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1
General introduction

1.1
Shapes in nature

The possibility of explaining the shapes occurring in living matter by physical
considerations, and assume that they are subject to the physical laws is the
main hypothesis we have to make to achieve some knowledge on shapes in
cells. Thus, we might assert that objects in nature are not shaped by chance,
independently of its role. It is important to note that equal shapes appear in
completely different scenarios, meaning that some common principle regard-
ing their functionality has to be underlying [247]. Nature shapes, therefore,
are not an evolutionary caprice, but they respond to an optimal design for a
specific function of the object itself. In this thesis, we theoretically study from
a physical perspective some aspects on cellular morphology [160].

If we ask ourselves for the reason that something has a definite shape and
not another, we will enter into a loose discussion. Let’s then reformulate the
question in another manner: how something acquires a definite shape and not
another? When we formulate the question in that way, we are asking about
a mechanism leading to that very shape. This is a question a physicist can
answer, or at least ask. In biology, the question could even be reformulated
differently: which are the benefits this object has by being shaped in a specific
form? Evolution can be a part of the answer. A deep enough comprehension
of the biological function is also of great help. To understand the function that
a part of a living organism has, as well as the mechanisms by which it carries
it out, are the first steps in that direction.

For instance, let’s take probably the most ubiquitous shape in nature, the
sphere. As it is well known the sphere is the shape with the smallest surface
area among all shapes enclosing a given volume. In other words, it is the opti-
mal shape to enclose a given volume by having the minimum surface area in
contact with the external environment. This happens, for instance, with soap
films [53, 198]. It is known from microscopic models that such a system can
be energetically described by a surface tension term. Area creation increases
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the system energy, and therefore the equilibrium configuration corresponds to
the minimal energy configuration, i.e. the minimal surface area shape given
the external system constraints1. However, this is a mechanism leading to
spherical shapes, but it does not mean that it is the only possible mechanism
for that. Spheres have other peculiarities, like the fact that they are isotropic,
that is, they are uniform in all directions. This is the reason why most orbiting
astronomical objects are almost spherical. There are plenty of other beautiful
examples of spheres in nature [247, 253].

Contrarely to spheres, when the surface area enclosing a given volume has
to be, due to some reason, maximum instead of minimum, a ramified geome-
try has to appear. This is the case of fractals [82,163]. There are other recurrent
shapes in nature. Morphology, the study of which physical mechanisms cre-
ate the shapes and structures of living entities, is of a primary importance.
Further connection between forms and functions has to be studied as well, a
task where morphology (shapes) and physiology (functions) have to be inter-
woven.

1.2
Physics in life sciences

The fragmentation of natural sciences into academic disciplines resulted in the
existence of boundary topics between these disciplines which did not belong
clearly to any of them. Although in the history of science there have been
people dealing with these topics, the benefits of sharing knowledge between
sciences have not been fully exploited. In particular, while speaking about
physics and life sciences, the interconnexion is clear regarding to the instru-
mentation developed using physical principles (X-ray imaging, microscopy,
and other visualization techniques), and used in life sciences (discovery of
DNA structure, medical equipments).

Recently, the terms multidisciplinarity and interdisciplinarity are listened at
a daily basis in the scientific field, becoming the hallmark of contemporary
research. In this sense, the growing interest in biophysical research is clear.
However, there are still two different kinds of biophysics, that is, biophysics
made by biologists, and biophysics made by physicists. Physicists should not
only bring their mathematical skills to model biological problems. In addition,
biologists, as Karl Pearson said more than hundred years ago in a letter to
Nature [194]:

I believe the day must come when the biologist will -without being
a mathematician- not hesitate to use mathematical analysis when
he requires it.

1) Such a shape is usually called a minimal surface [185].
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1.3
Cells, membranes, and lipid bilayers

Cells are the structural and functional unit of living organisms. It is important
to remark the fact of the uniqueness of a cell, that is, a cell is defined as an
individual entity, something which has some independence, albeit its inter-
actions with other surrounding entities like it. Here, a question arises: how
does this structure keep its unity? The answer is that there has to be some
frontier defining the limits of a cell as an individual, and keeping its fluidlike
internal medium bound. This boundary is the membrane, a thin layer mainly
consisting of a lipid bilayer with associated proteins which encloses the cell
and separates the intracellular components from the extracellular medium. In
the next Chapter of the thesis introduction, we review some general aspects
on biological membranes, like their composition and phase behavior.

At this point, one might ask why physicists might be interested in study-
ing biological membranes. As Erich Sackmann wrote in the first chapter of
Structure and Dynamics of Membranes [160], membranes are very attractive to
physicists for several reasons:

(i) They are examples of two-dimensional colloidal systems ex-
hibiting various novel physical properties (e.g., non-classical
elastic properties) which are simultaneously essential for
their biological function.

(ii) Their composition involves about a hundred components
and thus poses a real challenge for the development of new
concepts of the physical basis of self-organization of multi-
component systems.

(iii) Despite their complexity they allow us to explore the inter-
play between biochemical modulations of the physical prop-
erties of biomaterials and the control of biological functions
(e.g., in the course of signal transduction processes).

(iv) By reconstitution of model membranes from a few lipids and
membrane proteins, specific membrane function can be stud-
ied on a molecular level.

(v) Studies of biomembranes yield direct insight into the possi-
ble role of universal physical properties for the behavior and
function of biological materials (such as scaling laws or loga-
rithmic laws typical for two-dimensional systems).
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1.4
Thesis aims and structure

The main aims of this thesis are to understand the formation and dynamics
of membrane shapes from a physical point of view, and relate it biological
experimental observations. In order to achieve this goal, it is important to
identify the basic physical principles describing membranes. This is the reason
why, in our analyses, the complexity of cell membranes is reduced to a simple
model system, lipid bilayers closed to form monocomponent lipid vesicles.
Further complexity is introduced sequentially in order to understand which
consequences every new ingredient has on the system.

