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Dirac Spinor Ψ

Spinor Operations

Charge conjugate: ΨC = B−1Ψ∗

Row vectors

Dirac adjoint
Ψ̄Dirac = iΨ†γ0

Majorana
conjugate

Ψ̄Maj = ΨTC

Spinor Types

Weyl Spinors (D = 2m)
ΨL = PLΨ; ΨR = PRΨ

Majorana Spinors
(D = 2, 3, 4 mod 8)

Ψ = ΨC ←→ Ψ̄Dirac = Ψ̄Maj

Figure 2.2: Definitions for some of the different spinor operations and spinor types.

Thus, the kinetic term is zero when integrated in the action. For commuting field
components, there is no dynamics! In order to recover the physical situation, we must
assume that Majorana fields are anti-commuting Grassmann variables.

In dimensions D = 2, 4 mod 8, both Majorana and Weyl fields can exist. In fact
the physics described by them is equivalent since we can write the Lagrangian density
of the theory in terms of either fields. Let us show this for D = 4. We can rewrite
the action (2.3.12) using the chiral projectors PL and PR:

S[Ψ] =− 1
2

∫
d4x [Ψ̄γµ∂µ − Ψ̄m](PL + PR)Ψ =

=−
∫

d4x
[1
2Ψ̄γµ∂µPLΨ + 1

2Ψ̄γµ∂µPRΨ− 1
2mΨ̄PLΨ− 1

2mΨ̄PRΨ
]
. (2.3.14)

We are going to manipulate the term 1
2Ψ̄γµ∂µPRΨ to see that it is identical to

1
2Ψ̄γµ∂µPLΨ. We compute,

1
2Ψ̄γµ∂µPRΨ =

���
���

���1
2∂µ

(
Ψ̄γµPRΨ

)
− 1

2∂µΨ̄γµPRψ = −1
4∂µΨ̄γµΨ + 1

4∂µΨ̄γµγ5Ψ

= 1
4Ψ̄γµ∂µΨ + 1

4Ψ̄γµγ5∂µΨ = 1
2Ψ̄γµ∂µPLΨ. (2.3.15)

We have neglected the total derivative term because it vanishes under the integral,
and then we have decomposed PR and used the Majorana flip relation (see (D.2.3) in
the Appendix). Thus, the action can be written as

S[Ψ] = −
∫

d4x
[
Ψ̄γµ∂µPLΨ− 1

2mΨ̄PLΨ− 1
2mΨ̄PRΨ

]
. (2.3.16)



Chapter 3

The Maxwell and Yang-Mills gauge
fields

In physical theories, invariance under global transformations (those that do not de-
pend on space and time) is important, because it leads to conserved quantities, such
as electric charge or isospin. If the invariance is further required under local trans-
formations, that do depend on space and time, interactions can be introduced. The
resulting theories are called gauge theories and they are the core of the Standard
Model of particle physics.

Quantum electrodynamics, the quantum version of Maxwell’s theory of electro-
magnetism, is a gauge theory with an Abelian symmetry group U(1). This was the
first field theory to be quantized and it has led to some of the most accurate predic-
tions in physics [18]. In 1954, Chen Ning Yang and Robert Mills generalized gauge
theories to non-Abelian symmetry groups, in order to explain strong interactions [19].

3.1 The Abelian gauge field
We have already discussed the global U(1) symmetry of free complex scalar and free
spinor fields, in Sections 1.2.1 and 2.2.4, respectively. We generalize this situation by
considering that the parameter θ becomes an arbitrary function of space and time,
θ → θ(x). Therefore we now have an Abelian gauge transformation, consisting of a
local change of phase. For example, for a Dirac spinor field, the gauge transformation
is implemented as

Ψ(x) → Ψ′(x) = eiθ(x)Ψ(x). (3.1.1)
In contrast with global phase transformations, the Dirac and the Klein-Gordon actions
are not invariant under the transformation (3.1.1), so equations of motion are not
gauge invariant. In order to formulate field equations that are gauge invariant, we
need to introduce a field Aµ(x), which is defined to transform as

Aµ(x) → A′µ(x) = Aµ(x) + 1
e
∂µθ(x). (3.1.2)

26
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We have included a numeric factor e, whose meaning will be explained soon. The vec-
tor field Aµ(x) 1, also called gauge potential, enters the covariant derivative, defined
as follows:

DµΨ(x) ≡ (∂µ − ieAµ(x))Ψ(x). (3.1.3)

This covariant derivative transforms with the same phase factor as Ψ(x):

D′µΨ′(x) =(∂µ − ieA′µ(x))eiθ(x)Ψ(x) = (∂µ − ieAµ(x)− i∂µθ(x))eiθ(x)Ψ(x)
=eiθ(x)∂µΨ(x) +((((((

((((Ψ(x)i∂µθ(x)eiqθ(x) − ieAµ(x)eiqθ(x) −(((((
((((

(
Ψ(x)i∂µθ(x)eiqθ(x)

=eiqθ(x)DµΨ(x). (3.1.4)

If we replace ∂µΨ(x)→ DµΨ(x) in the free Dirac equation, we get

[γµDµ −m] Ψ ≡ [γµ(∂µ − ieAµ)−m] Ψ = 0. (3.1.5)

This equation is gauge covariant: if Ψ(x) satisfies (3.1.5) with Aµ(x) then Ψ′(x)
satisfies the same equation with A′µ(x)

γµD′µΨ′ −mΨ′ = eiθ(x) [γµDµ −m] Ψ︸ ︷︷ ︸
=0

= 0. (3.1.6)

The procedure is the same for the complex scalar field φ(x). The local gauge trans-
formation is φ(x)→ φ′(x) = eiθ(x)φ(x) becomes a symmetry by defining the covariant
derivative Dµφ(x) ≡ (∂µ − ieAµ(x))φ(x) and modifying the Klein-Gordon equation
as follows:

[DµDµ −m2]φ(x) = 0. (3.1.7)

Therefore we have seen that, by simply promoting the global symmetry to be lo-
cal, we require the presence of a new vector field Aµ(x), that couples to Ψ(x) and φ(x).

The quantization of the field Aµ(x) leads to a description of massless particles
with helicities ±1, called photons, as it is discussed in [21]. Thus Aµ(x) represents
a bosonic field. Since Aµ(x) is a vector field, it transforms under the representation
(1

2 ,
1
2), according to the (j, j′) classification of the Lorentz group that we discussed in

section 2.1. We have already talked about scalar, spinor and vector fields, being all
of them classifiable in the (j, j′) representation, so we include them in the Table 3.1.
Just for completness, we have also added the (j, j′) representation of the metric tensor
gµν and the Rarita-Schwinger field Ψµ, which describe the graviton and gravitino,
respectively. These are two-hypothetical particles not discovered yet that play an
important role in Supergravity theories.

1We will assume that Aµ transforms as a vector under Lorentz transformations, but this is an
oversimplification, because the question is more subtle. Aµ is undetermined due to the gauge freedom
in (3.1.2) and one can eliminate this ambiguity by choosing a certain θ. There are different choices,
and Aµ does not transform as vector in all of them. In [20], it is shown that Aµ transforms as a
vector in the so-called Lorenz gauge.
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Lorentz rep. Total spin Mathematical Field Elementary particle

(0, 0) 0 Scalar φ Higgs boson(
0, 1

2

)
1
2 Left-chiral spinor ΨL Neutrino(

1
2 , 0

)⊕(
0, 1

2

)
1
2 Dirac spinor Ψ Electron, quarks(

1
2 ,

1
2

)
1 Gauge vectors Aµ, AAµ Photon, gluons(

1
2 , 1

)⊕(
1, 1

2

)
3
2 Rarita-Schwinger Ψµ Gravitino (no SM particle)

(1, 1) 2 Metric tensor gµν Graviton (no SM particle)

Table 3.1: Common representations of the Lorentz group and their corresponding particles.
The graviton and gravitino are not included in the Standard Model of particle physics.

3.1.1 The free case
Although we have introduced the gauge potential Aµ(x) in order to write the dy-
namics of the spinor and scalar fields in a gauge invariant fashion, Aµ(x) can evolve
independently, that is, without the presence of any spinor or scalar field. In this
section we proceed to derive the dynamical equations of the free gauge field.

We introduce the field strength, an antisymmetric derivative of gauge potentials

Fµν(x) = ∂µAν(x)− ∂νAµ(x). (3.1.8)

This is a tensor of rank 2. Moreover, the field strength is invariant under gauge
transformations, F ′µν = Fµν , as the terms ∂µ∂νθ and ∂ν∂µθ cancel out. In four di-
mensions Fµν has six independent components, which we identify with the three
components i = 1, 2, 3 of the electric field, Ei = Fi0 , and the three components of
the magnetic field, Bi = 1

2εijkFjk.
We look for second order Lorentz covariant equations describing Aµ. We would

like to make use of Fµν , which is gauge invariant, so we will construct these equations
in terms of the first derivatives of Fµν . We are going to see that the contracted form

∂µFµν = 0 (3.1.9)

is the suitable choice for the equations of motion of the free electromagnetic field.
The strength tensor also satisfies the Bianchi identity

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (3.1.10)

This equation is satisfied for any Fµν expressed in terms of Aµ as in (3.1.8) (notice
that because of ∂µ∂νAρ = ∂ν∂µAρ all terms in (3.1.10) cancel by pairs). We see that
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(3.1.9) and (3.1.10) are tensorial equations, i.e., they hold in any inertial reference
system and thus they are Lorentz covariant, as we wished. When these equations are
expressed in terms of the electric and magnetic fields, we recover classical Maxwell’s
equations in the absence of currents and charges [22].

Making use only of (3.1.9) and (3.1.10) we are going to show that the components
of the field strength satisfy the wave equation �Fµν = 0.

Proof. We apply ∂µ to equation (3.1.10). Taking into account (3.1.9) and the fact
that Fµν is antisymmetric, it is also true that ∂µFνµ = 0. With this, we have:

∂µ∂µFνρ + ∂µ∂νFρµ + ∂µ∂ρFµν = ∂µ∂µFνρ + ∂ν ∂
µFρµ︸ ︷︷ ︸
=0

+∂ρ ∂µFµν︸ ︷︷ ︸
=0

= �Fνρ = 0.

The gauge invariant equation�Fµν = 0 expresses the fact that the electromagnetic
field describes massless particles. It is worth noting that the field strength arises as
a consequence of the non-commutativity of the covariant derivatives (3.1.3)

[Dµ, Dν ]Ψ =Dµ(∂νΨ− ieAνΨ)−Dν(∂µΨ− ieAµΨ)
=− ie∂µ(AνΨ)− ieAµ∂νΨ + ie∂ν(AµΨ) + ieAν∂µΨ
=− ie∂µAνΨ + ie∂νAµΨ = −ie(∂µAν − ∂νAµ)Ψ = −ieFµνΨ. (3.1.11)

3.1.2 Dirac field as a source
To account the presence of sources, (3.1.9) has to be modified in the following manner:

∂µFµν = −Jν . (3.1.12)

The source Jν is called the electric current vector. Since ∂ν∂µFµν vanishes identically
2, the current must be conserved

∂νJν = 0. (3.1.13)

The continuity equation (3.1.13) simply expresses the fact that electric charge cannot
be created or destroyed. With this, one can show that Jν actually transforms as a
vector. Now, using that Fµν transforms as F ′αβ = Λα

µFµνΛν
β, we can check that

equation (3.1.13) is Lorentz covariant

∂′αF ′αβ = (Λ−1)τ αΛα
µ︸ ︷︷ ︸

δµτ

Λν
β∂

τFµν = Λν
β ∂

µFµν︸ ︷︷ ︸
−Jν

= −Λν
βJν = −J ′β. (3.1.14)

2∂ν∂µFµν = 0 is a mathematical identity because it is the contraction of a symmetric tensor
∂ν∂µ with an antisymmetric one Fµν , so an explicit expression for Aµ is not needed.
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The current vector Jν may represent any piece of laboratory equipment, such as a
magnetic solenoid. However, from the theoretical physics point of view, it is far more
interesting to consider as a source the field Ψ of an elementary charged particle, like
the electron. After quantization, this leads to the theory of Quantum Electrodynamics
(QED), which describes all electromagnetic phenomena happening in Nature. We
proceed to see the classical version for the action functional of QED:

S[Aµ, Ψ̄,Ψ] =
∫

dDx L =
∫

dDx
[
−1

4F
µνFµν − Ψ̄ (γµDµ −m) Ψ

]
. (3.1.15)

This action can be equivalently rewritten as

S[Aµ, Ψ̄,Ψ] =
∫

dDx [LDirac + LMaxwell + LInteraction] , (3.1.16)

where LDirac = −Ψ̄γµ∂µΨ + mΨ̄Ψ and LMaxwell = −1
4F

µνFµν describe the dynamics
of the spin-1

2 particle and the photon, respectively. The other term,

LInteraction = eΨ̄γµAµΨ, (3.1.17)

represents the interaction between them. Now we can understand the meaning of
e, which is called the coupling constant: it measures the strength of the coupling
between the photon and the charged particle. The factor e2/4π ' 1/137 is called the
fine structure constant. We now proceed to derive the equations of motion. Firstly,
we compute each of the terms appearing in the functional derivative δS/δΨ̄:

∂µ

(
∂L

∂(∂µΨ̄)

)
= γµ∂µΨ, ∂L

∂Ψ̄
= mΨ + ieqγµAµΨ.

With this, we arrive at the gauge covariant Dirac equation of (3.1.5)

δS

δΨ̄
= ∂µ

(
∂L

∂(∂µΨ̄)

)
− ∂L
∂Ψ̄

= [γµDµ −m] Ψ = 0. (3.1.18)

The functional derivative with respect to the gauge potential Aν is given by

δS

δAν
= ∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= 0. (3.1.19)

We compute each term separately:

∂L
∂(∂µAν)

= − (∂µAν − ∂νAµ) → ∂µ

(
∂L

∂(∂µAν)

)
= −∂µFµν , (3.1.20)

∂L
∂Aν

= ieqΨ̄γνΨ. (3.1.21)

The resulting equation of motion is thus

∂µFµν = −ieqΨ̄γνΨ. (3.1.22)



3.1. THE ABELIAN GAUGE FIELD 31

This is the same as (3.1.12) with the electric current proportional to the Noether
current of the global U(1) phase symmetry discussed in Section 2.2.4. Equations
(3.1.18) and (3.1.22) determine both fields Ψ and Aµ. The former equation tells that
the dynamics of Ψ is affected by the field Aµ, whereas the later tells that Ψ acts as
the same time as a source for Aµ.

3.1.3 Energy-momentum tensor
We consider in (3.1.16) only the terms describing the free electromagnetic field, that
is, LMaxwell. This action is invariant under spacetime translations. Proceeding as we
did in Section (1.2.2), we find that the energy-momentum tensor is given by

Jµν = T µν = Kµ
ν −

∂LMaxwell

∂(∂µAρ)
∂νAρ = δµνLMaxwell + F µρ∂νAρ. (3.1.23)

Raising the ν index with the help of the metric and writing LMaxwell explicitely, we
have

T µν = −1
4η

µνFαβFαβ + F µρ∂νAρ. (3.1.24)

Because of the presence of ∂νAρ, this expression for the energy-momentum tensor is
not gauge invariant. Gauge symmetry can be restorted by adding the derivative of
an antisymmetric tensor to this Noether current (see Appendix B.1.2). We add the
term ∂ρ(AνF ρµ) to (3.1.24), so:

T ′µν = T µν + ∂ρ(AνF ρµ) = −1
4η

µνFαβFαβ + F µρ∂νAρ − ∂ρAνF µρ

= −1
4η

µνFαβFαβ + F µρF ν
ρ. (3.1.25)

Therefore, T ′µν is now gauge invariant. We can check that in four dimensions the
elements of (3.1.25) lead to well-known results of classical electromagnetism. For
example, using that the elements of the field strength can be expressed in terms of
the electric and magnetic field components as Fi0 = Ei and Fij = εijkB

k respectively,
we compute the following:

F 0ρF 0
ρ = F 0iF 0

i = EiEi = ~E2, (3.1.26)
FαβFαβ = 2F i0Fi0 + F jiFji = −2EiEi + εijkε

jil︸ ︷︷ ︸
2δl
k

BkBl = 2( ~B2 − ~E2). (3.1.27)

In this way we can obtain T ′00. As we know, this should represent the energy density.
We get:

T ′00 = F 0ρF 0
ρ + 1

4F
αβFαβ = ~E2 + 1

2( ~B2 − ~E2) = 1
2( ~E2 + ~B2). (3.1.28)

This is the classical result for the energy density of the electromagnetic field [22].
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3.2 The non-Abelian gauge fields
Yang-Mills theory constitutes a generalization of electromagnetism, in the sense that
the symmetry group of the theory is now non-Abelian (as opposed to U(1), which is
Abelian). Examples of non-Abelian groups that play an important role in the Stan-
dard Model are SU(2) and SU(3). These are discussed in Appendix C.2.1.

In Yang-Mills theory, scalar and spinor fields transform in an irreducible repre-
sentation R of a non-Abelian Lie group G. As we explain in Appendix C.2, a general
element of the group is denoted by e−θAtA , where θA are the parameters of the trans-
formation and tA the generators of the algebra of the group, g. For example, a set of
Dirac spinor fields Ψα (α = 1, ..., dim R) 3 transforms as

Ψα(x) →
(
e−θ

AtA
)α

βΨβ(x). (3.2.1)

The set of Dirac conjugate spinors 2.2.19, denoted by Ψ̄α, transforms as

Ψ̄α → Ψ̄β

(
eθ
AtA
)β

α. (3.2.2)

In general we will only need to consider infinitesimal transformations, given by trun-
cation of the exponential series at first order in θA. Omitting α indices, we write:

δΨ =− θAtAΨ, (3.2.3)
δΨ̄ =Ψ̄θAtA. (3.2.4)

We can check that the global transformations in (3.2.1) and (3.2.2) leave the action
(2.2.20) for the free Dirac field invariant:

S ′[Ψ̄,Ψ] = −
∫

dDx Ψ̄′[γµ∂µ −m]Ψ′

= −
∫

dDx Ψ̄��
�

eθ
AtA [γµ∂µ −m]����e−θ

AtAΨ = S[Ψ̄,Ψ]. (3.2.5)

Therefore, these transformations constitute a symmetry of the system and we can find
the corresponding Noether current. If we identify the general parameters εA with θA
and consider that δΨ = εA∆AΨ = −θAtAΨ, then the infinitesimal transformation is

∆AΨ = −tAΨ. (3.2.6)

Having in mind the general expression in Appendix (B.1.11), we notice that Kµ
A = 0

given the invariance of the Lagrangian density. Thus the Noether current is

JµA = − ∂L
∂(∂µΨ)∆AΨ = −Ψ̄tAγµΨ. (3.2.7)

3Indices α should not be confused with spinor indices, which we normally omit.
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The next step in the discussion is to gauge the global symmetry that we have just
discussed. That is, we promote the group parameters θA to be arbitrary functions of
space and time, θA → θA(x). Field equations for the free spinor Ψ are not invariant
anymore under this symmetry, so we need to introduce a set of vector fields AAµ (x),
whose infinitesimal transformation is

δAAµ (x) = 1
g
∂µθ

A(x) + θC(x)ABµ (x)fBCA. (3.2.8)

The vectors AAµ (x) are also called non-Abelian gauge fields. The constant g is the
Yang-Mills coupling, and measures the strength of the interaction, in the same way
as the electromagnetic coupling e. The array of numbers fBCA = −fCBA denotes the
structure constants of the group (we discuss them in Appendix C.2).

The fields AAµ (x) enter the covariant derivatives, which are defined as

DµΨ =(∂µ + gtAA
A
µ )Ψ, (3.2.9)

DµΨ̄ =∂µΨ̄− gΨ̄tAAAµ . (3.2.10)

Following the ideas of Section 3.1, we can obtain gauge invariant equations of motion
if we replace ∂µ → Dµ. The action for the spinor field Ψ would become

S = −
∫

dDx L = −
∫

dDx [Ψ̄γµDµΨ−mΨ̄Ψ], (3.2.11)

which leads to the equation of motion

[γµDµ −m]Ψα = 0. (3.2.12)

In order to check this action is gauge invariant, we are going to prove that the in-
finitesimal gauge transformation of the covariant derivative DµΨ is the same as the
one for the field Ψ. Namely, we are going to show that δDµΨ = −θAtADµΨ.

Proof. We will make use of the commutation relation of the Lie algebra, [tA, tD] =
fADEtE. We compute:

δDµΨ =∂µ(δΨ) + gtAδA
A
µΨ + gtAA

A
µ δΨ

=− θAtA∂µΨ + gθCABµ tAfBCAΨ− gθDAAµ tAtDΨ
=− θAtA∂µΨ− gθDAAµ tDtAΨ︸ ︷︷ ︸

D→A, A→D

+((((((
(((gθCABµ tAfBCAΨ−((((((

(((gθDAAµ fADEtEΨ︸ ︷︷ ︸
D→C, A→B, E→A

=− θAtA(∂µΨ + gtDA
D
µ Ψ) = −θAtADµΨ.

Now we are ready to show that the action (3.2.11) is gauge invariant

δS = −
∫

dDx [δΨ̄γµDµΨ + Ψ̄γµδDµΨ−m(δΨ̄Ψ + Ψ̄δΨ)]

= −
∫

dDx [Ψ̄θAtAγµDµΨ− Ψ̄γµθAtADµΨ−m(Ψ̄θAtAΨ− Ψ̄θAtAΨ)] = 0.
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3.2.1 Yang-Mills field strength and action
The first part of this section is aimed to find quantities that dictate how the fields
AAµ (x) evolve independently. In Section 3.1.1 we saw that the field strength Fµν
emerges as a consequence of the non-commutativity of the covariant derivatives. We
proceed to compute the commutator of the new covariant derivatives defined in the
previous section, to see if we can obtain an object analog to Fµν in a similar fashion:

[Dµ, Dν ]Ψ =(∂µ + gtBA
B
µ )(∂νΨ + gtAA

A
ν Ψ)− (∂ν + gtAA

A
ν )(∂µΨ + gtBA

B
µΨ)

=gtA∂µAAν Ψ +����
��

gtAA
A
ν ∂µΨ +����

��gtBA
B
µ ∂νΨ + g2tBtAA

B
µA

A
ν Ψ−

−gtB∂νABµΨ︸ ︷︷ ︸
B→A

−����
��gtBA

B
µ ∂νΨ−����

��
gtAA

A
ν ∂µΨ− g2tAtBA

B
µA

A
ν Ψ

=g(∂µAAν − ∂νAAµ )tAΨ + g2 [tB, tA]︸ ︷︷ ︸
fBACtC

ABµA
A
ν Ψ = gFA

µνtAΨ. (3.2.13)

We have arrived at an expression for the so-called Yang-Mills field strength

FA
µν = ∂µA

A
ν − ∂νAAµ + gfBCAA

B
µA

C
ν . (3.2.14)

This antisymmetric tensor is the non-Abelian generalization of the electromagnetic
field strength (3.1.8). An important difference with Fµν is that the Yang-Mills
strength is not gauge invariant. In fact, one can show that Fµν transforms as a
field in the adjoint representation:

δFA
µν = θCFB

µνfBCA. (3.2.15)

We have discussed the adjoint representation in Appendix C.2. Another important
difference with the electromagnetic case is that FA

µν is nonlinear in AAµ .

Let us now formulate the equations governing the dynamics of AAµ . We consider the
presence of matter sources, described by current vectors JAν . The following equations

DµFA
µν = ∂µFA

µν + gfBCAA
µBFC

µν = −JAν , (3.2.16)

which are both gauge and Lorentz covariant, are the equations of motion we are
looking for. These are the Yang-Mills equations, and are analogous to Maxwell’s
equations (3.1.12). A meaningful difference is that, even in the absence of sources
JAν = 0, (3.2.16) is still a complicated non-linear equation with non-trivial solutions
for AAµ . One can show that DνDµFA

µν vanishes identically, so the current needs to be
conserved under the covariant derivative

DνJAν = 0. (3.2.17)

The Yang-Mills field strength satisfies the Bianchi identity:

DµF
A
νρ +DνF

A
ρµ +DρF

A
µν = 0, (3.2.18)

which is the analog of (3.1.10). We now proceed to prove it.
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Proof. We straightforwardly compute each of the three terms in (3.2.18) separately.
The first one is

DµF
A
νρ = ∂µ∂νA

A
ρ

1

− ∂µ∂ρAAν
2

+ gfBCA∂µA
B
ν A

C
ρ

8

+ gfBCAA
B
ν ∂µA

C
ρ

5

+ gfBCAA
B
µ ∂νA

C
ρ

10

− gfBCAABµ ∂ρACν
4

+ g2fBCAfDECA
B
µA

D
ν A

E
ρ

7

. (3.2.19)

We enumerate each term in order to distinguish clearly the cancellations. We
obtain DνF

A
ρµ and DρF

A
µν by simply permutating greek indices in a cyclic way

DνF
A
ρµ = ∂ν∂ρA

A
µ

3

− ∂ν∂µAAρ
1

+ gfBCA∂νA
B
ρ A

C
µ

10

+ gfBCAA
B
ρ ∂νA

C
µ

6

+ gfBCAA
B
ν ∂ρA

C
µ

9

− gfBCAABν ∂µACρ
5

+ g2fBCAfDECA
B
ν A

D
ρ A

E
µ

7

, (3.2.20)

DρF
A
µν = ∂ρ∂µA

A
ν

2

− ∂ρ∂νAAµ
3

+ gfBCA∂ρA
B
µA

C
ν

9

+ gfBCAA
B
µ ∂ρA

C
ν

4

+ gfBCAA
B
ρ ∂µA

C
ν

8

− gfBCAABρ ∂νACµ
6

+ g2fBCAfDECA
B
ρ A

D
µA

E
ν

7

. (3.2.21)

All the terms labeled with the same numbers cancel when summed (this becomes
clear when a relabeling of latin dummy indices is made). Note that the three terms
labeled by 7 vanish when summed (after relabeling of latin indices) because of Jacobi
identity (see Appendix C.2 ). Thus (3.2.18) is satisfied.

We dedicate the last part of this section to discuss the action functional describing
the non-Abelian gauge fields AAµ coupled to the set of Dirac fields Ψα. The gauge
invariant action is

S[AAµ , Ψ̄α,Ψα] =
∫

dDx L =
∫

dDx
[
−1

4F
AµνFA

µν − Ψ̄α(γµDµ −m)Ψα
]
. (3.2.22)

We proceed to derive the equations of motion arising from this action. The functional
derivative respect to AAµ is given by

δS

δAAν
= ∂L
∂AAν

− ∂µ
(

∂L
∂(∂µAAν )

)
= 0. (3.2.23)

If we define F̄A
µν ≡ ∂µA

A
ν − ∂νAAµ and compute each term, we obtain:

∂µ

(
∂L

∂(∂µAAν )

)
= −∂µF̄A

µν − gfBCA∂µ(ABµACν ). (3.2.24)

∂L
∂AAν

= −gfBCAAµBF̄C
µν − g2fBCAfDECA

µBADµA
E
ν − gΨ̄αγνtAΨα. (3.2.25)
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Now, if we substitute the expression (3.2.14) for FA
µν into (3.2.16), we realize that the

different terms we get are precisely those we have just found in (3.2.24) and (3.2.25).
Thus, the equation of motion is

DµFA
µν = −gJν = −gΨ̄αγνtAΨα. (3.2.26)

Again, the spinor fields Ψα act as a source for the non-Abelian gauge fields. Finally,
the functional derivative respect to Ψ̄α yields

δS

δΨ̄α

= ∂L
∂Ψ̄α

− ∂µ
(

∂L
∂(∂µΨ̄α)

)
= mΨα − gγµtAAAµΨα − γµ∂µΨα = 0. (3.2.27)

This is precisely the gauge covariant Dirac equation in (3.2.12).



Chapter 4

Introduction to SUSY

SUSY is a symmetry connecting bosons and fermions. In particular, SUSY proposes
that every particle has a partner, called superpartner. These superpartners are very
similar to standard particles. The main difference is that they have a spin that differs
by 1/2 from that of the conventional particles.

SUSY theories first appeared at the beginning of the 1970’s. In 1974, Julius
Wess and Bruno Zumino studied the first interacting quantum field theory which was
invariant under linear supersymmetric transformations [5].

SUSY is an active research field nowdays. The Minimal Supersymmetric Standard
Model (MSSM), which constitutes a supersymmetric extension of the Standard Model,
solves many current problems in particle physics, such as the naturalness problem or
the gauge coupling unification.

4.1 Why SUSY?
SUSY tells us that for each boson/fermion, one should find a fermion/boson with the
same mass and the same quantum numbers. The general rule is to prefix with "s"
the name of the superpartners of fermions and to suffix with "ino" the name of the
superpartners of bosons 1. For example, the superpartners of the electron and the
quarks are called selectron and squarks, respectively. In the same way, the superpart-
ners of the gluon, photon and Higgs particle are called gluino, photino and Higgsino,
respectively. In Figure 4.1 we show the SM particles and their superpartners.

However, these superpartners have not been observed in Nature so far. For ex-
ample, we have not observed any spin-0 particle with the same mass and the same
quantum numbers as the electron. Thus, if SUSY exists, it must be spontaneously
broken in order to allow superpartners to have bigger masses. This would explain why
they have not been detected yet in particle accelerators, such as the Large Hadron

1An exception to this rule is the case of the neutrino, whose superpartner is called neutralino.

37



4.1. WHY SUSY? 38

Figure 4.1: The particles of the Standard Model and their corresponding superpartners.
Picture taken from [23].

Collider (LHC). But this is not new, since spontaneous symmetry breaking already
happens in the SM. For example, the exact symmetry of this theory, described by
the direct group product SU(3)× SU(2)× U(1), imply that all bosons are massless,
in contradiction with the observed masses of the W± and Z bosons. One solves this
problem by spontaneously breaking the symmetry via the Higgs mechanism.

The MSSM describes spontaneously broken supersymmetry and answers many
open questions. Here we mention some motivating reasons for studying SUSY from
a phenomenological point of view.

• Naturalness problem. The mass of the Higgs boson, whose experimental
value is approximately 125 GeV, is very sensitive to quantum corrections, which
are estimated to be of the order of 1030 GeV. In order to keep the experimental
value of 125 GeV, an unnatural fine tuning procedure is required. However,
if SUSY is considered, contributions from bosonic and fermionic superpartners
cancel exactly the quantum corrections. This was one of the original motivations
for developing SUSY.

• Gauge coupling unification. There have been some attempts in constructing
a Grand Unified Theory (GUT), in which the three interactions of the Standard
Model are merged into a single one at high energies 2. This theory implies a
unified coupling constant. The problem is that the couplings in the Standard
Model do not seem to intersect (see Figure 4.2). With SUSY, the dependence
on the energy scale is modified and the couplings almost unify at the order of
1016 GeV.

2The variation of the coupling constants with respect to energy scale is determined by the β
functions, that are studied in advanced courses of QFT.
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Figure 4.2: The strong, weak and electromagnetic couplings, with and without SUSY.
Picture taken from [24].

• Dark matter. The total energy contained in the universe is divided into ap-
proximately 4 % ordinary matter, 22 % dark matter and 74 % dark energy.
Despite the abundance of dark matter in contrast to ordinary matter, we still
do not know what are the particles that make up dark matter. However, SUSY
particles are natural candidates for dark matter. In particular, the neutralino
(the lightest particle of the MSSM) exhibits many of the necessary properties
required by experimental evidences.

• Quantum gravity. A special feature of SUSY is that internal and spacetime
transformations are mixed. Because of this, when invariance is imposed under
local SUSY transformations (that is, for parameters εα(x) that depend on space
and time), one is forced to introduce fields that reproduce General Relativity.
The resulting theory is called supergravity (SUGRA). Thus, in the same way
that gauging the U(1) symmetry leads to electromagnetism, gauging SUSY leads
to gravity. The hypothetical elementary particle that mediates gravity is the
graviton, a spin-2 particle, and his superpartner is a spin-3

2 particle called the
gravitino. Besides SUGRA, the supersymmetry algebra is contained in other
theories of quantum gravity, such as superstring theory.

• Further applications. Apart from theoretical physics, SUSY concepts have
been applied in many different areas. For instance, in the field of Integrated
Optics, certain branches of SUSY can be explored in accessible laboratory set-
tings [25]. Another example is Condensed matter physics, where SUSY has
been applied to disordered quantum systems [26].

4.2 Basic concepts in SUSY field theory
A supersymmetric transformation turns bosons into fermions and fermions into bosons.
We can schematically denote particle states of bosons and fermions by |Boson〉 and
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|Fermion〉. Thus, an operator Q that generates supersymmetry transformation must
act in the following manner:

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (4.2.1)

From this, we note that the Q’s change the spin, and hence the statistics of the
fields. Spin is related to rotations, so we can infer that supersymmetry is, in some
sense, related to spacetime transformations. Let us consider a simple example. Let
us assume U to be a unitary operator in the Hilbert space which corresponds to a
360o rotation around a particular axis. Then:

UQ |Boson〉 = UQU−1U |Boson〉 = U |Fermion〉 , (4.2.2)
UQ |Fermion〉 = UQU−1U |Fermion〉 = U |Boson〉 . (4.2.3)

However, we do know that fermions and bosons behave differently under rotations:

U |Fermion〉 = − |Fermion〉 , U |Boson〉 = |Boson〉 . (4.2.4)

Then we must have:
UQU−1 = −Q (4.2.5)

That is to say, the rotated symmetry generator Q picks a minus sign, just as fermionic
states do. This is why Q is a spinor operator. For simplicity, it is assumed that Q is
a four-component Majorana spinor, although there are other equivalent treatments
which consider two-component Weyl spinors (as in [27]). Therefore, we write in gen-
eral Qi

α, where α is a spinor index and i = 1, ...,N is an index labeling different
operators Qi. Then, the number of Q’s will always be a multiple of the spinorial com-
ponents, and N determines the multiple. Theories with N ≥ 2 are called extended
supersymmetric theories. Since the Qi generate supersymmetry transformations, they
are also referred as supercharges (we have discussed charges as generators of trans-
formations in Appendix B.2). Here we consider the simplest case of N = 1. We will
also assume dimension D = 4.

Generators of transformations have to fulfill a certain algebra, so we can ask
ourselves: what is the algebra satisfied by Q? To answer this question, we have
to extend the symmetry of generators to a more general structure. So far, all the
generators we have seen obey commutation relations. For example, the generators
J[µν] and Pµ of the Poincaré group, which describes spacetime symmetries, satisfy the
relations 3

[J[µν], J[ρσ]] = ηνρJµσ − ηµρJ[νσ] − ηνσJ[µρ] + ηµσJ[νρ],[
J[ρσ], Pµ

]
= Pρησµ − Pσηρµ,

[Pµ, Pν ] = 0. (4.2.6)
3These relations are discussed in Appendix C.2.3.
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Moreover, the generators Ta of a certain Lie group which contain internal symmetries
satisfy in general

[Ta, Tb] = fabcTc, (4.2.7)

where fabc are the structure constants of the group. Generators with a commutator
structure are said to be bosonic (B). But we can also consider the possibility that
they satisfy anticommutation relations, in which case the generators are said to be
fermionic (F). The later has to be the case of the generators Q, since they are spinors.

However, there are two important theorems that limitate the type of generators
and algebras that can be realized in an interacting relativistic quantum field theory.
Concerning bosonic generators we have the Coleman-Mandula (CM) theorem
[28]. Under the assumption of a discrete spectrum of massive one-particle states with
positive energies, this theorem states that the symmetry group G of the theory can
only be of the form G = Poincaré group × Internal Symmetries. That is to say, the
associated Lie algebra of G can only be the direct sum of the Poincaré algebra (4.2.6)
and the Lie algebra of internal symmetries. Because G is a direct sum, these algebras
commute:

[Ta, Pµ] = [Ta, J[µν]] = 0. (4.2.8)

It is worth noting that the assumptions of the CM theorem are satisfied in the Stan-
dard Model, and the internal symmetries of the gauge group of the theory, which is
SU(3)× SU(2)× U(1), do not mix with spacetime symmetries.