In order to set the proper conceptual context, this thesis starts with this gen-
eral introduction, and it is followed by two other introductory Chapters on
the biological and physical properties of membranes.

Our original research is then structured in three separate parts. The first and
most extensive one deals with the study of dynamic instabilities in biological
membranes. In particular, we study shape changes occurring in model mem-
branes when an destabilizing agent is introduced in the system. In this con-
text, these instabilities are not as usual hydrodynamic instabilities [46] where
the response of the system is usually characterized by non-bound growing
modes. Our instabilities correspond to the type where a stable membrane ge-
ometry turns unstable by the addition of some polymeric molecules, which
act on the membrane by changing its geometric properties. Thus, this desta-
bilizing agents induce a dynamic shape transition into a new geometry.

For this purpose, and motivated by the experimental results on the topic
by the group of Joel Stavans at the Weizmann Institute [249], we derived a dy-
namic model for dealing with the bending energies which describe fluid mem-
branes as elastic surfaces [44, 109], reviewed in Ch. 3. This dynamic model
is of the kind of phase-field models, explained in Ch. 4. Thus, in Ch. 5, we
present the derivation of a phase-field for dynamically dealing with mem-
brane energies. We derive as well a dynamic equation describing the time
evolution of the membrane shape. This model is numerically solved in Ch. 6
in the simplest case possible, when no unstabilizing agents are introduced in
the system. This lets us find the stationary shapes of fluid vesicles, that is,
the shape a closed membrane acquires as a result of minimizing its bending
energy. There, the membrane is assumed to be homogeneous and symmetric.
The resulting shape only depends on the ratio between the area and the inner
volume of the vesicle, which are constant. Thus, given a value of this ratio, a
shape which minimizes the bending energy can be found, and therefore one
can trace a shape diagram. These results agree with the shape diagrams found
by other non-dynamic means.

However, biological membranes are not simple lipid vesicle, but much more
complex entities, containing several types of lipids and proteins. In addition,
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during cell life, membrane shapes are constantly evolving. Membrane lipids
and proteins are synthesized inside the cell. In order to reach the plasma
membrane they have to be transported from the endoplasmic reticulum and
the Golgi apparatus [3]. Also, internal membrane trafficking is ubiquitous
in cell’s life, and includes membrane remodelling and recycling, as well as
membrane fussion and fission events. It is clear thus, that in biomembranes
there have to be agents responsible for such trafficking events. In this thesis
we study the role proteins have in shaping membranes. In this first Part we
study the dynamic instabilities induced by membrane proteins. In particular,
a curvature-induced pearling instability is analyzed theoretically in Ch. 7, and
a polymer-driven tubulation phenomenon is studied in Ch. 8.

A polymer containing hydrophobic groups anchor the membrane and acts
as a wedge inducing local curvature to the membrane. This mechanism mim-
ics the way some proteins insert hydrophobic domains in the bilayer (some-
thing we study in the third Part of this thesis). Thus, the system consisting of a
fluid lipid vesicle with anchored polymers is a model system, simple enough
to let a good control on the experiments and an easy enough modelization,
but complex enough to grasp some of the much more complex processes oc-
curring in vivo. Among these, the shape transformation of long cylindrical
membrane tubes into a peristaltic tube formed by almost spherical pearls con-
nected through a narrow neck, known as pearling instability, is studied from
a theoretical point of view in Ch. 7. Such morphological instabilities are often
found in nature. The Rayleigh-Plateau instability is an example in the field
of hydrodynamics. This occurs when a cylindrical fluid jet becomes unsta-
ble due to surface tension, and modes deforming the cylinder in a sinusoidal
manner along the axial direction grow, eventually breaking the tube to form
small droplets. Actually, these kind of surface tension pearling instabilities
can also be found in membrane literature, where tension induced in a lipid
tube triggers a surface tension instability to form pearls in a tube-like vesicle.
However, the experiments we are interested in deal study a pearling instabil-
ity produced under a completely different mechanism, as they are curvature-
induced.

The curvature-induced pearling instability might occur by the anchorage of
proteins or polymers in a lipid tubelike vesicle. Due to their shape or to the
depth of insertion, these anchored groups may induce spontaneous curvature
to the membrane. The vesicle, in turn, responds to this change by adopting
a new shape which minimizes the overall bending energy of the vesicle. The
point is that, the dynamics of this shape transition consists, as seen in the
experiments [251], by a subsequent formation of pearls starting from the tip
of the tube. Using the phase-field model derived in Ch. 5, we observe the
dynamics of this instability, in agreement with the experiments. Further, we
study the instability depending on the polymer concentration. Thus, we find
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that depending on the concentration, the pearl size changes from a homoge-
neous distribution to an inhomogeneous one.

Besides, in Ch. 8 we drive our attention to the formation of membrane tubes
from vesicles. These tubulation processes are of an outstanding importance in
cell biology since they are the basis of intracellular transport [3]. There are
different mechanisms which lead to such transformations, most of which are
associated with a force that pulls tubes. The one we address in this thesis is
due to membrane curvature, and most specifically, due to an inhomogeneous
distribution of potential membrane-curving molecules in the bulk outside a
lipid vesicle. In accordance with the experiments in Ref. [250], we study theo-
retically such phenomenon. We see that a tube can be extracted from a vesicle
by means of no force directly acting on the bilayer. Our analyses are both
analytical, using a simplified geometrical scheme, and numerical, using the
curvature phase-field model derived in Ch. 5.