Thus, if we were to suggest the possibility of combining spacetime and inter-
nal symmetries in a non-trivial way, that is, having for example [Ta, J[µν]] 6= 0, the
CM theorem would seem to prevent us of doing so. Nevertheless, there is a hid-
den assumption in the CM theorem: we assume Lie algebras, which restricts our
generators to satisfy commutation relations. If we allow the presence of anticommu-
tators (and thus of fermionic generators) the CM theorem can be avoided. Then the
Haag–Łopuszański–Sohnius (HLS) theorem [29] comes into play.

The HLS theorem, under the same hypothesis of the CM theorem, states that
bosonic and fermionic generators can join in a new structure called superalgebra 4.
The schematic structure of the superalgebra is

[B,B] = B, [B,F ] = F, {F, F} = B. (4.2.9)
4A superalgebra or graded Lie algebra is a particular case of a more general mathematical struc-

ture, called graded algebra.
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In particular, the so-called Super Poincaré algebra, which is a minimal supersymmet-
ric extension of the Poincaré algebra (4.2.6), exhibits this structure:{

Qα, Q
β
}

= 0,
{
Qα, Q̄

β
}

= (γµ)α
βP µ,

[J[µν], Qα] = (γµν)α
βQβ, [Pµ, Qα] = 0. (4.2.10)

Here the bar over Q denotes either a Dirac adjoint or a Majorana conjugate (which,
as shown in (2.3.3), are equivalent for a Majorana spinor) and γµν = γ[µγν]. So we
have finally shown that we have to extend the notion of a Lie algebra to a graded Lie
algebra, or superalgebra, to accomodate the fermionic generators.

The parameters of SUSY transformations are constant 4-component Majorana
spinors εα5. As the parameters do not depend on space and time, we will be talking
about global SUSY transformations 6. Note that, since εα is not a field, there is no
particle associated with it.

Using the canonical formalism (see Appendix B.2 ), one is able compute the field
variations of an arbitrary field Φ̂ once the explicit form of the supercharges is known,

δΦ̂ = −i[ε̄αQα, Φ̂(x)]. (4.2.11)

Let us explore some consequences of (4.2.10). We are going to compute the commu-
tator of succesive variations δ1, δ2 of Φ̂, with parameters ε1 and ε2, respectively. We
will use that ε̄Q = Q̄ε for Majorana spinors (see (D.2.4) in Appendix D.2.1). We get

[δ1, δ2]Φ̂(x) = δ1(δ2Φ̂)− δ2(δ1Φ̂)
= −

[
ε̄1Q,

[
Q̄ε2, Φ̂(x)

]]
+
[
ε̄2Q,

[
Q̄ε1, Φ̂(x)

]]
= −ε̄α1

[{
Qα, Q̄

β
}
, Φ̂(x)

]
ε2β = −ε̄1γ

µε2∂µΦ̂(x). (4.2.12)

In the second line we have used the so-called superJacobi identity 7 and to reach the
last line we have made use of the second relation in (4.2.10). Notice that in the right
hand side of (4.2.12) we have the expression of an infinitesimal spacetime translation,
with parameter aµ = −ε̄1γ

µε2. We have thus arrived at a remarkable result: after
performing two succesive SUSY transformations on a field, we obtain the same field

5This is because they normally appear contracted with Q so, in order to have a Lorentz scalar
quantity, the only possibility for εα is to be also Majorana spinors. In Appendix D.2.1 we show that
two spinors λ and χ can form a Lorentz scalar quantity by the contraction λ̄χ.

6We are not considering the case in which ∂µεα 6= 0, which has important implications for the
unification of gravity and internal symmetries, as we discussed.

7In a superalgebra, for any pair of fermionic operators F1 and F2 and a bosonic operator B, the
following generalised Jacobi identity holds:

[F1, [F2, B]]− [F2, [F1, B]] = [{F1, F2} , B].
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but evaluated at a different coordinate than it was initially. This elucidates that
supersymmetry is deeply related with spacetime transformations!

Another important consequence of (4.2.10) arises from the last commutator, which
is [Pµ, Qα] = 0. This implies that the states transformed by Qα, namely |Boson〉 and
|Fermion〉, have the same momentum and energy. Hence, because of E2 = ~p2 + m2,
they also need to have the same mass, so mF = mB. This stops being true when one
considers spontaneous SUSY breaking, whose formalism is not discussed here. It is
also a key result that the number of bosonic and fermionic states coincide. We now
proceed to prove this.

Proof. Let us consider a fermion number operator NF , satisfying NF |Fermion〉 =
|Fermion〉 and NF |Boson〉 = 0. This means that the operator (−1)NF has eigenvalue
+1 and −1 on bosonic and fermionic states respectively

(−)NF |Boson〉 = + |Boson〉 , (−)NF |Fermion〉 = − |Fermion〉 . (4.2.13)

Then the operator (−1)NF anticommutes with Q, (−1)NFQ = −Q(−1)NF , as we can
check: [

(−1)NFQ+Q(−1)NF
]
|Boson〉 = (−1)NF |Fermion〉+Q |Boson〉

= − |Fermion〉+ |Fermion〉 = 0. (4.2.14)

We now compute the following trace:

Tr
[
(−1)NF

{
Q, Q̄

}]
= Tr

[
(−1)NF

(
QQ̄+ Q̄Q

)]
= Tr

[
−Q(−1)NF Q̄+Q(−1)NF Q̄

]
= Tr[0] = 0. (4.2.15)

We have used the linear and cyclic properties of the trace, that is Tr(A + B) =
TrA+TrB and Tr(AB) = Tr(BA), and also that (−1)NF anticommutes with Q. But
because of (4.2.10) we also know that

{
Q, Q̄

}
= γµP

µ, which means

Tr
[
(−1)NF

{
Q, Q̄

}]
= γµTr

{
(−1)NFP µ

}
= 0. (4.2.16)

In order to avoid a zero momentum Pµ, we must have Tr(−1)NF = 0. This implies
that there is an equal number of eigenvalues +1 and −1. In other words, there must
be an equal number of bosonic and fermionic states.

Therefore the single-particle states of a global SUSY theory can be grouped in
multiplets, which contain equal number of bosons and fermions. The simplest multi-
plets are

1. The chiral multiplet, which contains a spin-1/2 fermion described by the
Majorana field χ(x), plus its spin-0 bosonic partner, the sfermion, described by
the complex scalar field Z(x).
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2. The gauge multiplet, which consists of a massless spin-1 particle, described
by a vector gauge field Aµ(x), plus its spin-1/2 fermionic partner, the gaugino,
described by a Majorana field λ(x).

We are going to discuss two theories related to these multiplets in the following
section. We end this part by simply stressing that there is an alternative approach
to supersymmetry, called the superspace formalism, that we have not covered here.

4.3 Supersymmetric Lagrangians

4.3.1 The Wess-Zumino model
In this section, we are going to consider the Wess-Zumino model, which is the simplest
example of interacting supersymmetric field theory. It is a chiral multiplet containing
a complex scalar field Z(x) and a Majorana field χ(x). For simplicity we are going
to consider only its left-chiral projection PLχ(x) = χL, since from Section 2.3.2 we
know the situation is equivalent.

In order to understand the form of the SUSY transformations of this chiral multi-
plet it is convenient to firstly discuss the dimensions of the quatities we are going to
deal with. We are using natural units, so both c and ~ become adimensional numbers
equal to 1. From this we can infer that the dimensions of time and length are the
same and equal to dimensions of inverse of energy, i.e., [T ] = [L] = [E]−1. Taking into
account that E = mc2 becomes E = m, we see that energy and mass have the same
dimensions, [E] = [M ]. Everything is thus expressed in terms of powers of energy,
[E]n, so we will express the units in terms of n. Therefore we write:

[T ] = [L] = −1, [M ] = 1. (4.3.1)

This means that the dimensions of a derivative is [∂µ] = 1. The action S =
∫
d4x L

is dimensionless, so the Lagrangian density must have dimension [L] = 4. From this
we can obtain the dimension of the fields. For example the kinetic term of a scalar
field φ is given by ∂µφ∂µφ, which means that a scalar field has dimensions [φ] = 1.
On the other hand, if we consider the mass term of a spinor field Ψ, which is mΨ̄Ψ,
we see that spinors need to have dimension [Ψ] = 3/2.

Let us now introduce the infinitesimal supersymmetric transformations of the
chiral multiplet:

δZ = ε̄PLχ, (4.3.2)
δ(PLχ) = σµ(PRε)∂µZ. (4.3.3)
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Equivalently, using thatPL = PLPL, we have

δZ = ε̄LχL, (4.3.4)
δχL = σµεR∂µZ. (4.3.5)

We are going to argue why (4.3.4) and (4.3.5) are actually the correct transformations.
The first thing to notice is that the variation of Z gives rise to χL whereas the variation
of χL involves Z. This was to be expected, because this is the whole idea of SUSY:
bosons are transformed into fermions, and viceversa. Moreover, these transformations
are linear in the fields. Non-linear transformations could have also be considered, but
this would considerably complicate the computations.

Secondly, we can check that both sides of equations (4.3.4) and (4.3.5) transform
in the same way under Lorentz transformations, as they should. For example, the
contracted quantity ε̄LχL transforms as a Lorentz scalar, just as Z. On the other
hand, χL is a left-chiral spinor, so the quantity σµεR∂µZ should also transform as a
left-chiral spinor. If we rewrite it as σµ∂µZεR and remember equations (2.2.27) we see
that this does transform as a left-chiral spinor (since the fact that the derivative acts
on the scalar field Z does not affect the behaviour under a Lorentz transformation).

Finally, let us check the dimensions. In order for equation (4.3.4) to have the cor-
rect dimensions, the infinitesimal SUSY parameter needs to have dimensions [εL] =
−1/2. This is consistent with the dimensions of (4.3.5), as [σµεR∂µZ] = −1

2 +1+1 =
3
2 = [χL].

Let us study now the action of the massless, non-interacting Wess-Zumino model:

Skin =
∫

d4x (Lscalar + Lfermion) , where

Lscalar = −∂µZ∗∂µZ, Lfermion = −χ̄/∂PLχ = −χ̄Rσ̄µ∂µχL. (4.3.6)

We want to show that this simple action, containing only kinetic terms, is invariant
under the transformations (4.3.4) and (4.3.5). After this, we will add interaction
terms. For the present task we have to obtain the conjugate of the transformations
(4.3.4) and (4.3.5). Using the results developed in Appendix D.2.4, we get:

δZ∗ = ε̄RχR, (4.3.7)
δχ̄R = −ε̄Lσµ∂µZ∗. (4.3.8)

Let us now compute the infinitesimal transformations of Lscalar and Lfermion separately.
For the scalar part, we find

δLscalar = −∂µZ∂µ(δZ)∗ − ∂µZ∗∂µ(δZ) = −ε̄R∂µχR∂µZ − ∂µZ∗ε̄L∂µχL. (4.3.9)
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For the fermion part, we obtain

δLfermion = −(δχ̄R)σ̄µ∂µχL − χ̄Rσ̄µ∂µ(δχL) = ε̄Lσ
ν∂νZ

∗σ̄µ∂µχL − χ̄Rσ̄µσν∂µ∂νZεR.
(4.3.10)

We are going to show that δLscalar precisely cancels δLfermion. We need to change
the position of the derivatives in (4.3.10). With the help of the identity (2.1.6) we see
that σ̄µσν∂µ∂ν = ∂µ∂µ. Using this and integrating by parts, we can rewrite (4.3.10)
as

δLfermion = ∂µZ∗ε̄L∂µχL + ε̄R∂µχR∂µZ+
+ ∂µ (ε̄Lσ̄µσνχL∂νZ∗ − ε̄χL∂µZ∗ + ε̄RχR∂µZ) . (4.3.11)

The two first terms cancel exactly against δLscalar, and the remaining total derivative
vanishes under the action integral after applying Gauss theorem. Therefore we have
shown the invariance of the action under SUSY transformations

δSkin =
∫

d4x (δLscalar + δLfermion) = 0. (4.3.12)

But we still have not finished showing that the action (4.3.6) is supersymmetric. We
need to check that the algebra of transformations agrees with (4.2.10). A way of
doing so is taking the field Ẑ and computing the commutator of two succesive SUSY
variations. Using (4.3.4) and (4.3.5), we find

[δ1, δ2]Ẑ = δ1(ε̄2
LχL)− δ2(ε̄1

LχL) = ε̄2
Lσ

µε1
R∂µẐ − ε̄1

Lσ
µε2

R∂µẐ

= −
[
ε̄1
Rσ̄

µε2
L + ε̄1

Lσ
µε2

R

]
∂µẐ = −ε̄1γ

µε2∂µẐ, (4.3.13)

where we have used the identity ε̄2
Lσ

µε1
R = −ε̄1

Rσ̄
µε2

L and the Weyl representation
(2.2.5) for γµ. This equation agrees with (4.2.12), as we expected. But notice that we
should obtain the same result for the field χ̂L. If one computes [δ1, δ2]χL, it is found
that it only agrees with (4.2.12) if the equations of motion arising from the action
(4.3.6) are used. It is then said that the superalgebra only closes on-shell (this means
that equations of motions are satisfied). For many reasons (see [17]), it is normally
wished that the superalgebra closes off-shell (that is, for arbitrary field configurations,
without imposing equations of motion). In order to solve this problem, one needs to
add what is called an auxiliary field F . This is a complex scalar field that carries
no dynamics and simply helps in the intermediate steps. It is added to the kinetic
action Skin in the following manner

Skin =
∫

d4x (Lscalar + Lfermion + FF ∗) . (4.3.14)

In this way, the equations of motion describing F are algebraic (that is to say, they
do not contain derivatives) so F can be eliminated at a later stage. Notice that
the dimension of F is [F ] = 2, unlike Z. As we want to take advantage of the
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supersymmetric transformation of F for making the superalgebra close off-shell, one
possibility is to take δF as a multiple of the equations of motion (which are ∂µ∂µZ = 0
and σ̄µ∂µχL = 0). If we consider the infinitesimal transformation

δF = ε̄Rσ̄
µ∂µχL, (4.3.15)

then the transformation (4.3.5) for χL needs to be modified in order to maintain the
invariance of Skin:

δχL = σµεR∂µZ + εLF. (4.3.16)

So far, we have shown a theory of free fields that is invariant under supersymmetric
transformations. But if we are looking for a realistic model, we need to introduce
interaction terms among the fields in the Lagrangian, and this is what we are going
to do now. The interaction action Sint that we seek needs to have the following general
form 8

Sint =
∫

d4x
(
W1F −

1
2W11χ̄LχL +W ∗

1F
∗ − 1

2W
∗
11χ̄RχR

)
, (4.3.17)

where W1 = W1(Z,Z∗) and W11 = W11(Z,Z∗) are arbitrary functions of the scalar
field. Notice that the presence of the conjugate of W1F − 1

2W11χ̄LχL is justified
to make the action real. We are going to find, by imposing invariance under super-
symmetry transformations, that the yet unspecified functionsW1 andW11 are related.

For this task, we will call L1 = W1F and L2 = −1
2W11χ̄LχL. Our aim is to show

that δL1 and δL2 cancel against each other (leaving at most a total derivative term).
We will not need to compute the conjugate terms; if the terms of δL1 and δL2 cancel
out, their conjugates will cancel out as well. We first compute δL1:

δL1 = δW1F +W1δF =
(
∂W1

∂Z
δZ + ∂W1

∂Z∗
δZ∗

)
F +W1δF

= ∂W1

∂Z
ε̄LχLF︸ ︷︷ ︸
I

+ ∂W1

∂Z∗
ε̄RχRF︸ ︷︷ ︸
II

+W1ε̄Rσ̄
µ∂µχL︸ ︷︷ ︸

III

. (4.3.18)

For δL2, we obtain:

δL2 = −1
2δW11χ̄LχL −W11χ̄LδχL = −1

2

(
∂W11

∂Z
δZ + ∂W11

∂Z∗
δZ∗

)
χ̄LχL −W11χ̄LδχL

= − 1
2
∂W11

∂Z
ε̄LχLχ̄LχL︸ ︷︷ ︸

IV

− 1
2
∂W11

∂Z∗
ε̄RχRχ̄LχL︸ ︷︷ ︸

V

−W11χ̄Lσ
µεR∂µZ︸ ︷︷ ︸

VI

−W11χ̄LεLF︸ ︷︷ ︸
VII

.

(4.3.19)
8The reason for having this form is that this is the most general interaction action that can lead

to a renormalizable theory when quantized [17]. The factor − 1
2 is added just for simplicity in the

calculations.
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We have labeled the terms with Roman numbers in order to make it easier to refer to
them. Let us discuss each term separately. The term IV contains ε̄LχLχ̄LχL, which
is identically zero because it contains the square of a Grassmann anticommuting
number. The term V contains ε̄RχRχ̄LχL, which is not zero, but it cannot cancel
with any other term, so we must impose

∂W11

∂Z∗
= 0. (4.3.20)

This means that the complex function W11 does not depend on Z∗, that is to say,
W11 is a holomorphic function of Z. In the same way, if we have a look at the term
II, we see there are no other terms that could possibly cancel against it, so we need
to impose again that

∂W1

∂Z∗
= 0. (4.3.21)

Thus W1 is also a holomorphic function of Z. We are still left with four terms. We
group the two terms containing derivatives to see if they cancel out

III + VI = W1ε̄Rσ̄
µ∂µχL −W11χ̄Lσ

µεR∂µZ

= W1ε̄Rσ̄
µ∂µχL +W11ε̄Rσ̄

µχL∂µZ. (4.3.22)

We proceed to integrate by parts the first term. We will obtain a total derivative
term which vanishes under the action integral. We get

III + VI = −∂µW1ε̄Rσ̄
µχL +W11ε̄Rσ̄

µχL∂µZ + ∂µ (W1ε̄Rσ̄
µχL) . (4.3.23)

The first two terms cancel out provided that we impose

W11∂µZ = ∂µW1. (4.3.24)

This is the relation between W11 and W1 we mentioned earlier. Applying the chain
rule we have ∂µW1 = ∂W1

∂Z
∂µZ, so the condition (4.3.24) can alternatively be expressed

as
∂W1

∂Z
= W11 . (4.3.25)

Regarding the remaining two terms

I + VII = ∂W1

∂Z
ε̄LχLF −W11χ̄LεLF =

(
∂W1

∂Z
−W11

)
ε̄LχLF = 0, (4.3.26)

where we have used ε̄LχL = χ̄LεL. Therefore we have finally shown that the kinetic
and the interaction actions are independently invariant,

δSkin = 0, δSint = 0, (4.3.27)
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under the supersymmetric transformations (4.3.4), (4.3.15) and (4.3.16). It is often
convenient to introduce a new function of Z related to W1 by

W1 ≡
∂W
∂Z

. (4.3.28)

W(Z) is called the superpotential. We write in detail the total supersymmetric action:

S = Skin + Sint =
∫

d4x LWZ

=
∫

d4x

(
−∂µZ∗∂µZ − χ̄Rσ̄µ∂µχL + FF ∗ + ∂W

∂Z
F − 1

2
∂2W
∂Z2 χ̄LχL + cc

)
,

(4.3.29)

where cc denote the conjugate terms. LWZ is known as the interacting Wess-Zumino
Lagrangian density. In particular, Wess and Zumino considered the following super-
potential (see [5]):

W(Z) = 1
2mZ

2 + 1
6gZ

3, (4.3.30)

The first part gives rise to the mass terms whereas the second part is the coupling.
The equation of motion for the auxiliary field is simply F = −∂W ∗/∂Z, which can
be substituted back in (4.3.29) in order to eliminate F and F ∗.

4.3.2 SUSY Yang-Mills theory
SUSY Yang-Mills theory is another interacting supersymmetric theory, in which the
inclusion of a gauge multiplet is considered. It contains the gauge vector fieds AAµ (x)
and its superpartners, the gauginos λA, which are massless Majorana spinors. The
gauginos λA transform in the adjoint representation of a non-Abelian group G (we
have discussed the adjoint representation in Appendix C.2). The action is given by

S =
∫

d4x
(
−1

4F
µνAFA

µν −
1
2 λ̄

AγµDµλ
A
)
, (4.3.31)

where Dµλ
A = ∂µλ

A + gfBCAA
B
µ λ

C . The equations of motion are

DµFA
µν = −1

2gfBCAλ̄
Bγνλ

C , (4.3.32)

γµDµλ
A = 0, (4.3.33)

while the gauge fields also satisfy the Bianchi identity:

DµF
A
νρ +DνF

A
ρµ +DρF

A
µν = 0. (4.3.34)

In this case, we follow a different approach from what we did in the Wess-Zumino
model. The idea is to make use of Noether’s theorem (see Appendix B.1.2). If an
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action is invariant under a certain continuous transformation, Noether’s theorem tells
us that there exists an associated conserved current.

The conserved current related with a supersymmetric transformation must have
a spinor nature, since its spatial integral needs to give rise to a supercharge. Thus it
is a vector-spinor object, called supercurrent J µ

α . The procedure consists of finding
a supercurrent that is conserved when equations of motion are imposed. Then the
supercharge can be computed as

Qα =
∫

d3x J 0
α (~x, t). (4.3.35)

After this, making use of (4.2.11) one can obtain the SUSY transformations that
leave the action invariant.

Let us proceed in this way for SUSY Yang-Mills theory. The supercurrent, omit-
ting spinorial indices, is given by

J µ = γνρFA
νργ

µλA . (4.3.36)

We are going to prove that it is conserved.

Proof. The supercurrent in (4.3.36) has only one free index, µ (and a spinor index
α in λAα that we do not write). Thus, because the current will be a scalar under the
Yang-Mills group, ∂µJ µ = DµJ µ. Taking advantage of this fact, we compute

∂µJ µ = DµJ µ = DµF
A
νργ

νργµλA + γνρFA
νργ

µDµλ
A

= DµF
A
νργ

νργµλA = −2DµFA
µνγ

νλA

= gfABCγ
νλAλ̄Bγνλ

C = gfABCγ
νλ[Aλ̄Bγνλ

c] = 0. (4.3.37)

Note that in the second line we have used the Bianchi identities (4.3.34) and the
relation γνρ = γνγρ − ηνρ1. The term in the last line vanishes due tobecause of the
Fierz identity (D.2.21) we have proved in Appendix D.2.3.

Therefore we have shown that the action (4.3.31) is supersymmetric.



Conclusions

The goal of this thesis was to analyse two fundamental SUSY theories: the Wess-
Zumino model and the supersymmetric Yang-Mills theory. After an extensive study
of the fundamental concepts of bosonic and fermionic fields, we have been able to
achieve this goal. We have seen that SUSY provides a natural extension to the sym-
metries of the SM that is mathematically self-consistent. We have also seen that
this new formulation offers many advantages, such as the unification of internal and
spacetime symmetries or solutions to the many open problems in particle physics.

In Chapter 1 we have studied the Klein-Gordon field for two reasons. The first
one is that it describes spin-0 bosons, which certainly plays a role in SUSY theories.
The second one is that, given its simplicity, it is a feasible scenario to investigate the
conserved quantities through the Noether formalism.

In Chapter 2 we have studied the basic concepts concerning spinors, in order to
properly describe spin-1

2 fermions. We have showed the deep relation between spin
and Lorentz symmetry, and we have understood the important concept of the spinorial
representations of the Lorentz group. We have studied three types of spinors: Dirac,
Weyl and Majorana spinors; and we have seen that the existence of the last two is
restricted for certain dimensions. The concept of Majorana spinor has been proved
to be essential for developing SUSY.

In Chapter 3 we have investigated gauge fields, which are needed to describe spin-
1 bosons. We have seen that these theories describe interactions between particles,
that arise from imposing invariance under local transformations. We have studied the
Maxwell field, based on an Abelian U(1) gauge symmetry, and later the Yang-Mills
fields, which are a generalization of electromagnetism that considers non-Abelian
gauge symmetries.

In Chapter 4 we have finally studied SUSY, which was the main objective of this
thesis. We have seen that SUSY offers the only loophole to the Coleman-Mandula
theorem, which forbids spacetime and internal symmetries to be blended. We have
studied the Wess-Zumino model and SUSY Yang-Mills theory, which are able to
describe renormalizable interactions. We have also enumerated several motivating
reasons for studying SUSY.
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Throughout the different appendices, we have developed all the necessary tools for
this work. For instance, we have seen the main aspects of Lagrangian and canonical
formalism, we have learned the basics of Lie groups (with emphasis in the Lorentz
group) and we have investigated some basic notions of Clifford algebras and their
application to spinors in arbitrary dimension.

The methodology has consisted of analytical calculations by hand, and the use of
the Mathematica software when necessary. In order to acquire a solid understanding
of the subject, around fifty exercises proposed in the first 5 chapters of [30] have been
done by the author. For finding bibliographical sources we have made use of the open
access repository arXiv.

Let us comment now some prospects of this work. It is premature to conclude
wether the Large Hadron Collider will detect SUSY particles or not, since it has
recently started to run at a doubled energy (14 TeV in total) and there are still
hundreds of data to collect. The precise values of the superpartners masses are not
known, but they may sit at a few TeV, which is perfectly accessible by the LHC
[31]. What is clear is that finding SUSY would mean a revolution in the current
understanding of Nature. This would not only deserve a Nobel price but it would
also mean a strong support for unified theories such as supergravity or superstrings.

The fact is that even not finding SUSY would have strong implications: the MSSM
is the only model that currently solves the three problems of naturalness, gauge cou-
pling unification and dark matter all at once, so ruling it out will force to consider
other better alternatives. It is also worth saying that SUSY has worked until now
as an ideal toy model for theorists and has helped to develop new proposals. For
example, N = 4 SUSY Yang-Mills has lead to the most succesful realization of the
holographic principle. In any case, it may take long until we certainly know if SUSY
becomes a physical fact, in the same way it took a century to discover the gravita-
tional waves proposed by Albert Einstein.

We would like to finish saying that this work has had a positive impact on the
educational background of the author, since he has learned some tools that are used
by theoretical physicists in a daily basis. For instance, he has become comfortable
with group theory and he has learned tensorial calculus with skill. Ultimately, he
has understood how to work in arbitrary dimension and the advantages of it. We
interpret this work as an introductory project on supersymmetry which will open the
door to futures researches in theoretical physics.



Appendix A

Conventions

In this appendix we establish the conventions that have been followed doing this
document.

• Natural units for which ~ = ε0 = c = 1 are used throughout the work.

• We consider the D-dimensional Minkowski metric according to the "mostly-
plus" signature ηµν = diag(−,+, ...,+). It has D − 1 spatial dimensions and 1
time dimension.

• We denote Cartesian coordinates by xµ, µ = 0, 1, ..., D−1 with time coordinate
x0 = t. We use relativistic notation, so spacetime coordinates are labeled with
greek indices. We often write fields as φ(x), which is a shorthand notation for
φ(x0, x1, ..., xD−1).

• Einstein summation convention is assumed, so summations for dummy indices
are removed. For example, we write xν = ηνµxµ.

• We denote Lie algebras in the same way as the corresponding group G, but
using gothic letters, g.

• Matrices are multiplied with dummy indices in up-down position. For exam-
ple, (AB)µν = AµρB

ρ
ν . Identity matrix is always written as 1, no matter its

dimension.

• We use square brackets to emphasize the antisymmetry of two indices. For ex-
ample γ[µν] = 1

2 (γµγν − γνγµ). Round brackets () denote symmetry of indices.

• We use arrows for the spatial components of vectors, so we write xµ = (t, ~x).
Scalar product are written as A · B = ηαβAαBβ (α = 0, ..., D − 1). Arrows are
only used for the scalar product of the spatial parts, for example ~A · ~B = AiBi

( i = 1, ..., D − 1).
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Appendix B

The alphabet of Classical Field
Theory

In this appendix we develop some basic tools of classical field theory. The results
exposed here are valid for any spacetime dimension D.

In the context of physics, a field φ (or a set of fields {φi}i=1,...,N ) is a function
(or a set of functions) exhibiting a dependence on space and time. Depending on
the Lorentz representation under which the fields transform, they can be classified as
scalars, spinors, vectors or tensors. A field can also be regarded as classical or
quantum. The former is described by complex or real numbers, whereas the later is
represented by an operator in Hilbert space. Here we address classical fields.

The fields are assumed to take values over a D-dimensional flat spacetime, de-
scribed by the metric tensor ηµν . The metric tensor ηµν is used to lower vector
indices whereas the inverse metric ηµν raises them. Upper and lower indices denote
contravariant and covariant tensors, respectively.

B.1 Lagrangian formalism
From Lagrangian mechanics, we know that all the dynamical information about the
fields φi is contained in the Lagrangian density L, which generally depends on the
field and its first derivatives

L(x, φi, ∂µφi), (B.1.1)

being ∂µφi = ∂φi

∂xµ
. The action S is a functional, a real number that depends on the

configurations of the fields. It is given by

S[φi] =
∫

Ω
dDx L(x, φi, ∂µφi), (B.1.2)

where Ω is a spacetime region and dDx = dx0dx1 · · · dxD−1 is the volume element in
Cartesian coordinates. The frontier of Ω is denoted by ∂Ω. An infinitesimal variation

II
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of the fields, which can be expressed in terms of a parameter ε by δφi = ε∆φi, induces
an infinitesimal variation on the action, δS. This can be defined as

δS =
∫

Ω
dDx δS

δφi
∆φi = lim

ε→0

S [φi (x) + ε∆φi]− S [φi (x)]
ε

. (B.1.3)

Here δS/δφi is the so-called functional derivative of the action (following the approach
given in [32])

B.1.1 Euler-Lagrange equations
The principle of least action is a variational principle used for obtaining the equa-
tions of motion of a system. For field theory, it states that the action S must be
stationary, δS = 0, under an arbitrary variation δφi of the fields. We are going to use
this in order to derive the Euler-Lagrange equations

δS = lim
ε→0

1
ε

∫
Ω
dDx

{
L
(
x, φi (x) + ε∆φi, ∂µφi (x) + ε∂µ∆φi

)
− L

(
x, φi (x) , ∂µφi (x)

)}
=
∫

Ω
dDx lim

ε→0

1
ε

{
ε
∂L
∂φi

∆φi + ε
∂L

∂ (∂µφi)
∂µ∆φi +O(ε2)

}

=
∫

Ω
dDx

{
∂L
∂φi

∆φi + ∂µ

(
∂L

∂ (∂µφi)
∆φi

)
− ∂µ

(
∂L

∂ (∂µφi)

)
∆φi

}

=
∫

Ω
dDx

{
∂L
∂φi
− ∂µ

(
∂L

∂ (∂µφi)

)}
∆φi +

∫
∂Ω

dD−1x
∂L

∂ (∂µφi)
∆φi = 0. (B.1.4)

In the third line, integration by parts has been used, and in the last line, the term with
the total derivative has become a boundary term after applying Gauss Theorem. The
principle of least action requires that the fields are fixed at the boundary, so ∆φi = 0
in ∂Ω. Finally, taking into account that ∆φi are independent and that the region Ω
is arbitrary, we arrive at

δS

δφi
= ∂L
∂φi
− ∂µ

(
∂L

∂ (∂µφi)

)
= 0 . (B.1.5)

These are the so-called Euler-Lagrange equations, which govern the dynamical
evolution of the system.

B.1.2 Noether’s Theorem
We say that, for fields φi(x) satisfying the equations of motion (B.1.5), a transforma-
tion φi(x) → φ′i(x) is a symmetry if φ′i(x) also satisfies the equations of motion.
This transformation can correspond to a spacetime symmetry, which affects the co-
ordinates x, such as translations φ′i(x) = φi(x + a), or an internal symmetry, like
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rotations in the internal space of the fields φ′i(x) = Ri
jφ

j(x). For most of the sys-
tems we will study, symmetry transformations simply leave the action invariant

S[φ′i] = S[φi]. (B.1.6)

Noether’s theorem relates continuous symmetries with conservation laws and it is one
of the major results in theoretical physics [33]. We proceed to derive it. Firstly, we
extend the previous definition of infinitesimal variation of the fields to the case where
there are many independent transformation parameters, labeled by A = 1, ..., p:

δφi(x) ≡ εA∆Aφ
i(x). (B.1.7)

This formula includes the two different cases of spacetime and internal symmetries
1. We are going to impose that (B.1.7) is a symmetry of the theory, i.e. that it
satisfies (B.1.6). Then, the transformed and the original Lagrangian densities differ
by a total derivative δL = εA∂µK

µ
A. This leads to a boundary term (after using

Gauss Theorem), which can be set to zero because of the assumption that the fields
φi vanish at large distances. The variation of L is

δL =L(x, φi + εA∆Aφ
i, ∂µφ

i + εA∂µ(∆Aφ
i))− L(x, φi, ∂µφi)

=εA
[
∂L
∂φi

∆Aφ
i + ∂L

∂(∂µφi)
∂µ(∆Aφ

i)
]

= εA∂µK
µ
A. (B.1.8)

Now, by using the Euler-Lagrange equations (B.1.5):

��
��
�∂L

∂φi
∆Aφ

i + ∂µ

(
∂L

∂(∂µφi)
∆Aφ

i

)
−
���

���
���

��

∂µ

(
∂L

∂(∂µφi)

)
∆Aφ

i = ∂µK
µ
A. (B.1.9)

Therefore we can read the following continuity equation:

∂µJ
µ
A = 0, (B.1.10)

where the conserved quantities JµA are called Noether currents, given by

JµA = Kµ
A −

∂L
∂(∂µφi)

∆Aφ
i. (B.1.11)

For each conserved current one can define a Noether charge,

QA =
∫

dD−1~x J0
A(~x, t). (B.1.12)

which is a constant of motion (that is, independent of time), provided that fields are
damped at large distances

∂0QA =
∫

dD−1~x ∂0J
0
A = −

∫
dD−1~x ∂iJ

i
A → 0. (B.1.13)

1It is also said that a spacetime symmetry is non-local, because it depends on the point x, whereas
an internal symmetry is local.
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We have made use of the continuity equation, ∂µJµA = ∂0J
0
A + ∂iJ

i
A = 0 and of Gauss

Theorem for converting the (D − 1)-dimensional divergence ∂iJ iA into a boundary
integral. Noether currents are not unique. One can add terms like:

J ′µA = JµA + ∆JµA = JµA + ∂ρS
ρµ
A, (B.1.14)

where SρµA is any arbitrary antysimmetric function, SρµA = −SµρA, since:

∂µJ
′µ
A = ∂µJ

µ
A︸ ︷︷ ︸

=0

+∂µ (∂ρSρµA) = ∂µ∂ρS
ρµ
A = 0. (B.1.15)

The term ∂µ∂ρS
ρµ
A is zero because it is a contraction of a symmetric part ∂µ∂ρ with

an antisymmetric one SρµA.

B.2 Canonical formalism
The canonical formalism is an alternative formulation in classical field theory, which
describes systems by a set of canonical coordinates and momenta, forming the so-
called phase space. One of the advantages that it offers is that it can be very easily
generalized to the quantum theory. Here we just sketch some results of interest. At a
fixed time t = 0, the canonical fields φi and the canonical momenta πi(~x, 0) are given
by

φi = φi(~x, 0), πi = ∂L
∂(∂tφi(~x, 0)) . (B.2.1)

The Hamiltonian H of the system is obtained by integrating the Hamiltonian
density H, which is a Legendre transformation of L

H =
∫

dD−1~x H(x, φi, πi) =
∫

dD−1~x
(
πi∂tφ

i − L
)
. (B.2.2)

From H one can obtain the equations of motion using the so-called Hamilton equa-
tions. However, for us it is more important the fact that H is a conserved quantity
emerging from time translation symmetry.