In the second Part of the thesis, we are interested in multicomponent vesi-
cles. In the first Part, all the lipid membranes under consideration are formed
by only one type of lipids in a fluid state. However, in actual biological sys-
tems, the richness in membrane composition is much higher. In addition of
having different lipid components, vesicles may contain phase-separated do-
mains. In the next Chapter of this introduction, we detail the composition of
biological membranes, as well as the different phases lipid membranes can
adopt.

Thus, understanding the mechanical behavior of lipid domains of differ-
ent phases and compositions, and thus of different elastic parameters, is of
primary importance for a deep understanding of cell processes. In Ch. 9 we
study a specific lipid mixture, formed by two kinds of phospholipid molecules
and cholesterol. Such a system phase separates when the conditions are suit-
able into two different phases: a liquid disordered phase, and a more rigid
liquid ordered phase. These two phases have different elastic properties, and
the interface between them introduces new energy terms. This line tension
term penalizes the interface formation, since there is a mismatch between the
lipids in the two phases. However, in experiments by Tobias Baumgart and
coauthors [14], the existence of long membrane tubes formed by a periodic al-
ternate disposition of these two phases was observed. In order to understand
these experiments, we minimize the bending energy of such a membrane tube,
taking into account both the bending terms (with different elasticities for each
phase) and the line tension between phases. Within this context, we use an
Euler-Lagrange scheme to find the differential equation for the vesicle shape.
This non-linear equation is treated both analytically, in its linearized version,
and numerically. Further energy minimization depending on the phase wave-
length and on the area fraction between both phases gives rise to the existence
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of periodic lipid membrane tubes under certain circumstances that we explain
in Ch. 9.

Afterwards, in Ch. (10), we study multicomponent systems, not in three-
dimensions as in Ch. (9) but in two-dimensions. In fact, we study lipid mono-
layers at the air-water interface. Such a simple model is a very interesting
playground for studying intermolecular interactions between lipid molecules,
or even between lipids and proteins. We focus ourselves in understanding
the formation of non-circular shapes, as starfish shapes or ellipses, due to
the competition between line tension and a dipole-dipole interaction between
lipid molecules [8, 131]. Using an approximation due to Iwamoto and Zhong-
can [125], that model can be mapped into a two-dimensional bending model
with an effective line tension which does not need to be positive. Using the
bending phase-field model derived in Ch. (5), we are able to find the dynamic
evolution leading to such shapes, in a very good qualitative agreement with
experimentally reported observations [131, 152].

Finally, in the third Part of the thesis we focus on the way proteins gener-
ate membrane curvature [171, 263]. Just as in the first Part of this thesis we
assume that proteins asymmetrically anchored in a bilayer generate a certain
curvature which in turn shapes vesicles accordingly, in the third Part we study
the mechanism by which these proteins induce such curvature. In order to do
so, we need to go beyond the classical curvature models used in the first two
Parts, and derive a microscopic model taking into account the internal strains
and stresses of the lipid matrix. In this way we can study how high con-
centrations of shallowly inserted protein domains create the large curvatures
observed in vivo. In the introductory Ch. 11 of this Part, we review some of the
biologically relevant mechanisms of membrane curvature generation known
to date. In Ch. 12, we study a specific mechanism, due to proteins. Actu-
ally, the so-called hydrophobic insertion mechanism of membrane curvature
generation by proteins happens because of the introduction of relatively small
hydrophobic domains into the membrane matrix. The wedge effect these in-
serted domains has on the bilayer is what we study both qualitatively and
quantitatively by means of an elastic model. This elastic model consists on
the equilibrium equation of an anisotropic elastic medium with the considera-
tions needed to account for laterally fluid membranes. In order to solve such a
model, consisting in a set of coupled non-linear partial differential equations,
we use a numerical method, the finite element method.

Besides of generating and/or stabilizing membrane curvature, membrane
proteins can also act as sensors of curvature. This means, in gross terms, that
a protein might have a different affinity of binding to highly curved mem-
branes or to almost flat membranes. In the framework of our elastic micro-
scopic model for thick membranes, we study this issue in Ch. 13.



8 1 General introduction

Last, we present a separated concluding Part of the thesis, containing gen-
eral conclusions, and future perspectives to continue studying how different
shapes appear in cells, under which mechanisms they appear, and to see if we
can get a further understanding of the intracellular world by setting together
biological and physical tools.
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2
Biological membranes: from molecular components to
fluid vesicles.

2.1
Molecular components of biological membranes: the membrane building
blocks

Lipid bilayers are the common principle which guarantee a stable but flexible
surrounding for cells and cell organelles. However, it is biologically necessary
to provide every one of these membrane-enclosed entities with very specific
structural and functional properties. Thus, the biochemical composition of,
say, an eukariotic cell membrane, has to be rather complex [243] (see Fig. 2.1),
and differ from membrane to membrane. The basic components of a cell mem-
brane include several kinds of lipids, some of which form the lipid bilayer, and
some others control its fluid behavior. Besides, proteins involved in both func-
tional and structural matters have to be forming the membrane. Regardless of
the polymer networks which join some cell membranes, like the cytoskele-
ton [119], or the glycocalyx [220], biomembranes are basically composed by
lipids and proteins.

2.1.1
Lipids

Among the high diversity of existent lipid molecules, only some types are
involved in the formation of animal cell membranes [70]. These membrane
lipids generally constitute about one half of the cell membrane’s mass. Most
membrane lipids are roughly cylindrical in shape, their typical length and
cross-section area being∼ 2 nm, and∼ 0.6 nm2, respectively [196]. This means
that there are of the order of ∼ 109 lipids in the plasma membrane of a usual
animal cell [3].