We consider special cases of symmetries in which the time component of the vector
Kµ
A in (B.1.11)is zero. Therefore, the formula (B.1.12) for the Noether charges reduces

to
QA = −

∫
dD−1~x

∂L
∂(∂0φi)

∆Aφ
i = −

∫
dD−1~x πi∆Aφ

i. (B.2.3)

The Poisson bracket of any two observables A(φ, π) and B(φ, π) at two different points
x and y is defined

{A(~x), B(~y)}P ≡
∫

dD−1~s

(
δA(~x)
δφi(~s)

δB(~y)
δπi(~s)

− δA(~x)
δπi(~s)

δB(~y)
δφi(~s)

)
, (B.2.4)
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where a functional derivative is used δA
δφ

= ∂A
∂φ
− ∂µ

(
∂A

∂(∂µφ)

)
. One of the basic basic

Poisson brackets is{
φi(~x), πj(~y)

}
P

=
∫

dD−1~s

δφi(~x)
δφk(~s)

δπj(~y)
δπk(~s)

−
��

��
�
��
�

δφi(~x)
δπk(~s)

δπj(~y)
δφk(~s)


=
∫

dD−1~s
∂φi

∂φk︸ ︷︷ ︸
δi
k

δ(~x− ~s) ∂πj
∂πk︸ ︷︷ ︸
δj
k

δ(~y − ~s) = δijδ
D−1(~x− ~y). (B.2.5)

An important result is that the infinitesimal symmetry transformation of a field
∆Aφ

i is obtained by its Poisson bracket with the Noether charge QA:

∆Aφ
i(x) =

{
QA, φ

i(x)
}
P
. (B.2.6)

Proof.{
QA, φ

i(~x)
}
P

= −
∫

dD−1~y
{
πj(~y)∆φj(~y), φi(~x)

}
P

= −
∫

dD−1~y
({
πj(~y), φi(~x)

}
P

∆Aφ
j(~y) +

((((
(((

((((
(({

∆Aφ
j(~y), φi(~x)

}
P
πj(~y)

)
=
∫

dD−1~y δijδ
D−1(~x− ~y)∆Aφ

j(~y) = ∆Aφ
i(~x). (B.2.7)

The result (B.2.6) is also valid for time translations, in which case takes the form

∆Aφ
i(x) = ∂tφ

i(x) =
{
H,φi(x)

}
P
, (B.2.8)

but the computations needed to show this are a little bit more tedious (for the details,
see [34]). It is worth mentioning that the Poisson brackets of the Noether charges
obey the Lie algebra of the symmetry group

{Qa, Qb}P = fabcQc. (B.2.9)

Here fabc denote the structure constants of the group. Thus, since Noether charges
generate infinitesimal transformations and contain the information about the fabc,
they provide a representation of the generators of the symmetry group.

These results can be generalized without many difficulties to the quantum case. In
the quantum theory, for each classical observable A there is a corresponding operator
in Hilbert space (distinguished with a hat, Â), and the Poisson bracket becomes a
commutator. For instance

{A,B}P = C → [Â, B̂] = iĈ, (B.2.10)

using that ~ = 1. With this recipe, called canonical quantization, it is possible to
obtain the quantum versions of the classical fields.



Appendix C

Basic notions of group theory

Group theory is a fundamental tool in theoretical physics, as it is deeply related to
the notion of symmetry. A quotation from Sir Arthur Stanley Eddington perfectly
summarises the importance of Group theory [35]:

"We need a super-mathematics in which the operations are as unknown
as the quantities they operate on, and a super-mathematician who does
not know what he is doing when he performs these operations. Such a
super-mathematics is the Theory of Groups".

In this appendix we review the most important concepts of group theory [36],
making emphasis in the theory of Lie groups, and specially, in the Lorentz group.

C.1 Basic definitions
We firstly give some basic definitions

Definition C.1.1. A group, G, is a set with a rule for assigning to every (ordered)
pair of elements 1, a third element, satisfying:

1. If f, g ∈ G then h = fg ∈ G.

2. For f, g, h ∈ G, f(gh) = (fg)h.

3. There is an identity element, e, such that for all f ∈ G, ef = fe = f .

4. Every element f ∈ G has an inverse, f−1, such that ff−1 = e.

A group is finite if it has a finite number of elements. Otherwise it is infinite.

Definition C.1.2. The order of a group G is the number of elements of G.
1This rule is sometimes called multiplication law of the group.

VII
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Definition C.1.3. A group H whose elements are all elements of a group G is called
a subgroup of G.

Definition C.1.4. An Abelian group is one in which the multiplication law is
commutative

g1g2 = g2g1, ∀g1, g2 ∈ G.

Definition C.1.5. A Representation of G is a mapping, D, of the elements of G
onto a set of linear operators with the following properties:

• D(e) = 1, where 1 is the identity operator in the space on which the linear
operators act.

• The group multiplication law is mapped onto the natural multiplication in the
linear space on which the linear operators act, i.e. D(g1)D(g2) = D(g1g2).

The dimension of the representation is the dimension of the space on which it
acts.

Definition C.1.6. A representation is reducible if it has an invariant subspace,
which means that the action of any D(g) on any vector in the subspace is still in the
subspace. In terms of a projection operator P onto the subspace this condition can be
written as

PD(g)P = D(g)P, ∀g ∈ G.

A representation is irreducible if it is not reducible.

C.2 Lie groups
A continuous group is a group G whose elements g(α) depend smoothly on a set of
continuous parameters α = {αa}a=1,...,N . If the continuous group is in addition a
differentiable manifold, it is called a Lie group.

Definition C.2.1. Given a representation D(α) of a Lie group that depends on a
set of N real parameters, we define their generators Xa as

Xa ≡ −
∂

∂αa
D(α)

∣∣∣∣∣
α=0

. (C.2.1)

We normally refer to the dimension of a Lie group, dim G, as the number N of
generators. This should not be confused with the dimension of a certain representation
of the group, labeled by R, which we call dim R.

Group generators are very useful because they keep all the information of the
group but, unlike the group elements, they form a vector space, as they can be added
together and multiplied by real numbers. They also satisfy some important relations,
as it is shown in the following theorem.
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Theorem 1. Generators of a group form a closed commutator algebra, which means

[Xa, Xb] = fabcXc, (C.2.2)

where fabc are constants called the structure constants of the group.

Structure constants are the same for all different representations, as they simply
encode the multiplication law of the group. The fact that, in general, generators
do not commute, arises from the non-commutativity of the multiplication law. For
unitary representations, the structure constants fabc have two important properties

• They are real.

• They are completely antisymmetric.

A proof of these properties can be found in [36]. Note that for an Abelian Lie
group (such as U(1), the group of phase transformations), the commutativity property
implies that all the structure constants of the group are zero.

The superposition of generators, αaXa, which are closed under commutation, is
the general element of what we call the Lie algebra.

Definition C.2.2. A Lie algebra is a vector space g equipped with an alternating
bilinear map

g× g → g;
(x, y) 7→ [x, y],

satisfying the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (C.2.3)

We stated before that generators keep all the information of the group, without
specifyng in which manner they are related. The following theorem provides this
relation.

Theorem 2. The relation between an element of G in a representation D(α) and its
corresponding element αaXa of the Lie algebra g is given by exponentiation

D(α) = e−α
aXa . (C.2.4)

This means that, for unitary representations, in which D−1 = eα
aXa = e−α

aX†a =
D†, the generators are anti-Hermitian, X†a = −Xa. 2

2It is common to find in the literature a different convention in the definition (C.2.1) of group
generators, which includes a factor i. With this, D(α) = eiα

aXa and thus generators are Hermitian
for unitary representations, X†

a = Xa, instead of anti-Hermitian.
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One important representation is the adjoint representation, of dimension dimR =
dim G, in which the generators are related to the structure constants by (Xa)de ≡ faed
3. Note that d and e denote row and column indices of matrix Xa, respectively. We
now prove that this is indeed a representation, i.e. that they satisfy (C.2.2)

Proof. The Jacobi relation (C.2.3) for the generators can be given in terms of the
structure constants if one uses (C.2.2):

0 = [Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]]
= fbcdfadeXe + fcadfbdeXe + fabdfcdeXe → fbcdfade + fcadfbde + fabdfcde = 0.

(C.2.5)

We can now express (C.2.5) in terms of matrices Xa of the adjoint representation,
taking into account the property fcad = −facd

(Xa)ed(Xb)dc − (Xb)ed(Xa)dc = −fcdefabd = fabd(Xd)ec. (C.2.6)

This is the e row and the c column matrix element of

XaXb −XbXa = [Xa, Xb] = fabdXd. (C.2.7)

In this representation, we can always pick a basis of the Lie algebra in which the
generators are trace orthogonal:

Tr(XaXb) = −cδab, (C.2.8)

for a positive constant c.

C.2.1 Special Unitary group SU(N)
SU(N) groups are very important for the Standard Model of particle physics. In
particular, SU(2) and SU(3) are the symmetry groups of the ElectroWeak theory
and Quantum Chromodynamics (QCD), respectively.

SU(N) is the special case of a more general group called the Unitary group U(N)
(we follow [37]). This is the group of N ×N complex matrices A that are unitary

AA† = 1, (C.2.9)

where A† = (AT )∗ is the Hermitean conjugate of A. Because of (C.2.9) we see that

det(AA†) = (detA)(detAT )∗ = (detA)(detA)∗ = |detA|2 = 1. (C.2.10)
3In the literature it is also typical to find an extra factor −i in the definition of adjoint represen-

tation.
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This means that detA has unit modulus, and we can further impose that detA = 1.
The group of N ×N complex unitary matrices with the restriction detA = 1 is what
we call SU(N), which is a subgroup of U(N). The generators of this group are N2−1
traceless matrices. The fact that the dimension of the group is dim SU(N) = N2− 1
can be proven as follows:

Proof. We need to find the number of independent generators (i.e., the dimension of
the group). We can count how many independent real matrix entries the generators
have. We first proceed in this manner for U(1).

As we have previously discussed, the unitarity of the group means that the gen-
erators are anti-Hermitian, X† = −X. The ith row and the jth column of this matrix
condition is expressed as X∗ji = Xij. Thus, for the entries on the diagonal

Xii = −X∗ii, (C.2.11)

meaning that the diagonal entry is purely imaginary. On the other hand, the entries
above the diagonal are the complex conjugates of the corresponding entries below the
diagonal. Taking into account those two restrictions, the number of independent real
entries is

dim U(N) = 2N
2 + 2N(N − 1)

2 = N2. (C.2.12)

For the case of SU(N) one needs to impose the extra real condition detA = 1,
which means

dim SU(N) = N2 − 1. (C.2.13)

SU(2)
The SU(2) group has dimension dim SU(2) = 22 − 1 = 3. Therefore, it possesses

3 parameters and 3 generators. The generators are given by {Xk = iσk}k=1,2,3, where
σk are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (C.2.14)

Remembering the useful relation that the Pauli matrices satisfy

σiσj = iεijk + δij1, (C.2.15)

it is immediate to show that [Xi, Xj] = −2εijkXk, so that the structure constants
of SU(2) are

fijk = −2εijk. (C.2.16)

Although we are not going to discuss SU(3) group, it is worth saying that the 8
generators of these groups are proportional to the Gell-Mann matrices, which serve
to study the internal rotations of the gluon fields.
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C.2.2 Orthogonal group O(N)
O(N) is the group of N ×N real matrices R that are orthogonal

RRT = 1. (C.2.17)

Orthogonal matrices represent isometries, that is to say, transformations that preserve
the distances 4 Examples of isometries are rotations, reflexions, etc. The determinant
of those matrices satisfies detR = ±1, since

det(RRT ) = (detR)(detRT ) = (detR)2 = 1. (C.2.18)

We can restrict to the subset of matrices for which detA = +1. They represent
proper rotations. The Special Orthogonal group, SO(N), is the group of N ×N real
orthogonal matrices R with unit determinant, and it is a subgroup of O(N). The
dimension of this group is dim SO(N) = N(N − 1)/2.

Proof. The dimension of SO(N) can be computed by counting the number of inde-
pendent equations that (C.2.17) imposes on a general real N ×N matrix (note that
detR = +1 does not impose any extra real condition). As RRT is symmetric, then
(C.2.17) contains N(N + 1)/2 independent equations. This means that

dim SO(N) = N2 − N(N + 1)
2 = N(N − 1)

2 . (C.2.19)

Now, in order to introduce the Lie algebra of the SO(N) group, we expand the
ith row and the jth column of the matrix R up to first order in parameter ε:

Ri
j =

(
e−εr

)i
j = δij − εrij +O(ε2), (C.2.20)

where rij is the matrix generator. In order for (C.2.17) to be fulfilled, or equivalently,
Ri

kR
i
l = δkl, the generator needs to be antisymmetric rij = −rji :[

δik − εrik
] [
δil − εril

]
= δikδ

i
l − ε

[
rilδ

i
k + δilr

i
k

]
+O(ε2)

' δlk − ε
[
rkl + rlk

]
= δlk.

The basis for the Lie algebra of SO(N) is formed by the N(N − 1)/2 generators
r. A useful basis for the Lie algebra is given by

r i
[̂iĵ] j = δiîδĵj − δ

i
ĵδîj = −r i

[ĵî] j. (C.2.21)

4This can be seen from the fact that the scalar product is preserved. Taking (C.2.17) into account,
note that a transformed vector u′ = Au has the same norm as u, since |u′|2 = uTRTRu = |u|2.
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Indices î, ĵ label the generators, whereas indices i, j label the matrix elements.
Both pairs of indices run over N(N − 1)/2 independent values 5.

The conmutators of these defined generators are:

[r[̂iĵ], r[k̂l̂]] = [δi
î
δĵj − δiĵδîj][δ

j

k̂
δl̂k − δ

j

l̂
δk̂k]− [δi

k̂
δl̂j − δ

i
l̂
δk̂j][δ

j

î
δĵk − δ

j

ĵ
δîk]

= δi
î
δĵjδ

j

k̂︸ ︷︷ ︸
δĵk̂

δl̂k − δ
i
î
δĵjδ

j

l̂︸ ︷︷ ︸
δĵl̂

δk̂k − δ
i
ĵ
δîjδ

j

k̂︸ ︷︷ ︸
δîk̂

δl̂k + δi
ĵ
δîjδ

j

l̂︸ ︷︷ ︸
δîl̂

δk̂k

−δi
k̂
δl̂jδ

j

î︸ ︷︷ ︸
δl̂̂i

δĵk + δi
k̂
δl̂jδ

j

ĵ︸ ︷︷ ︸
δl̂ĵ

δîk + δi
l̂
δk̂jδ

j

î︸ ︷︷ ︸
δk̂î

δĵk − δil̂ δk̂jδ
j

ĵ︸ ︷︷ ︸
δk̂ĵ

δîk

= δĵk̂r[̂il̂] − δîk̂r[ĵ l̂] − δĵ l̂r[̂ik̂] − δîl̂r[ĵk̂] . (C.2.22)

This equation specifies the structure constants of the Lie algebra.

SO(3)
We are going to check that forN = 3, expression (C.2.21) reduces to the generators

of the well-known rotation matrices in 3-dimensional space. For this case we have
3(3 − 1)/2 = 3 generators, that we label with the 3 independent antisymmetric
combinations

{
[̂iĵ] = 21, 32, 13

}
. Using (C.2.21) we obtain the explicit form of the

generators

r21 ≡ XA =

 0 1 0
−1 0 0
0 0 0

 , r32 ≡ XB =

0 0 0
0 0 1
0 −1 0

 , r13 ≡ XC =

0 0 −1
0 0 0
1 0 0

 .
(C.2.23)

We are going to compute e−θXA for one parameter θ among the three, to find that
this leads to a rotation around the axis corresponding to the 3-direction of space 6.

RA =e−θXA = 1− θXA + θ2X2
A

2 − θ3X3
A

6 + ... =

 1− θ2/2 + ... −θ + θ3/6 + ... 0
θ − θ3/6 + ... 1− θ2/2 + ... 0

0 0 1



=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (C.2.24)

This is indeed the matrix of a rotation about the 3-direction (or z direction) of
space.

5This is the number of independent component of an antisymmetric N ×N matrix.
6Here we have used the definition of the exponential of a matrix, eA =

∑∞
n=0

An

n! , being A
0 ≡ 1

the identity.
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O(p, q)
The defining condition (C.2.17) for the O(N) group can also be written as

Ri
kδijR

j
l = δkl. (C.2.25)

This equation expresses the fact that the transformations of the O(N) group leaves
the Euclidean metric gij = δij invariant. But we can think of a more general group
that leaves the following diagonal metric

gij = diag(−, ...,−︸ ︷︷ ︸
q times

,+, ...,+︸ ︷︷ ︸
p times

) (C.2.26)

invariant. We normally say that a metric of this kind has (p, q) signature. The pseudo-
orthogonal group, O(p, q), is the group of N ×N real matrices, with N = p+ q, that
leaves a metric gij of signature (p, q) invariant

Ri
kgijR

j
l = gkl. (C.2.27)

The dimension of this group is dim O(p, q) = N(N − 1)/2. This group is specially
important for the study of the Lorentz group, as we will see soon.

C.2.3 The Lorentz and Poincaré groups
The Lorentz group deals with the space-time symmetry of all known fundamental
laws of Nature. Here we review the most important concepts.

The Lorentz group is the set of homogeneous linear transformations of coordi-
nates in D-dimensional Minkowski spacetime that preserve the norm of any vector
[30]. We write the transformations as

xµ = Λµ
νx
′ν , x′µ = (Λ−1)µνxν . (C.2.28)

By requiring that |x|2 = xµηµνx
ν = x′µηµνx

′ν = |x′|2, we arrive at the condition
x′σΛµ

σηµνΛν
ρx
′ρ = x′µηµνx

′ν , which in turn implies:

Λµ
σηµνΛν

ρ = ησρ . (C.2.29)

This is the property that characterizes Λ matrices. Note that (C.2.29) is the
defining condition of the pseudo-orthogonal group O(D − 1, 1). We proceed to see
more consequences of this equation. In matrix form, (C.2.29) is η = ΛTηΛ. Taking
determinants and using detΛT = detΛ we have:

detη = detΛ detη detΛ → detΛ = ±1. (C.2.30)

On the other hand, taking the 00 entry of (C.2.29) we realize that:

− 1 = η00 = Λµ
0ηµνΛν

0 =
(
Λi

0
)2
−
(
Λ0

0
)2
→

∣∣∣Λ0
0

∣∣∣ ≥ 1. (C.2.31)
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Proper
detΛ = 1

Improper
detΛ = −1

Ortochronous
Λ0

0 ≥ 1
Proper rotations

Boosts Spatial inversion P

Non-ortochronous
Λ0

0 ≤ −1 Time inversion T Spatial and time
inversion PT

Table C.1: Examples of transformations for each of the four categories of the Lorentz group.

We can classify the transformations of the Lorentz group according to conditions
(C.2.30) and (C.2.31) [38]. Lorentz transformations with detΛ = 1 (−1) are said
to be proper (improper). The case Λ0

0 ≥ 1 (≤ −1) corresponds to orthochronous
(non-orthochronous) Lorentz transformations. Examples of these transformations are
shown in Table C.2.3

The property Λ0
0 ≥ 1 excludes the possibility of time inversions T = diag(−1, 1, 1, 1),

whereas the property detΛ = 1 excludes the possibility of spatial inversions P =
diag(1,−1,−1,−1). Lorentz transformations that satisfy either detΛ = −1 or Λ0

0 ≤
−1 or both simultaneously are said to be the disconnected components of the Lorentz
group.

The set of Lorentz transformations characterized by the restrictions detΛ = 1
and Λ0

0 ≥ 1, (i.e. transformations that preserve orientation and direction of time) is
denoted by SO+(D− 1, 1) and it is a subgroup of O(D− 1, 1). This is the connected
part of the Lorentz group. 7 We are specially interested in SO+(D − 1, 1), not only
because it includes proper rotations and boosts (these are, changes to inertial refer-
ence frames), but also because it is possible to obtain its Lie algebra. For this reason,
unless it is specified, when we speak about the Lorentz group, we will always refer to
SO+(D − 1, 1).

There are some useful relations that can be deduced from (C.2.28) and (C.2.29):

Λµν = (Λ−1)νµ, Λµ
ν = (Λ−1) µ

ν , (C.2.32)
x′µ = (Λ−1) ν

µ xν = xνΛν
µ. (C.2.33)

Proof. We take equation (C.2.29) and lower the index of the left Λ matrix using the
metric, yielding ΛνρΛν

σ = ηρσ. Then we raise the ρ index at each side and we get:

Λ ρ
ν Λν

σ = ηρσ = ηρνηνσ = δρσ. (C.2.34)

By comparing this expression with (Λ−1)ρνΛν
σ = δρσ we infer (Λ−1)ρν = Λ ρ

ν or,
equivalently (Λ−1) ρ

ν = Λρ
ν . Now we take (C.2.29) and lower the index of the right Λ

7The connected part of a group is the one that can be given as the exponentiation of an algebra.
If this is not possible, we talk about disconnected components of the group.
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matrix with ηµν , to obtain Λµ
ρΛµσ = ηρσ. After raising the ρ index at each side (by

contracting with the metric), we arrive at:

ΛµρΛµσ = ηρσ = δρσ. (C.2.35)

Then, by comparing this expression with Λµρ(Λ−1)σµ = δρσ we infer that (Λ−1)σµ =
Λµσ. Finally, we proceed as:

x′µ = ηµνx
′ν = ηµν(Λ−1)νρxρ = ηµν(Λ−1)νρηρτxτ = (Λ−1) τ

µ xτ =︸︷︷︸
τ→ν

(Λ−1) ν
µ xν .

So as to introduce the Lie algebra of the Lorentz group, we expand the
transformation Λ up to first order in a, yet unspecified, parameter λ:

Λµ
ν = (eλm)µν = δµν + λmµ

ν +O(λ2). (C.2.36)

Following the same reasoning we did for the generators of the SO(N) group, (C.2.36)
satisfies (C.2.29) to first order in λ as long as the generator is antisymmetric in its
two lower indices mµν = −mνµ. The basis of the Lie algebra is thus formed by the
D(D − 1)/2 independent generators mµν . A useful representation is

m µ
[ρσ] ν ≡ δµρηνσ − δµσηρν = −m µ

[σρ] ν . (C.2.37)

Again, the indices in brackets [ρσ] label the generators whereas the indices µ and ν
label the matrix elements. Both pairs of indices run over D(D − 1)/2 values. We
need to label D(D − 1)/2 real parameters λ of the algebra, and a way of doing so is
using an antisymmetric pair of indices so that λρσ = −λσρ. With all of this in mind,
an ortochronous proper Lorentz transformation can be written as

Λ = e
1
2λ
ρσm[ρσ] , (C.2.38)

so that

Λµ
ν = δµν + λρσ

2 (δµρηνσ − δµσηρν) +O(λ2) = δµν + λµν +O(λ2). (C.2.39)

In an analogous way as for the generators of the SO(N) group, the commutator of
the generators in (C.2.37) is shown to be

[m[µν],m[ρσ]] = ηνρm[µσ] − ηµρm[νσ] − ηνσm[µρ] + ηµσm[νρ]. (C.2.40)

Equations (C.2.40) specify the structure constants of the Lie algebra, which we can
read off as:

f
[κτ ]

[µν][ρσ] = 8η[ρ[νδ
[κ
µ]δ

τ ]
σ]. (C.2.41)
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Proof. If we expand the right hand side of expression (C.2.41) for each antisymmetric
pair of indices, we will get eight terms for the structure constants. Introducing the
structure constants in their defining expression, we obtain

[m[µν],m[ρσ]] = 1
2f

[κτ ]
[µν][ρσ] m[κτ ] = m[κτ ]

2 ×

×
(
ηρνδ

κ
µδ

τ
σ − ησνδκµδτρ − ηρµδκν δτσ + ησµδ

κ
ν δ

τ
ρ − ηρνδτµδκσ + ησνδ

τ
µδ

κ
ρ + ηρµδ

τ
νδ

κ
σ − ησµδτνδκρ

)
= ηρν

2 (m[µσ] −m[σµ])︸ ︷︷ ︸
2m[µσ]

−ησν2 (m[µρ] −m[ρµ])︸ ︷︷ ︸
2m[µρ]

−ηρµ2 (m[νσ] −m[σν])︸ ︷︷ ︸
2m[νσ]

+ησµ2 (m[νρ] −m[ρν])︸ ︷︷ ︸
2m[νρ]

= ηνρm[µσ] − ηµρm[νσ] − ηνσm[µρ] + ηµσm[νρ]. (C.2.42)

Let us study now how the Lorentz transformations are implemented when acting
on fields. The following differential operator is important for studying the infinitesimal
Lorentz variations on fields.

L[ρσ] ≡ xρ∂σ − xσ∂ρ = −L[σρ], (C.2.43)

These operators have a commutator algebra that it is isomorphic to that of m[ρσ].

Proof. We will make use of the fact that ∂νxµ = ∂ν(ηµαxα) = ηµαδ
α
ν = ηµν . We

compute the following:

[L[µν], L[ρσ]] = [xµ∂ν − xν∂µ, xρ∂σ − xσ∂ρ] = xµ∂ν(xρ∂σ)− xµ∂ν(xσ∂ρ)− xν∂µ(xρ∂σ)
+ xν∂µ(xσ∂ρ)− xρ∂σ(xµ∂ν) + xρ∂σ(xν∂µ) + xσ∂ρ(xµ∂ν)− xσ∂ρ(xν∂µ). (C.2.44)

We note that each of those terms will give another two terms when taking the
derivative: one will contain the metric and the other a cross-derivative. For example,
the first term will give xµηνρ∂σ + xµxρ∂ν∂σ. We notice that all the resulting terms
with cross-derivatives cancel each other, so we finally get:

[L[µν], L[ρσ]] = xµηνρ∂σ − xµηνσ∂ρ − xνηµρ∂σ + xνηµσ∂ρ − xρησµ∂ν+
+ xρησν∂µ + xσηρµ∂ν − xσηρν∂µ = ηνρL[µσ] − ηµρL[νσ] − ηνσL[µρ] + ηµσL[νρ].

We start considering the transformations on scalar fields φ(x), which are the
simplest kinds of fields. A scalar field φ(x) is transformed under the mapping U(λ)
as

φ(x)→ φ′(x) = U(Λ)φ(x) = φ(Λx). (C.2.45)

Λx is a short-hand writing of Λν
µxν . We need an explicit form for the mapping U(Λ).

The differential operator
U(Λ) = e−

1
2λ
ρσL[ρσ] (C.2.46)
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satisfies (C.2.45). This is not surprising, as we just showed that L[ρσ] was an imple-
mentation of the Lie algebra in the form of differential operators, acting on scalar
fuctions rather than on coordinates. By expanding the exponential and neglecting
terms above first order we get the infinitesimal variation

δφ(x) = U(Λ)φ(x)− φ(x) = −1
2λ

µνLµνφ(x) +O(λ2). (C.2.47)

Proof. We are going to prove that (C.2.46) is the correct mapping for scalar fields
up to first order, i.e. it satisfies (C.2.47), so we neglect O(λ2) terms during this
calculation. First note that

U(Λ)φ(x) = φ(Λµ
νx

ν) = φ ([δµν + λµν ]xν) = φ(xµ + λµνxν) (C.2.48)

Now we are going to show that φ(xµ + λµνxν) = φ(xµ) − 1
2λ

ρσLρσφ(xµ). First,
we notice that by performing a Taylor expansion up to first order φ(xµ + λµνxν) =
φ(xµ) + λσρxρ∂σφ(xµ) +O(λ2). Now this last term can be expressed in the following
way:

λσρxρ∂σφ(xµ) = 1
2 (λσρxρ∂σφ(xµ) + λσρxρ∂σφ(xµ)) . (C.2.49)

Using the antisymmetry of λσρ for the second term and relabeling the dummy indices
we notice that:

λσρxρ∂σφ(xµ) = λσρ

2 (xρ∂σ − xσ∂ρ)φ(xµ) = −1
2λ

ρσLρσφ(xµ). (C.2.50)

The next case we consider is the transformation rules for covariant and
contravariant vector fields. The transformation for a general covariant fieldWµ(x)
is:

Wµ(x) → W ′
µ(x) = U(Λ)Wµ(x) = (Λ−1) ν

µ Wν(Λx), (C.2.51)

whereas for a general contravariant vector field V µ(x) the transformation is of the
form:

V µ(x) → V ′µ(x) = U(Λ)V µ(x) = (Λ−1)µσV σ(Λx). (C.2.52)

These definitions are consistent. For example, for the scalar quantity V µ(x)Wµ(x), the
equation V µ(x)Wµ(x) = V µ(Λx)Wµ(Λx) is satisfied, as it was required. A difference
with respect to the case of scalar fields, is that the transformation now affects not
only in the spacetime coordinates xµ, but also the fields themselves. We need now to
determine the correct form of the mapping U(Λ), which is a matrix. The appropiate
form is given by (omitting matrix indices for simplicity)

U(Λ) = e−
1
2λ
ρσJ[ρσ] , (C.2.53)
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where the J[ρσ] are defined to act on contravariant and covariant vector fields as

J[ρσ]V
µ(x) = (L[ρσ]δ

µ
ν +m µ

[ρσ] ν)V
ν(x), (C.2.54)

J[ρσ]Wν(x) = (L[ρσ]δ
µ
ν +m µ

[ρσ]ν )Wµ(x). (C.2.55)

Again, by expanding the exponential and neglecting second order terms, we get the
infinitesimal variation δV µ = U(Λ)V µ − V µ = −1

2λ
ρσJ[ρσ]V

µ + O(λ2). Note that
we are always omitting the matrix indices and writing them only just when we are
interested in showing the explicit form of the transformation.

The Poincaré Group is defined by adding global spacetime translations to the
Lorentz Group. In this case, the non-homogeneous transformations of coordinates
are given by :

x′µ = (Λ−1)µν(xν − aν). (C.2.56)

For spacetime translations xµ → x′µ = xµ − aµ, the mapping is more easily
implemented. We consider its action on {ψi(x)}i=1,...,n, which are a set of scalar fields
or the different parts of a multi-component field

ψi(x) → ψ
′i(x) = ψi(x+ a) = U(a)ψi(x), (C.2.57)

being U(a) = ea
µPµ with Pµ = ∂µ = ∂

∂xµ
. (C.2.58)

Here Pµ is the generator and U(a) is called the translation operator. The mappings
of Poincaré group are given by operators U(a,Λ) ≡ U(Λ)U(a), which act as follows
(we are omitting matrix multiplication indices):

ψ(x) → ψ′(x) ≡ U(a,Λ)ψ(x) = U(Λ)U(a)ψ(x) = e−
1
2λ
ρσm[ρσ]ψ(Λx+ a). (C.2.59)

There are D(D− 1)/2 generators J[ρσ] and D generators Pµ, so in total the Poincaré
group has D(D+ 1)/2 generators. The infinitesimal variation of the fields ψi is given
by

δψ = U(Λ)U(a)ψ(x)− ψ(x) =
[
aµPµ −

1
2λ

ρσJ[ρσ]

]
ψ(x) + higher order terms

(C.2.60)
The Lie algebra is specified by the following commutation relations

[J[µν], J[ρσ]] = ηνρJµσ − ηµρJ[νσ] − ηνσJ[µρ] + ηµσJ[νρ], (C.2.61)[
J[ρσ], Pµ

]
= Pρησµ − Pσηρµ, (C.2.62)

[Pµ, Pν ] = 0. (C.2.63)



C.2. LIE GROUPS XX

Proof. The last commutator is the simplest: its zero value comes from the fact that
the partial derivatives are always assumed to commute. The commutator (C.2.61) is
isomorphic to that of m[ρσ], and that is why we say this is another representation of
the generators of the Lorentz group. This commutation relation is rapidly seen to
be satisfied, as J[µν] is formed by m[ρσ] and L[ρσ], which obey the same commutation
algebra (as we already showed). We proceed to derive (C.2.62)

[
J[ρσ], Pµ

]
= J[ρσ]Pµ − PµJ[ρσ] = J[ρσ]Pµ − PνL[ρσ]

=����L[ρσ]Pν + (m[ρσ])νµPµ −����PνL[ρσ] = [δµρηνσ − δµσηρν ]Pµ
= Pρησµ − Pσηρµ.

C.2.3.1 The Lorentz group for D = 4

We are going to check that for the more familiar case of spacetime dimension D = 4,
expression (C.2.37) reduces to the generators of the well-known boosts and rotations
matrices. For this case we have 4(4−1)/2 = 6 generators, that we label with the 6 in-
dependent antisymmetric combinations {[ρσ] = 01, 02, 03, 21, 32, 13}. Using (C.2.37)
we obtain the explicit form of the commutators

m21 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , m32 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , m13 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , (C.2.64)

m01 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , m02 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , m03 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 . (C.2.65)

The three generators in (C.2.64) correspond to the proper rotations in the three
spatial directions. They are just those we already found at (C.2.23), with an extra
time dimension which is unaffected by the rotation. The other three generators at
(C.2.65) correspond to boosts in the three spatial directions. In Appendix E we have
proved shown with the help of Mathematica that these generators actually satisfy
(C.2.40). If we call {Ji}i=1,2,3 to the three rotations and {Ki}i=1,2,3 to the three boosts,
a compact way of writting these antisymmetric combinations is Ji = −1

2εijkmjk and
Ki = m[0i]. In order to check that (C.2.65) does correspond to boosts, we compute
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e−mρ ≡ e−ρ01m01 for one parameter ρ out of the six:

Λ = e−mρ = 1− ρm+ ρ2m2

2 − ρ3m3

6 + ... =

=


1 + ρ2/2 + ... −ρ− ρ3/6− ... 0 0
−ρ− ρ3/6− ... 1 + ρ2/2 + ... 0 0

0 0 1 0
0 0 0 1

 =


cosh ρ − sinh ρ 0 0
− sinh ρ cosh ρ 0 0

0 0 1 0
0 0 0 1


(C.2.66)

If we now call
cosh ρ = γ, sinh ρ = βγ, (C.2.67)

where β = v
c
and γ = 1√

1−β2
, we see that in (C.2.66) we recover the usual expression

for a Lorentz transformation or boost along the 1-direction (or x direction). Notice
that the identification (C.2.67) is possible as cosh2 ρ− sinh2 ρ = γ2 − β2γ2 = 1. The
parameter ρ is conventionally called the rapidity.

Here we include the proof that the six generators in (2.1.1), formed by complex
linear combinations of the six generators above, satisfy the commutation relations of
two independent copies of su(2).

Proof. We begin with the proof of the first commutator in (2.1.2). We introduce the
defining expression of Ii into its conmutator expression:

[Ii, Ij] = 1
4 ([Ji, Jj] + [Kj, Ki] + i[Kj, Ji] + i[Jj, Ki]) . (C.2.68)

We compute each commutator separately, using structure constants for the commu-
tator algebra of m[µν] (see (C.2.40)):

[Ji, Jj] = εirtεjsu
4 [m[rt],m[su]] = εirtεjsu

8 f[rt][su]
[ln]m[ln] = εirtεjsuη[s[tδ

[l
r]δ

n]
u]m[ln]

= 1
2εjsuεirtηstmru = 1

2εjsuεirtδstmru = 1
2εjsuεirsm[ru]. (C.2.69)

Since the Levi-Civita symbol only involves spatial indices and no time indices, we can
freely raise and lower them to write εjsuεirs = εj

suε ri s. Then, by making use of the
identity εi1...iqk1...kpεj1...jqk1...kp = −p!q! δi1...iqj1...jq , we realize that:

[Ji, Jj] = −1
2εj

usε ri sm[ru] = δurji m[ru] = −εjisεsurm[ru] = −1
2εij

sεs
urm[ur] = εijsJs.