Lipid molecules consist of two chemically differentiated parts, one being
polar (or hydrophilic, that is, water-loving); and the other being non-polar
(or hydrophobic, that is, water-avoiding). This dual nature of lipids is called
amphiphilicity (or amphipathicity). Lipids are only one kind of amphiphilic
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Figure 2.1 Molecular model of a typical synaptic vesicle (from Ref. [243]). (a) Outside view of
the vesicle, and (b) view of the vesicle sectioned in the middle. For details on the membrane
proteins present in the vesicle, see [243].

molecules (or amphiphiles). Surfactants, like detergents or soaps (e.g. sodium
stearate, the common soap), among other molecules, are also amphiphiles. As
we will see in the next Section, this amphiphilicity is crucial for the lipids to
form a bilayer structure. Thus, one might say that lipid molecules are essential
for the formation of a thin and soft, albeit resistant, boundary to enclose and
define individual functional entities, as cells are.

Besides, lipids are structurally characterized, from a physical point of view,
by the size and length of their polar and non-polar parts; by the electric prop-
erties of the polar moiety; and by the nature of the chemical bonds of the
non-polar part, mainly [160]. Next, we describe the main properties of the
major subgroups of membrane lipids: phosphoglycerides, sphingolipids, gly-
colipids, and cholesterol.

• Phosphoglycerides. Phospholipids are the most abundant lipid compo-
nents in cell membranes. Like all membrane lipids, they are amphiphilic
molecules. They are derived from an alcohol molecule, either from glyc-
erol (a three-carbon alcohol), or from sphingosine (a more complex alco-
hol) [18, 155]. The ones formed from a glycerol backbone are known as
phosphoglycerides. The three carbon atoms of the glycerol are linked to
the rest of the phospholipid: two hydrophobic fatty acid chains linked to
two of these carbon atoms; and the third one connects to a hydrophilic
esterified phosphate ligand, which in turn links to a hydrophilic head
group (see Fig. 2.2a).

The fatty acid chains can either be saturated or not, unsaturated chains
containing one or more double bonds between two of their carbon
atoms. Double bonds are rigid, so they create a kink in the chain, al-
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Figure 2.2 Phosphoglyceride structure. (a)
The chemical formula of a general phospho-
glyceride is shown. The hydrophilic group, the
phosphate ligand, and the glycerol backbone
are shown in blue, yellow, and green, respec-
tively, and correspond to the hydrophilic part
of the molecule. The hydrophobic part, con-
sisting of two fatty acid chains (with a com-

mon COO- structure linked to two different
hydrocarbon residues, R, and R′) is shown
in gray. (b) Three-dimensional space-filling
model of a common phospholipid, dipalmi-
toylphosphatidylcholine (DPPC), having a
choline headgroup and two equal saturated
fatty acids (palmitic acid).

though the rest of the chain continues being able to rotate about the
other C−C single bonds. Typically, fatty acids in membrane lipids con-
tain an even number of carbon atoms, usually between 14 and 24, the
16− and 18− being the most common. In chemical notation, a saturated
fatty acid of n carbons can be represented by

CH3 (CH2)n−2 −COOH.

Palmitic acid, stearic acid, and arachidic acid, correspond to chains with
n = 16, n = 18, and n = 20, carbons, respectively (see Fig. 2.2b). Un-
saturated fatty acids depend not only on the number of carbon atoms,
but also on the location of the double bond. For example, oleic acid has
18 carbon atoms (thus being a monounsaturated form of stearic acid),
and a double bond in the cis-9 position (i.e. in the n − 9 position, thus
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belonging to the ω − 9 fatty acid class [7]). Unsaturated lipids are less
packable than saturated lipids, thus having a lower gel transition tem-
perature (see Sec. 2.3 below).

On the other hand, the small hydrophilic group linked to the phosphate
ligand is normally negatively charged, and define the properties of the
polar moiety of the molecule. Usual headgroups found in membrane
lipids are choline, ethanolamine, or serine, chemically represented by

Choline −CH2 −CH2 −N+(CH3)3,
Ethanolamine −CH2 −CH2 −N+H3,

Serine −CH2 −CH
〈 N+H3

COO− .

Phosphoglycerides are named by the headgroup they contain. Phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), and phosphati-
dylserine (PS) are formed by the previously mentioned polar head-
groups, respectively. In red blood cells, they constitute, ∼ 17%, ∼ 18%,
and ∼ 7%, respectively [3]. However, these are phospholipid classes,
since they are just named after the polar headgroup they contain, inde-
pendently of which fatty acid chains they are bound to. Just to mention
two common examples of membrane lipids called after both their po-
lar headgroup and their fatty acid chains, dioleoylphosphatidylcholine
(DOPC) is a monounsaturated lipid formed by two oleic acid chains;
and dipalmitoylphosphatidylcholine (DPPC), formed by two saturated
palmitic acid chains (see Fig. 2.2b).

• Sphingolipids. These are phospholipids that, contrarely to phospho-
glycerides, lack the glycerol backbone. Instead, they contain sphingo-
sine, an aliphatic amino alcohol derived from serine with a long unsat-
urated hydrocarbon chain. The sphingosine backbone is also linked to a
polar headgroup like phospholipids. Sphingomyelins are the most com-
mon sphingolipids in human cells (∼ 85% of all sphingolipids). Their
phosphate-containing headgroup (see Fig. 2.3a) can either be phos-
phocholine or phosphoethanolamine. In red blood cells, sphingolipids
count ∼ 18% of plasma membrane lipids composition [3].

Figure 2.3 Membrane lipids. (a) Chemical formula of a general sphingomyelin. (b) Chemical
formula of cholesterol molecule.
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• Glycolipids. Carbohydrates are found in membranes forming the so-
called glycocalyx, a network of polysaccharides that project from cel-
lular surfaces [3]. They are covalently bound to the membrane, to ei-
ther membrane proteins, or directly to membrane lipids, forming gly-
colipids. Structurally, glycolipids, like phospholipids, are composed of
two hydrophobic hydrocarbon chains and a polar region. In this case,
the polar region contains one or more sugar residues and no phosphate.
Glycolipids are found in red blood cell membranes at a low concentra-
tion, ∼ 3% of lipid weight percentage [3].

• Cholesterol. It belongs to the steroid class of lipids (as testosterone
does), being by far the most common of them in cell membranes. It con-
stitutes∼ 23% of the lipid composition in red blood cell’s membrane [3].
Cholesterol structure differs from phospholipids and sphingolipids. The
basic structure of steroids is a four-ring aromatic hydrocarbon backbone.
Cholesterol has a single hydroxyl group constituting the polar part of the
molecule. It is therefore an amphiphilic molecule (see Fig. 2.3b).

Cholesterol molecules are about half long as usual phospholipids. This
property, together with the small size of their polar head, makes choles-
terol molecules position parallelly to phospholipids, with the choles-
terol polar head aligned with the phospholipid glycerol backbone. Since
cholesterol aromatic rings are stiff, small concentrations rigidify phos-
pholipid chains, thus diminishing the fluidity of the bilayer. However, at
high concentrations, cholesterol prevents the hydrocarbon chains from
crystallizing, inhibiting possible phase transitions [135, 183].

2.1.2
Proteins

While lipids confer cell membranes their basic structural and geometric prop-
erties in order to be suitable cell frontiers, proteins account for membrane
functionality 1. Proteins are somehow swimming into a two-dimensional lipid
pool, the bilayer, and generally contribute to membrane’s weight as much as
lipids. However, lipid molecules are much lighter than membrane proteins,
meaning that for a typical plasma membrane there are ∼ 50 lipids for each
protein.

There are several ways by which membrane proteins associate with the lipid
bilayer. According to the nature of this membrane-protein interaction, mem-
brane proteins can be broadly classified in two main categories: integral and
peripheral proteins.

1) They also play a role in membrane structure, as we study in the
third Part of this thesis.
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Figure 2.4 Membrane protein association
with the lipid bilayer. Transmembrane proteins
(A-C) span across the whole bilayer thickness
as a single (A) or several (B) α-helices; or as
a β-barrel (C). Integral monotopic proteins
(D-F) anchor to a part of the entire membrane
by insertion of the hydrophobic residues of an

α-helix (D), or by attaching the bilayer through
a lipid intermediate by a covalent bond (E), or
by a oligosaccharide linker (F). Noncovalent
interaction of a protein with another protein
link peripheral membrane proteins to any side
of the bilayer (G,H). Adapted from Ref. [3].

• Integral proteins. They are permanently attached to the membrane, re-
quiring some apolar solvent (like a detergent) to be removed. According
to how they anchor to the membrane, they can be subclassified as trans-
membrane proteins or integral monotopic proteins.

Transmembrane proteins span the entire membrane, crossing it at least
once (see 2.4A) (or weave it several times (see 2.4B)). Like lipids, these
are also amphiphilic molecules. Their hydrophobic parts insert into the
hydrophobic core of the bilayer, while their hydrophilic domains are ex-
posed to either the inner or the outer aqueous media. Among transmem-
brane proteins, we may cite α-helical proteins (see 2.4A,B), and β-barrels
(see 2.4C).

Integral monotopic proteins are permanently attached to the membrane
by one side. They might contain an amphipathic α-helical domain which
anchors one leaflet of the bilayer (see 2.4D). They can also directly attach
lipid chains by covalent bonds (see 2.4E), or via an oligosaccharide linker
(see 2.4F).

• Peripheral proteins. Other membrane proteins do not span over the en-
tire thickness of the bilayer membrane, not reaching its hydrophobic re-
gion. These proteins are noncovalently bound to other proteins in either
face of the bilayer (see 2.4G,H). Extraction of these proteins is easier than
for integral proteins, for instance by adding a solution of extreme pH or
salt concentration, which affects on the protein-protein interactions, but
not on the stability of the lipid bilayer.
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In the third Part of this thesis we are devoted to understand a mechanism
of curvature generation by membrane proteins, particularly, by the partial in-
sertion of amphiphilic α-helices into the membrane.

2.2
Self-assembly

We have just seen the amphiphilic nature of lipid molecules. What happens
when we put a certain number of amphiphilic molecules in water solution?
The hydrophilic moiety of the amphiphiles is energetically favored by being
in contact with the water environment, contrarely to what occurs to the hy-
drophobic moiety. An answer, in terms of reducing the free energy of the am-
phiphiles, comes from the fact that the energy cost of these hydrocarbon-water
interfaces can be lowered by creating aggregates, in expenses of reducing the
entropy of the system. If the overall free energy is lower in such a configu-
ration, we say that the system has self-assembled or self-organized. Quoting
S. Camazine et al.’s book [35]:

Self-organization is a process in which pattern at the global level of
a system emerges solely from numerouse interactions among the
lower-level components of the system. Moreover, the rules spec-
ifying interactions among the system’s components are executed
using only local information, without reference to the global pat-
tern.

It is, lipid-lipid and lipid-water interactions arrange the amphiphiles in a ge-
ometrically constrained pattern which minimizes the total free energy of the
system.