Repeating this process for the other commutators, we obtain:

i[Jj, Ki] = −iεjrs2 [m[rs],m[0i]] = −iεjrs4 f[rs][0i]
[ln]m[ln] = −2iεjrsη[0sδ

[l
r δ

n]
i] m[ln]

= −iεjrs (η0smri − ηismr0) = iεjrimr0 = iεjirm[0r] = iεjirKr, (C.2.70)



C.2. LIE GROUPS XXII

where in the last step we have set εjrsη0s to zero since s can only take values from 1
to 3. We notice that i[Jj, Ki] = i[Kj, Ji]. For the last commutator:

[Kj, Ki] = [m[0j],m[0i]] = 1
2f[0j][0i]

[ln]m[ln] = 4η[0[jδ
[l
0]δ

n]
i] m[ln] = 1

2δ
[l
j δ

n]
i m[ln]

= 1
2εjisεlnsm[ln] = 1

2εjisεslnm[ln] = −εjisJs, (C.2.71)

where in the last step we have used δ[l
j δ

n]
i = εlnsεjis. Finally, inserting everything in

(C.2.68), we have:

[Ii, Ij] = 1
4 (εijkJk − εjikJk + 2iεjikKk) = εijk

2 (Jk − iKk) = εijkIk. (C.2.72)

In the same way, for the third commutator in (2.1.2), we see:

[Ii, I ′j] = 1
4 ([Ji, Jj]− [Kj, Ki]− i[Kj, Ji] + i[Jj, Ki]) = 0. (C.2.73)



Appendix D

Basic notions of Clifford algebras

The Dirac equation is a first order equation in space and time derivatives that is
invariant under Lorentz transformations . Dirac managed this achievement thanks to
a set of γ-matrices, satisfying the following property

γµγν + γνγµ = 2ηµν1. (D.0.1)

These γ-matrices generate an specific Clifford algebra, a mathematical structure that
had been created by W.K. Clifford half a century before Dirac wrote his famous
equation. Clifford algebras are widely used nowdays in geometry, theoretical physics
and digital image processing [39].

In the first part of this appendix, we introduce some basic notions of Clifford
algebras, whereas in the second part, we study some properties of the spinors as
an application of Clifford algebras. These concepts are necessary for the study of
Majorana fermions and supersymmetry [30].

D.1 The Clifford algebra
The generating elements

A general and explicit construction of the γ-matrices in arbitrary dimension D

can be given in terms of Pauli matrices

γ0 =iσ1 ⊗ 1⊗ 1⊗ ...,
γ1 =σ2 ⊗ 1⊗ 1⊗ ...,
γ2 =σ3 ⊗ σ1 ⊗ 1⊗ ...,
γ3 =σ3 ⊗ σ2 ⊗ 1⊗ ...,
γ4 =σ3 ⊗ σ3 ⊗ σ1 ⊗ ...
... =..., (D.1.1)

where ... means that the construction continues with the same pattern, for in-
creasing dimension D. These γ-matrices all square to 1 (except γ0, which squares to

XXIII
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−1 because of the pressence of the i) and they mutually anti-commute. This follows
from the fact that Pauli matrices σi square to 1 and anti-commute. In Appendix E
we have shown with the help of Mathematica that the γ-matrices in (D.1.1) satisfy
(D.0.1), as it is required. Let us study now what is the dimension of these matrices
for a general spacetime dimension D.

Suppose an even dimension, that is, D = 2m for some natural numberm. In order
to get 2m different γµ’s, we need to have m Pauli matrices in the tensor products of
each γµ in (D.1.1). And since the Pauli matrices are 2 × 2, the representation has
dimension 2m = 2D/2.

For odd dimension, D = 2m+1, one additional matrix γ2m+1 is required. However,
there is no need to add more Pauli matrices in the tensor products, so we still have m
factors in each γµ. As there is no increase in the dimensions when going from D = 2m
to D = 2m+ 1, we can conclude that in general the dimension of the representation
in (D.1.1) is 2[D/2], where [D/2] means the integer part of D/2 1. Regarding the
Hermiticity

• γ0 is anti-Hermitian, (γ0)† = −γ0.

• γi for i = 1, ..., D − 1, are Hermitian (γi)† = γi.

The Hermiticity property can be summarized as

(γµ)† = γ0γµγ0, (D.1.2)

since (γ0)† = (γ0)2γ0 = −γ0 and (γi)† = −γi(γ0)2 = γi. The representations in which
(D.1.2) holds are called Hermitian representations. From (D.1.1) we also see that, for
a generic dimension D, the γ-matrices are complex.

Up to conjugation, γ′µ = SγµS−1 (where S is any unitary matrix), there is a
unique irreducible representation of the Clifford algebra for even dimension. For odd
dimension, there are two inequivalent irreducible representations. A proof of this,
which uses some well-known results of finite group theory, can be found in [40].

The full Clifford algebra
The complete Clifford algebra is composed of the identity 1, the D generating

matrices γµ, and all independent products of these generating matrices. We need to
reject symmetric products, as they reduce to a product containing fewer γ-matrices.
This can be seen by looking at (D.0.1), which implies γµγν = ηµν1 for symmetric

1An interesting corollary of this result is that the spacetime dimension D is in general different
from the dimension of the γ-matrices. For example, they coincide for D = 4, but for D = 10, the
γ-matrices are 32× 32.
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products, and therefore γµγν = 0 for µ 6= ν. Thus, only antysimmetric products are
considered. We define

γµ1...µr = γ[µ1 ...γµr] ≡ 1
r!
∑
σ

γµ1 ...γµr , (D.1.3)

where σ denotes the set of r! signed permutations of indices µ1, ..., µr. Because of the
antisymmetry, the only non-zero components of those products are

γµ1µ2...µr = γµ1γµ2 ...γµr where µ1 6= µ2 6= · · · 6= µr. (D.1.4)

All matrices of the Clifford algebra are traceless, except for the lowest rank r = 0,
which corresponds to 1, and the highest rank matrix with r = D, which is traceless
only for even D. Let us prove this last statement.

Proof. First we need to show that the higher rank γ-matrices can be expressed as
the alternate commutators or anti-commutators

γµν =1
2[γµ, γν ],

γµ1µ2µ3 =1
2 {γ

µ1 , γµ2µ3} ,

γµ1µ2µ3µ4 =1
2[γµ1 , γµ2µ3µ4 ],

etc. (D.1.5)

The first identity is trivial, since by definition γµν includes a commutator. For the
second identity, notice that

1
2 {γ

µ1 , γµ2µ3} = 1
4 {γ

µ1 , γµ2γµ3 − γµ3γµ2} = 1
4 {γ

µ1 , γµ2γµ3} − 1
4 {γ

µ1 , γµ3γµ2} ,

where we need to assume µ2 6= µ3 in order to avoid a trivial result. We see that we
also need to assume µ1 6= µ2 and µ1 6= µ3, because otherwise we would get a zero
anti-commutator value. Thus

1
2 {γ

µ1 , γµ2µ3} = 1
4(γµ1γµ2γµ3 + γµ2γµ3γµ1 − γµ1 γµ3γµ2︸ ︷︷ ︸

−γµ2γµ3

− γµ3γµ2︸ ︷︷ ︸
−γµ2γµ3

γµ1) =

= 1
4(2γµ1γµ2γµ3 + 2 γµ2γµ3γµ1︸ ︷︷ ︸

γµ1γµ2γµ3

) = γµ1γµ2γµ3 = γµ1µ2µ3 .

In general, we can write the identity

γµ1...µD = 1
2
(
γµ1γµ2...µD − (−)Dγµ2...µDγµ1

)
,
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which covers all the different cases of (D.1.5), as

For D = 2m → (−)D = + → γµ1...µD = 1
2[γµ1 , γµ2...µD ],

For D = 2m+ 1 → (−)D = − → γµ1...µD = 1
2 {γ

µ1 , γµ2...µD} .

Now, using the linearity and the cyclic property of the trace, we see that, for even
dimension

Tr(γµ1...µD) = 1
2Tr(γ

µ1γµ2...µD)− 1
2 Tr(γµ2...µDγµ1)︸ ︷︷ ︸

Tr(γµ1γµ2...µD )

= 0. (D.1.6)

The next step is to guess the dimension of the Clifford algebra, i.e. the number
of independent elements, for even dimension. Notice that there are CD

r independent
index choices at rank r (it is a binomial number because there are CD

r different ways
of choosing sets of r elements out of a set of D elements). Therefore, by virtue of the
Binomial Theorem

n∑
k=0

Cn
k r

k =
n∑
k=0

(
n
k

)
rk = (1 + r)n , (D.1.7)

and taking into account that for D = 2m all the γ-matrices are linearly independent,
we see that the dimension of the Clifford algebra for even dimension is

D∑
r=0

CD
r = 2D. (D.1.8)

Useful relations involving γ-matrices
Here we show some tricks to multiply γ-matrices, that we will be using later. For

example, it is worth remembering the general order reversal symmetry rule

γν1...νr = γν1 · · · γνr = (−)
r(r−1)

2 γνr · · · γν1 = (−)
r(r−1)

2 γνr...ν1 . (D.1.9)

We have used the anti-commutativity of the γ-matrices a number Cr
2 = r(r−1)

2 of
times. Another interesting contraction is

γνγ
µγν = γν (2ηµν1− γνγµ) = (2−D)γµ. (D.1.10)

Proceeding in the same way,

γργ
µνγρ = γργ

µγνγρ = γργ
µ(2ηνρ1− γργν) = 2γνγµ − γρ (2ηµρ1− γργµ) γν

= −2γµγν − 2γµγν + γργ
ργµγν = (D − 4)γµν . (D.1.11)

In general, one has
γργ

µ1...µrγρ = (−)r(D − 2r)γµ1...µr . (D.1.12)
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D.1.1 Basis for even dimension
Restricting to even dimension D = 2m, an orthogonal basis of the Clifford algebra
can be denoted by the following array

{
ΓA
}
of matrices{

ΓA = 1, γµ, γµ1µ2 , γµ1µ2µ3 , · · · , γµ1...µD
}
. (D.1.13)

Index values satisfy µ1 < µ2 < ... < µr. It will be convenient to define a basis {ΓA}
as the one containing the same elements as

{
ΓA
}
but in reverse order:

{ΓA = 1, γµ, γµ2µ1 , γµ3µ2µ1 , · · · , γµD...µ1} . (D.1.14)

Next we derive the trace orthogonality property. If we consider the product ΓAΓB, we
see that for different elements A 6= B we get another arbitrary element of the Clifford
algebra different from 1, which is traceless, as we previously discussed. For the same
elements A = B, we always end up with the identity 1 (without sign changes involved
because of the way we have defined ΓB), whose trace is 2m. This can be summarized
as

Tr(ΓAΓB) = 2mδAB. (D.1.15)

The list in (D.1.13) contains 2D trace orthogonal matrices, which is the same
as the number of elements of a matrix M of dimension 2m × 2m. Therefore

{
ΓA
}

constitutes a basis of the space of matrices M of dimension 2m × 2m, and we can
write the expansion

M =
∑
A

mAΓA. (D.1.16)

It is easy to obtain the coefficients mA of the expansion with the help of the orthog-
onality property

1
2mTr(MΓA) = 1

2mTr
(∑

B

mBΓBΓA
)

= 1
2m

∑
B

mBTr
(
ΓBΓA

)
= mA. (D.1.17)

For odd dimensions, D = 2m + 1, the situation is somewhat different, because
not all the γ-matrices are independent, as we discussed before. In fact, a basis of the
Clifford algebra for odd dimension only contains the matrices in (D.1.13) up to rank
m. For a further discussion, see [30].

D.1.2 The highest rank Clifford algebra element
The highest rank element of the Clifford algebra has special importance in physics,
as it is deeply related to the chirality of fermions. We define the quantitity

γ∗ ≡ (−i)m+1γ0γ1...γD−1, (D.1.18)

which satisfies γ2
∗ = 1 in every even dimension, and it is Hermitian γ†∗ = γ∗. We

proceed to prove those properties.
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Proof. For the first property

γ2
∗ = (−i)2m+2︸ ︷︷ ︸

−(−)D/2

γ0γ1...γD−1γ0γ1...γD−1

= (−)D2 +1γ0γ1...γD−1γD−1...γ1γ0(−)
D(D−1)

2 = (−)D
2

2 +1γ2
0 = 1, (D.1.19)

whereas for the Hermiticity property

γ†∗ = [(−i)m+1]† γ†D−1...γ
†
1γ
†
0︸ ︷︷ ︸

−γD−1...γ0

= −iD2 +1(−)
D(D−1)

2 γ0γ1...γD−1

= (−)D
2

2 (−)D2 −1i
D
2 +1︸ ︷︷ ︸

(−)m+1im+1

γ0γ1...γD−1 = γ∗. (D.1.20)

For dimension D = 4 the matrix γ∗ is typically called γ5. The matrix γ∗ is related
to the unique highest rank element in (D.1.13) by

im+1εµ1µ2...µDγ∗ = εµ1µ2...µDγ0γ1...γD−1 = εµ1µ2...µDγ01...D−1 = γµ1µ2...µD , (D.1.21)

where the Levi-Civita tensor reproduces the complete antisymmetry of γµ1µ2...µD .
Since γ2

∗ = 1 and Trγ∗ = 0, it follows that one can find a representation such that

γ∗ =
(
1 0
0 −1

)
. (D.1.22)

With this, we see that the Weyl fields ψ and χ can be obtained from a Dirac field Ψ
by applying the chiral projectors:

PL = 1
2(1+ γ∗) =

(
1 0
0 0

)
, PR = 1

2(1− γ∗) =
(

0 0
0 1

)
. (D.1.23)

Therefore, (
ψL
0

)
≡ PLΨ,

(
0
ψR

)
≡ PRΨ. (D.1.24)

Matrices in (D.1.23) indeed project to orthogonal subspaces, since they satisfy PLPL =
PL, PRPR = PR and PLPR = 0.

We are going to show that both the anti-commutator {γ∗, γµ} and the commutator
[γ∗, γµν ] are zero. This result will prove to be useful soon. We compute the anti-
commutator, taking into account that γµ anticommutes with all matrices γ0, γ1...γD−1

except with one, which has the same index value µ

{γ∗, γµ} = (−i)m+1 (γ0γ1...γD−1γ
µ + γµγ0γ1...γD−1)

= (−i)m+1
(
(−)D−1γµγ0γ1...γD−1 + γµγ0γ1...γD−1

)
= 0. (D.1.25)
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Repeating the same procedure for the commutator

[γ∗, γµν ] = (−i)m+1 (γ0γ1...γD−1γ
µν − γµνγ0γ1...γD−1)

= (−i)m+1
(
(−)2D−2γµνγ0γ1...γD−1 − γµνγ0γ1...γD−1

)
= 0. (D.1.26)

We next consider a general block form

γµ =
(
A B
C D

)
, (D.1.27)

for the γ-matrices in a representation where (D.1.22) holds. Because of (D.1.25) we
have γ∗γµ = −γµγ∗ or, in matrix terms,(

A B
−C −D

)
= −

(
A −B
C −D

)
.

This means that A = −A and D = −D and thus A = D = 0. We have arrived at
the important result that the γµ can be given in a block-off diagonal form

γµ =
(

0 σµ

σ̄µ 0

)
. (D.1.28)

The matrices σµ and σ̄µ can be thought of as 2m−1×2m−1 generalizations of the Pauli
matrices. In an analogous way, by using (D.1.26) it can be shown that the matrices
γµν take the block diagonal form

γµν = 1
2

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ
)
. (D.1.29)

D.1.3 The charge conjugation matrix
The charge conjugation matrix, C, is defined as the unitary matrix satisfying that
each matrix CΓA is either symmetric or antisymmetric. Symmetry depends only on
the rank r of the matrix ΓA, so we can write:

(CΓ(r))T = −trCΓ(r), tr = ±1, (D.1.30)

being Γ(r) a rank r matrix in the basis (D.1.13) 2. For rank r = 0 and 1, one obtains

CT = −t0C, γµT = t0t1Cγ
µC−1 (D.1.31)

We have used that tr = 1/tr and that (AB)T = BTAT for any two matrices A and
B. These relations are enough to determine the symmetries of all Cγµ1...µr and thus
all coefficients tr. For example,

(Cγµ1µ2)T = γµ1µ2TCT = −t0γµ1µ2TC = −t0γµ2Tγµ1TC = −t2Cγµ1γµ2 ,

t0(t0t1)(t0t1)Cγµ2C−1Cγµ1C−1C = t2Cγ
µ1γµ2 ,

t0Cγ
µ2µ1 = t2Cγ

µ1µ2 → t2 = −t0 . (D.1.32)
2The − sign in (D.1.30) is introduced just for convenience in the calculations.
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In a similar way one can show that t3 = −t1. In general, tr+4 = tr. The following
matrices are valid charge conjugation matrices for even dimension,

C+ = σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ ..., for the cases in which t0t1 = 1, (D.1.33)
C− = σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ ..., for the cases in which t0t1 = −1. (D.1.34)

We can check for example that C+ satisfies (D.1.31). Taking into account that (A⊗
B)T = AT ⊗BT for any two matrices A and B, we see that

CT
+ = σ1 ⊗ (−σ2)⊗ σ1 ⊗ (−σ2)⊗ ... (D.1.35)

So we have indeed CT = −t0C, and this shows clearly that t0 depends on the dimen-
sion. Now we choose γ3 from (D.1.1), and make use of the fact that (A ⊗ B)−1 =
A−1 ⊗B−1

C+γ
3C−1

+ =
(
σ1σ3σ

−1
1 ⊗ σ2σ1σ

−1
2 ⊗ σ11σ

−1
1 ⊗ ...

)
=
(
−σ1σ3σ

−1
1 ⊗−σ2σ1σ

−1
2 ⊗ 1⊗ ...

)
= (σ3 ⊗ σ1 ⊗ 1⊗ ...) =

(
σT3 ⊗ σT1 ⊗ 1⊗ ...

)
= (γ3)T (D.1.36)

The values of t0 and t1 (and thus all tr) depend on the spacetime dimension
D mod8 and on the rank r mod4. That is, their values are repeated every eight
dimensions D and every four ranks r. The later can be seen from tt+4 = tr. The
former can be seen by looking the matrices C±. For example, let us pick D = 2. In
this case, t0 = ±1 for C∓. If we start increasing the dimension, we won’t get t0 = ±1
for C∓ again until D = 10.

In the Table D.1.3 we give the values r mod4 for which tr = ±1, for each D mod8.
Notice that, as t2 = −t0 and t3 = −t1, we will always have a pair of values corre-
sponding to tr = −1 and another pair corresponding to tr = +1. These entries in
the table are determined by counting the number of symmetric and antisymmetric
matrices in every dimension. For even dimension C+ and C− are possible choices. For
odd dimension, C is unique. In fact, it is either C+ or C− (see [41]). This explains
why in the Table there are two possible choices for even dimension. The Table D.1.3
is fundamental to explain why Majorana spinors can only exist in certain dimensions.