2.2.1
Thermodynamics of self-assembly

Let us study the thermodynamics of a system consisting of molecular aggre-
gates. An aggregate of size N, in this sense, is an association of N molecules
(monomers). Thermodynamical equilibrium requires that the chemical poten-
tial of all identical molecules in aggregates of different size be equal [123,245].
This chemical potential can be expressed as follows [123],

µN = µ0
N +

1
N

kBT log
(

XN
N

)
= constant, N = 1, 2, 3, . . . , (2.1)

where µN is the mean chemical potential of a molecule in an aggregate of size
N; µ0

N is its mean interaction free energy per molecule; kBT is the product of
the Boltzmann constant and the absolute temperature; and XN is the concen-
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tration of molecules in N-sized aggregates. It can be rewritten in the following
equivalent form

XN = N

[
X1 exp

(
µ0

1 − µ0
N

kBT

)]N

, (2.2)

which, together with the conservation relation for the total solute concentra-
tion, C,

C =
∞

∑
N=1

XN , (2.3)

completely defines the system. We notice, from Eq. (2.2), that the way µ0
N

changes with N describes the formation of large aggregates. Thus, for µ0
N

increasing with N, or even independent of it, large aggregates form at very
low concentrations (remind that X1 ≤ 1). The necessary condition for the
formation of large aggregates is then that the mean interaction free energy per
particle, µ0

N , decreases with the aggregate size, N.

2.2.2
Amphiphile self-assembly

Let us now focus on the self-assembly of amphiphilic molecules. From the
general thermodynamic theory in the previous Section, one can see that a the-
ory describing the interaction free energy is needed in order to further pro-
ceed. Self-assembly of amphiphiles is mainly governed by two kinds of forces.

First, the hydrophobic attraction at the hydrocarbon-water interface. Due
to the energy cost of exposing the lipid acyl chains, the size of this interface
tends to shrink, creating an effective attractive force between lipid molecules.
Typical interfacial free energies per unit area for membrane lipids are γ ≈
20− 50 mJ m−2 [123,193]. Thus, this contribution to the interaction free energy
can simply be written as

µ0
N,att = γa, (2.4)

where a is the surface area occupied per headgroup 2.
Second, the hydrophilic, ionic, or steric repulsion of the headgroups gen-

erates an opposite repulsive interaction between these polar heads. In spite
of the complexity of this interaction, we can give a first order approximation.

2) Sometime the attractive free energy is written as

µ0
N,att = γ(a− a∗),

but this only changes the zero of energy, so it has no effect on further
analyses.
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If we expand the energy in terms of the inverse of the surface area per head-
group,

µ0
N,rep = µ0

N,rep

(
1
a

)
= A + K/a + K′/a2 + . . . , (2.5)

which, up to the first relevant order, and neglecting the constant term in the
expansion, can be rewritten as

µ0
N,rep =

K
a

. (2.6)

The total interaction energy is then the sum of Eq. (2.4) and Eq. (2.6),

µ0
N = γa +

K
a

. (2.7)

The optimal headgroup area, a0, is found after minimization of the interaction
energy Eq. (2.7) (see Fig. 2.5),

∂µ0
N

∂a

∣∣∣∣∣
a=a0

= 0 ⇒ a0 =

√
K
γ

. (2.8)

Using this in Eq. (2.7), we can eliminate the unknown constant K, and then
write the interaction free energy in terms of measurable physical parameters,

µ0
N = 2γa0 + γ

(a− a0)
2

a
. (2.9)

It has to be noted that in this simplified description important effects have
been disregarded, such as specific interactions between polar heads or be-
tween non-polar chains or curvature effects [123].

2.2.3
Shape of aggregates: geometric packing parameter

The interaction free energy Eq. (2.9) is almost independent on the aggregation
number N. In this case, as we argued from Eq. (2.2), entropy favors the struc-
ture with the lowest aggregation number. However, energy considerations
impose that the area per headgroup, a, keeps its optimal value a0. The shape
of aggregates is thus dictated by geometric considerations, as follows.

Assume that we define a molecular geometry based on the packing proper-
ties of the molecule itself. The area per molecule remains in its optimal value,
a0. The volume of the hydrophobic core, v, is also kept constant because of
the incompressibility of the fluid. The other parameter is the so-called critical
chain length, lc, which sets a limit in the length of the chains. From these three
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Figure 2.5 Qualitative plot of the interaction
free energy, µ0

N , as a function of the surface
area per molecule, a. Both the attractive and
the repulsive parts of the total energy are
shown. The optimal headgroup area, a0, is

found by minimizing the total energy with re-
spect to the surface area per molecule, and
corresponds to the crossing point of the at-
tractive and repulsive energies.

geometric parameters we can define a dimensionless quantity, the packing pa-
rameter, or shape factor, p, as

p =
v

a0lc
, (2.10)

such as p < 1 for conelike or truncated conelike structures, p = 1 for cylinders,
and p > 1 for inverted conelike geometries (see Fig. 2.6). The value of this
parameter, i.e. the effective packing shape of the amphiphile, determines in
which structure the amphiphiles self-assemble [124]:

• Spherical micelles. Consider a spherical micelle of radius R, formed
by the aggregation of M amphiphiles of area a0, volume v, and maxi-
mum chain length lc (see Fig. 2.6). The total surface area and the micelle
volume are, respectively,

Asph = 4πR2 = Ma0, (2.11)

Vsph =
4
3

πR3 = Mv, (2.12)

from where, eliminating M, we get that

R =
3v
a0

, (2.13)
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and since the radius of the micelle has to be smaller than the maximum
chain length, R ≤ lc, and using Eq. (2.10), we get the following geomet-
rical constraint on the formation of spherical micelles,

psph ≤
1
3

. (2.14)

Lysolipids (lipids lacking one of the two hydrocarbon chains) with large
headgroup areas usually fall under this regime of being micelle-forming
lipids.