The symmetry property of a γ-matrix fixes also its complex conjugation property.
To see this, we define

B ≡ it0Cγ
0, (D.1.37)

which is unitary, as B−1 = i−1t0(γ0)−1C−1 = it0γ
0C† = B†. Important identities

involving B are
γµ∗ = −t0t1BγµB−1, B∗B = −t11. (D.1.38)

Proof. By taking the complex conjugate of (D.1.31) we have γµ† = t0t1C
∗γµ∗C−1∗.

We solve for γµ∗ using that C∗ = −t0C−1 and C−1∗ = −t0C

γµ∗ = t0t1Cγ
µ†C−1 = t0t1(−it0)(it0)Cγ0γµγ0C−1 = −t0t1BγµB† = −t0t1BγµB−1
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D (mod8) tr = −1 tr = +1
0 0, 3 2, 1

0, 1 2, 3
1 0, 1 2, 3
2 0, 1 2, 3

1, 2 0, 3
3 1, 2 0, 3
4 1, 2 0, 3

2, 3 0, 1
5 2, 3 0, 1
6 2, 3 0, 1

0, 3 1, 2
7 0, 3 1, 2

Table D.1: Symmetries of γ-matrices. The entries contain the matrix ranks r mod4 for
which tr = ±1, corresponding to each spacetime dimension D mod8.

Now, in order to prove B∗B = −t11, we first compute B∗

B∗ = −it0C∗(γ0)∗ = it0C
∗γ0 = −it20C−1γ0 = −iC−1γ0.

In this way
B∗B = t0C

−1γ0Cγ0 = t20t1(γ0)Tγ0 = t1(γ0)2 = −t11.

D.2 Spinors in arbitrary dimension

D.2.1 Spinor bilinears
As it is discussed in the section 2.2 , spinor components are anti-commuting Grass-
mann numbers

ΨαΨβ = −ΨβΨα. (D.2.1)

Throughout the rest of this appendix, when writing a bar ove a spinor, we are as-
suming the Majorana conjugate (2.3.1), not the Dirac adjoint. Consider two different
arbitrary spinors χ and λ. We can build a general bilinear form using matrices from
the Clifford algebra:

λ̄γµ1...µrχ. (D.2.2)

This is indeed a bilinear form, i.e. it takes two "vector-like" quantities λ and χ and
returns a scalar value. We can express it in a different way by making use of (D.1.30)

λ̄γµ1...µrχ = λTCγµ1...µrχ = −trλTγTµ1...µrC
Tχ

= (−)− tr
(
χTCγµ1...µrλ

)T
= trχ̄γµ1...µrλ. (D.2.3)
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In the last step we have used that the transpose operation doesn’t affect a scalar
quantity (a extra minus sign is coming from (D.2.1)). The term Majorana flip relation
is used to refer to (D.2.3).

The previous relation also mean the following rule. For any relation between
spinors including γ-matrices, there is a corresponding relation between the barred
spinors. To see this more clear, note that, by (D.2.3)

χ̄1χ2 = t0χ̄2χ1 (D.2.4)

Then, if we have the relation between spinors χ2 = γµ1...µrλ, because of (D.2.4) we
see there is a corresponding relation between barred spinors

χ̄1χ2 = t0χ̄2χ1 = χ̄1γµ1...µrλ = trλ̄γµ1...µrχ1 → χ̄2 = t0trλ̄γµ1...µr . (D.2.5)

Using the spin part of an infinitesimal Lorentz transformation δχ = −1
4λ

µνγµνχ,
we can prove that the spinor bilinear λ̄χ is a Lorentz scalar.

Proof. We simply compute the transformation, taking (D.2.5) into account for the
expression of δλ:

δ(λ̄χ) =δλ̄χ+ λ̄δχ = δλχ+ λ̄δχ = −1
4λ

µνγµνλχ−
λ̄

4 λ
µνγµνχ =

=− 1
4λ

µνt0t2λ̄γµνχ−
λ̄

4 λ
µνγµνχ = +λ̄4 λ

µνγµνχ−
λ̄

4 λ
µνγµνχ = 0.

D.2.2 Spinor indices
Although frequently omitted, spinor indices are sometimes necessary. Tipically, the
components of basic spinors λ are indicated as λα and the components of barred
spinors λ̄ as λα. We introduce a matrix to raise indices such that

λα = Cαβλβ. (D.2.6)

Since λ̄T = CTλ, we note that Cαβ are the components of CT . We can also introduce
a lowering matrix

λα = λβCβα. (D.2.7)

In order for these two equations to be mutually consistent,

λα = λβCβα = CβγλγCβα, (D.2.8)

we must impose
CαβCγβ = δγ

α, CβαCβγ = δα
γ. (D.2.9)
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When operating with γ-matrices, spinor indices are written as (γµ)αβ. Their indices
can also be raised or lowered using the charge conjugation matrix. For instance

(γµ)αβ = (γµ)ασCσβ. (D.2.10)

From (D.1.30), we see that γ-matrices with all spinor indices upstairs or downstairs
are either symmetric or antisymmetric

(γµ1...µr)αβ = −tr(γµ1...µr)βα. (D.2.11)

It is intriguing that raising and lowering indices can produce a minus sign depending
on the dimension, as opposed to what happened with spacetime indices. In fact,

λαχα = −t0Cαβλβχ
γ(C−1)γα = −t0δγβλβχγ = −t0λαχα. (D.2.12)

In D = 4 for example we have λαχα = −λαχα.

D.2.3 Fierz reordering
Fierz reordering is a technique that exploits the fact that the Clifford set

{
ΓA
}
forms

a complete basis of any 2m × 2m matrix M , in order to obtain expressions involving
the products of spinor bilinears, called Fierz identities. These identities are important
in SUSY theories.

We derive now the basic Fierz identity. We take δαβδγδ, which can be considered
as a matrix in the indices γ and β with the indices α and δ having the function of
labelling different matrices. We apply (D.1.16) to this matrix

δα
βδγ

δ =
∑
A

(mA)δα(ΓA)γβ. (D.2.13)

The coefficients are (mA)δα = 2−mTr(δατδρδ(ΓA)τ σ) = 2−mδατδρδ(ΓA)τ ρ. Inserting
this in (D.2.13) we get

δα
βδγ

δ = 1
2m

∑
A

δα
τ (ΓA)τ ρδρδ(ΓA)γβ, (D.2.14)

or, equivalently

δα
βδγ

δ = 1
2m

∑
A

(ΓA)αδ(ΓA)γβ . (D.2.15)

This is the basic Fierz identity. The next point is to derive an important identity
which is needed for SUSY Yang-Mills theories. Instead of the matrix δα

βδγ
δ, we

consider the matrix (γµ)αβ(γµ)γδ, with the indices α and δ playing again the role of
labelling different matrices. Proceeding in the same way as before we get

(γµ)αβ(γµ)γδ = 1
2m

∑
A

(γµ)ατ (ΓA)τ ρ(γµ)ρδ(ΓA)γβ. (D.2.16)
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Taking into account the result (D.1.12), we can express (D.2.16) as

(γµ)αβ(γµ)γδ = 1
2m

∑
A

(−)rA(D − 2rA)(ΓA)αδ(ΓA)γβ, (D.2.17)

where rA is the rank of the element ΓA. Now we lower the indices β and δ and we
consider the fully symmetric part in (βγδ):

(γµ)α(β(γµ)γδ) = 1
2m

∑
A

(−)rA(D − 2rA)(ΓA)α(δ(ΓA)γβ). (D.2.18)

Writing the indices in this way we can use the symmetry/antisymmetry property
(D.2.11), taking the form (γµ)αβ = −t1(γµ)βα. If we expand (γµ)α(β(γµ)γδ) in its
six terms, we see all of them cancel by pairs if the γ-matrices are antisymmetric
(γµ)αβ = −(γµ)βα. Thus, (γµ)α(β(γµ)γδ) does not vanish only for the dimensions in
which t1 = −1. By checking Table D.1.3, we see this only happens for D = 3, 4. Let
us restrict to D = 4. From the right-hand side of (D.2.18), we see that for D = 4
the term (D − 2rA) is only non-vanishing for rA = 1. Thus only rank 1 matrices
contribute to the right-hand side, and so we can write (D.2.18) as

(γµ)α(β(γµ)γδ) = −1
2(γµ)α(δ(γµ)γβ), (D.2.19)

or using the symmetry property

(γµ)α(β(γµ)γδ) = 0. (D.2.20)

Finally, if we multiply this equation with three spinors λβ1 , λγ2 and λδ3, we can write
(D.2.20) as

γµλ[1λ̄2γ
µλ3] = 0 , (D.2.21)

where the symmetry of the indices in (D.2.20) has become antisymmetry among the
three spinors because of their anti-commutativity property.

D.2.4 Charge conjugation of spinors
Charge conjugation is an operation that acts on spinors, analogous to complex con-
jugation. It is certainly possible to apply also complex conjugation to spinors, but it
turns out to be much easier to consider the operation of charge conjugation, which
acts in the same way for scalar quantities. The charge conjugate of any spinor λ is
defined as

λC ≡ B−1λ∗, (D.2.22)

where B is the matrix defined in (D.1.37).
The charge conjugate of a 2m × 2m matrix M is defined as

MC ≡ B−1M∗B. (D.2.23)
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In the same way as complex conjugation, charge conjugation does not affect the
order of the matrices: (MN)C = B−1M∗N∗B = MCNC . The charge conjugate of a
γ-matrix is actually very simple

(γµ)C ≡ B−1γ∗µB = (−t0t1)γµ. (D.2.24)

The rule for the complex conjugate of a spinor bilinear with an arbitrary matrix M
is

(χ̄Mλ)∗ ≡ (χ̄Mλ)C = (−t0t1)χCMCλC . (D.2.25)

Proof. We compute the following

(−t0t1)χCMCλC = (−t0t1) = (−t0t1)(χC)TCB−1M∗BB−1λ∗.

On the other hand, CB−1 = −it0Cγ0C
−1 = −it1γ0, as γT0 = γ0, and it is also true

that (B−1)T = B∗ = it0C
∗γ0. We introduce these relations in the previous equation:

(−t0t1)χCMCλC = (−t0t1)(B−1χ∗)TCB−1M∗λ∗ = it0(χ∗)T (B−1)Tγ0M
∗λ∗

= (χ∗)TC∗M∗λ∗ = (χ̄Mλ)∗ = (χ̄Mλ)C . (D.2.26)

Any spinor λ and its conjugate λC transform in the same way under a Lorentz
transformation. We proceed to derive this important fact.

Proof. The spin part of an infinitesimal transformation of any spinor λ is δλ =
−1

4λ
µνγµνλ. Now, taking the charge conjugate of this equation we have

δλC = −λ
µν

4 (γµνλ)C = −λ
µν

4 B−1(γµνλ)∗ = −λ
µν

4 B−1γ∗µνBB
−1λ∗ = −λ

µν

4 γCµνλ
C ,

where we have used the definitions (D.2.22) and (D.2.23). But taking into account
(D.2.24), notice that, for µ 6= ν

γCµν = (γµγν)C = γCµ γ
C
ν = (−t0t1)2γµγν = γµν .

(for µ = ν, γµν = ±1 and it is clear that it is its own conjugate). Thus δλC =
−λµν

4 γµνλ
C , i.e. the conjugate λC transforms in the same way as λ.

Finally, we compute the charge conjugate of the highest rank Clifford algebra
element γ∗:

(γ∗)C = im+1γC0 γ
C
1 · · · γCD−1 = im+1 (−t0t1)D︸ ︷︷ ︸

+1

γ1γ2 · · · γD−1 = (−)D/2+1γ∗. (D.2.27)

Thus, for dimension D = 4 for example, one has (γ∗)C = −γ∗, which means
(PL)C = PR.



Appendix E

Mathematica code

In this Appendix we show the Mathematica notebooks that have been used to obtain
the specific expression for the generators of the Lorentz group/Clifford algebra, and
also to check their commutation/anticommutation relations. Comments and expla-
nations are included.
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A basis of Γ-matrices in D = 10

We consider  D=10. We use the general and explicit construction of ℽ -matrices. 

In[2]:= Gamma0 = ⅈ * KroneckerProductPauliMatrix1, IdentityMatrix2,
IdentityMatrix2, IdentityMatrix2, IdentityMatrix2;

In[3]:= Gamma1 = KroneckerProductPauliMatrix2, IdentityMatrix2,
IdentityMatrix2, IdentityMatrix2, IdentityMatrix2;

In[4]:= Gamma2 = KroneckerProductPauliMatrix3, PauliMatrix1,
IdentityMatrix2, IdentityMatrix2, IdentityMatrix2;

In[5]:= Gamma3 = KroneckerProductPauliMatrix3, PauliMatrix2,
IdentityMatrix2, IdentityMatrix2, IdentityMatrix2;

In[6]:= Gamma4 = KroneckerProductPauliMatrix3, PauliMatrix3,
PauliMatrix1, IdentityMatrix2, IdentityMatrix2;

In[7]:= Gamma5 = KroneckerProductPauliMatrix3, PauliMatrix3,
PauliMatrix2, IdentityMatrix2, IdentityMatrix2;

In[8]:= Gamma6 = KroneckerProductPauliMatrix3, PauliMatrix3,
PauliMatrix3, PauliMatrix1, IdentityMatrix2;

In[9]:= Gamma7 = KroneckerProductPauliMatrix3, PauliMatrix3,
PauliMatrix3, PauliMatrix2, IdentityMatrix2;

In[10]:= Gamma8 = KroneckerProductPauliMatrix3, PauliMatrix3,
PauliMatrix3, PauliMatrix3, PauliMatrix1;

In[11]:= Gamma9 = KroneckerProductPauliMatrix3, PauliMatrix3,

PauliMatrix3, PauliMatrix3, PauliMatrix2;

We check the dimension of the matrices



In[14]:= DimensionsGamma0
DimensionsGamma1
DimensionsGamma2
DimensionsGamma3
DimensionsGamma4
DimensionsGamma9

Out[14]= 32, 32

Out[15]= 32, 32

Out[16]= 32, 32

Out[17]= 32, 32

Out[18]= 32, 32

Out[19]= 32, 32

As an example, we just show the 32x32 matrix Γ0

In[21]:= Gamma0 // MatrixForm

Out[21]//MatrixForm=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ
ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⅈ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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We define a function that groups all the matrices

In[22]:= Gam[u_] := KroneckerDeltau, 1 Gamma0 + KroneckerDeltau, 2 Gamma1 +

KroneckerDeltau, 3 Gamma2 + KroneckerDeltau, 4 Gamma3 +

KroneckerDeltau, 5 Gamma4 + KroneckerDeltau, 6 Gamma5 +

KroneckerDeltau, 7 Gamma6 + KroneckerDeltau, 8 Gamma7 +

KroneckerDeltau, 9 Gamma8 + KroneckerDeltau, 10 Gamma9

Now we define the Minkowski metric:

In[23]:= et = DiagonalMatrix-1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

We define a expression for the identity to be checked. If the identity is satisfied, this expression

needs to be zero.

In[24]:= Identit[mu_, nu_] := Gam[mu].Gam[nu] + Gam[nu].Gam[mu] -

2 et[[mu, nu]] IdentityMatrix32

In[25]:= Bigequation = TableIdentit[mu, nu], mu, 1, 10, nu, 1, 10;

In  the variable Bigequation we have written a 10x10 table,  with each entry  containing a 32x32

matrix. All these matrices  should be zero. The command Tally[Flatten[ Bigequation]] gives me the

number of zeros appearing in this table, which should be 100x32x32=102400. 

TallyFlattenBigequation

0, 102400

Clifford-gfa.nb     3



The Lie algebra of the Lorentz group SO(3,1) in D = 4
We consider spacetime dimension D=4. Let’s obtain the specific expression for the generators 

of the Lorentz group in the basic representation. First we define the Minkowski metric:

In[2]:= et = DiagonalMatrix-1, 1, 1, 1;

In[3]:= et // MatrixForm

Out[3]//MatrixForm=

-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Now we define this representation for the generators of the Lorentz group: 

In[5]:= mrho_, sigma_, mu_, nu_ := KroneckerDeltamu, rho etnu, sigma -

KroneckerDeltamu, sigma etrho, nu

We define the commutator between two different generators

In[6]:= comm[mm_, nn_, rr_, ss_] :=

Arraym, 1, 1, 4, 4, mm, nn, 1, 11, 1.
Arraym, 1, 1, 4, 4, rr, ss, 1, 11, 1 -

Arraym, 1, 1, 4, 4, rr, ss, 1, 11, 1.
Arraym, 1, 1, 4, 4, mm, nn, 1, 11, 1;

We now define the explicit theoretical expression for the commutator:

In[7]:= resmi_, ni_, ri_, si_ :=

etni, ri Arraym, 1, 1, 4, 4, mi, si, 1, 11, 1 -

etmi, ri Arraym, 1, 1, 4, 4, ni, si, 1, 11, 1 -

etni, si Arraym, 1, 1, 4, 4, mi, ri, 1, 11, 1 +

etmi, si Arraym, 1, 1, 4, 4, ni, ri, 1, 11, 1;

We check that, for the same set of indices values, both lead to the same result



In[8]:= Manipulatecomm[ma, na, ra, sa] //

MatrixForm, ma, 1, 4, 1, na, 1, 4, 1, ra, 1, 4, 1, sa, 1, 4, 1

Out[8]=

ma

na

ra

sa

0 -1 0 0

-1 0 0 0

0 0 0 0

0 0 0 0

In[9]:= Manipulateres[ma, na, ra, sa] //

MatrixForm, ma, 1, 4, 1, na, 1, 4, 1, ra, 1, 4, 1, sa, 1, 4, 1

Out[9]=

ma

na

ra

sa

0 -1 0 0

-1 0 0 0

0 0 0 0

0 0 0 0

To check all the generators simultaneously, we impose define the equation eq = res - comm, which

has 4x4x4x4=256 matrices of size 4x4. In total, this variable has 256x4x4=4096 components

In[16]:= eq = Tableres[ma, na, ra, sa] - comm[ma, na, ra, sa],

ma, 4, na, 4, ra, 4, sa, 4;

We check that all its components are actually zero

In[17]:= TallyFlatten[eq]

Out[17]= 0, 4096

2     Ex4-gfa.nb
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