• Cylindrical micelles. For packing parameters p > 1/3, spherical
micelles cannot be formed by geometric considerations, altough they
would be the most suitable structures in entropic terms. Let us check in
which regime of the packing parameter cylindrical micelles of radius R
and length L can be formed 3. As previously we calculate the area and
volume of such a micelle, which respectively are

Acyl = 2πRL = Ma0, (2.15)

Vcyl = πR2L = Mv. (2.16)

Again, since R ≤ lc, we get the following condition for the packing pa-
rameter,

1
3

< pcyl ≤
1
2

. (2.17)

Single-chained lipids with small headgroup areas, like lysolecithin, fit in
this regime of values of the lipid packing factor.

• Vesicles and bilayers. For larger packing parameters, micelles cannot
be formed, and then vesicles or bilayers are formed (see Fig. 2.6). The
area and volume of a piece of bilayer, of area Abil, and thickness 2h, are,
respectively,

Abil = Ma0, (2.18)

Vbil =
Abil

2
2h = Mv, (2.19)

and, since h ≤ lc, we have that

pbil ≤ 1. (2.20)

3) This length has to be finite, therefore leaving free edges which are
energetically unfavorable, and they have to pack into hemispherical
caps which do not fall under the range of permitted packing param-
eter, thus adding an energy cost to the total micellar free energy (see
Ref. [123] for a more detailed discussion on this issue).
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Most common phospholipids are bilayer-forming lipids. Depending on
the relative size of their headgroups and acyl chains, their packing factor
gets closer to the unity.

• Inverted micelles. When the packing factor exceeds the unity, p > 1,
inverted micelles come into play. In this situation, amphiphiles are not
soluble in water anymore, and form inverted structures with crystalline
order (such as inverted hexagonal or inverted cubic phases) at high am-
phiphile concentration. Double-chained lipids with small headgroup
area and unsaturated hydrocarbon chains at high temperature may form
inverse structures.

Figure 2.6 Lipid self-assembly. Depend-
ing on the value of the lipid packing factor,
p, different structures are formed. From left
to right, a micelle, a vesicle, and a bilayer

are shown. In the upper line, the mean lipid
geometry is shown, and under which range
of packing factor values each structure is
formed.

Summarizing, depending on the geometric properties of amphiphiles, dif-
ferent kinds of structures are formed by self-assembly. In particular, single-
chained lipids (surfactants like common soap), tend to adopt packing fac-
tors p . 1/2, whereas double-chained lipids have packing factors p & 1/2,
thus favoring the formation of bilayers, or, turning the tables, bilayers can be
formed by double-chained lipids, as it is known to happen in cells.
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2.3
Phase behavior of cell membranes

Lipid bilayers present different phases depending on their composition, tem-
perature, or lateral pressure. Simple single-component model bilayers al-
ready present a rich polymorphism (see Ref. [139] for a review on phos-
phatidylcholine lipid phases); while more complex bilayer mixtures (contain-
ing phosphoglycerides, sphingolipids, and cholesterol) might indeed form
phase-separated domains within the lipid bilayer, the so-called lipid rafts [234]
(see also Part II of this thesis). These topics are of a great interest and they
are subject of extensive studies. However, at this point, we will only intro-
duce the basic concepts of lipid phase polymorphism, focusing ourselves in
lamellar bilayer lipid phases (for further information on lipid polymorphism,
cfr. Chapter 3 in [160], and for polymorphism in lipid monolayers, Chapter 4
ibid.).

Phospholipid bilayers are generally, at physiological temperatures, in a
fluid state. More precisely, in a lamellar fluid state, where lipids are free
to move along the bilayer plane (the diffusion coefficient of a lipid being
D ∼ 10−8 cm2/s, that is, they have a fast diffusion), and the acyl chains are
highly disordered accounting for a large entropy level. Such a phase is called
liquid-crystalline or liquid-disordered phase, and represented by ld, or Lα (L for
lamellar, and α for liquid-like chain conformation) (see Fig. 2.7a).

When the temperature of the bilayer decreases under a certain tempera-
ture, Tm, the melting temperature, characteristic of each lipid, phospholipid
bilayers go into a ‘frozen’ state. This phase is the ordered gel phase, or solid-
ordered phase, and it is represented as Lβ (β for ordered gel-like chains). It
corresponds to a slow lipid diffusion along the membrane plane (the diffu-
sion coefficient of a lipid being D ∼ 10−10 cm2/s, two orders of magnitude
slower than in the Lα phase). In addition, gel phase can be subdivided ac-
cording to the mean orientation of the lipid chains. If they are oriented along
the bilayer normal, we say that the bilayer is in an untilted gel phase, Lβ (see
Fig. 2.7b). Otherwise, when the lipids are tilted a certain angle with respect to
the bilayer normal, the bilayer is in a tilted gel phase, Lβ′ (see Fig. 2.7c). How-
ever, the gel phase does not appear to exist in biological membranes, except
for unusual cases [192].

Phase coexistence of Lα and Lβ phases has been experimentally observed by
confocal microscopy and fluorescence spectroscopy in model pluricomponent
vesicles [137]. In these membranes, the presence of cholesterol acts as a chain
rigidifier (see Sec. 2.1.1), and a new liquid phase can be observed, the so-called
liquid-ordered phase (see Fig. 2.7d). In this phase, lipid chains acquire their
maximum length, like in the gel phase, thickening the bilayer from ∼ 4 nm
to ∼ 5 nm. However, lipids have still a relatively large lateral mobility (the
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Figure 2.7 Lipid phases in bilayers. (a)
Liquid-disordered, Lα phase with highly disor-
dered hydrophobic chains. (b) Gel phase, Lβ,
with the acyl chains ordered parallelly to the
bilayer normal; or (c) tilted with respect to it,
in the tilted gel phase, Lβ′ . (d) Liquid-ordered
phase, Lc, with intermediate ordination of the

acyl chains. (e) Ripple-phase, Pβ, gel-like
phase with a periodic modulation deforming
the lamellae. (f) Interdigitated gel phase, Lint

β ,
where the acyl chains are ordered and over-
lap the hydrophobic region occupied by the
opposing leaflet of the bilayer.

diffusion coefficient being D ∼ 10−9 cm2/s, in between Lα and Lβ phases).
This phase is usually represented as lo, or Lc (c for crystalline).

There are other lamellar phases that can be found among lipid mixtures, as
the gel ripple phase, Pβ, where the lamellae are deformed by a periodic mod-
ulation (see Fig. 2.7e); or many kinds of interdigitated gel phases, Lint

β , where
fatty acid chains interdigitate with respect to each other in several possible
conformations (see Fig. 2.7f).
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3
Some aspects on mechanics of membranes and vesicles

3.1
Elastic properties of lipid bilayers: historical perspective

The problem of understanding which forces maintain the biconcave shape of
human red blood cells [20] (see Fig. 3.1) has been an enigma since their discov-
ery in the seventeenth century. Quoting D’Arcy Thompson’s inspiring book
On Growth and Form [247]:

The form of the [red blood-]corpuscle is symmetrical; it is a solid of
revolution, but its surface is not a surface of constant mean curva-
ture. From the surface-tension point of view, the blood-corpuscle
is not a surface of equilibrium; in other words, it is not a fluid drop
poised in another liquid.

Figure 3.1 Highly enlarged scanning elec-
tron micrograph (SEM) depicting a closer
look at the details exhibited by of number
of red blood cells found enmeshed in a fib-
rinous matrix on the luminal surface of an
indwelling vascular. (a) Healthy biconcave

shaped red blood cells. (b) A crenated dis-
eased red blood cell, or echinocyte, is shown
in this micrograph. Both images are in the
public domain. Content provider: Janice Carr,
CDC (http://www.cdc.gov ).

Observations made by R. P. Rand and others in the sixties (see [44] and
references therein) showed that deformed red blood cells resumed to their
equilibrium biconcave form within a fraction of a second. As P. B. Canham
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pointed out [44], these observations show that biconcave shapes correspond
to a configuration of minimum energy:

We believe the energy minimization is the bending energy of the
membrane, and that the membrane is solely responsible for the
cell’s shape.

In this paper [44], the first to our knowledge which characterizes the bicon-
cave RBC’s shape by its bending energy, Canham assumed the following main
hypotheses:

• Bending energy minimization gives the red blood cell its characteristic
biconcave shape.

• Bending energy vanishes for flat membranes, i.e., no possible asymme-
try between the two leaflets of the bilayer is incorporated.

• The total cellular area remains fixed upon shape changes.

• The membrane is homogeneous over the entire surface.

• No shear stresses are taken into account.

These assumptions led him to write the following bending energy

U =
D
2

∫ (
1

R2
1

+
1

R2
2

)
dA : D =

Eh3

12
(
1− ν2

) , (3.1)

where R1 and R2 are the two principal curvatures of the surface at a given
point (see Appendix A), D is the bending rigidity, E is the Young’s modulus of
elasticity, h the thickness of the membrane, and ν the Poisson’s ratio. This en-
ergy was minimized within a certain subfamily of curves, the modified ovals
of Cassini, which account for both biconcave and non-biconcave shapes. It
was found that, for fixed cell area and volume, the modified Cassini oval with
the least bending energy corresponded to a biconcave one (see Fig. 3.2).

However, this approach has several limitations. First, the minimization pro-
cedure is only partial, since it is not performed over the whole function space,
but only over a very restricted family of curves. Second, the derivation of
the bending energy is not the most general possible given the hypotheses as-
sumed in the paper. W. Helfrich, in his 1973 paper [109] formulated a theory
of elasticity of lipid bilayers, which corrects some of these limitations. Con-
sidering the bilayer as a two-dimensional homogeneous fluid surface, he dis-
tinguished three kinds of strains affecting the bilayer elasticity: stretching, tilt,
and curvature. He claimed that the only relevant mode of deformation for
non-spherical vesicles is curvature. In that case, he assumed that the elastic
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Figure 3.2 Bending energy ratio as a function of a parameter B parametrizing the modified
Cassini ovals. The area and volume are constant in the graphic. Energy minimization show
that a biconcave oval is the least energy shape. Figure taken from Canham’s original paper,
Ref. [44].

energy of curvature was a quadratic function of the derivatives of the vector
normal to the bilayer, (nx, ny). The curvature elastic energy per unit area was
written as

wc =
1
2

κ

(
∂nx

∂x
+

∂ny

∂y
− c0

)2

+ κ̄

(
∂nx

∂x
∂ny

∂y
− ∂nx

∂y
∂ny

∂x

)
, (3.2)

where κ and κ̄ are the curvature elastic moduli, analogous to the splay and
saddle splay moduli of liquid crystal curvature elasticity [58, 92]; and c0 is the
spontaneous curvature, allowing the two leaflets of the bilayer to be chemi-
cally different. Rewriting Eq. (3.2) as a function of the principal curvatures, cm
and cp,

wc =
1
2

κ
(
cm + cp − c0

)2 + κ̄ cmcp, (3.3)

or, defining the total and Gaussian curvatures (see Appendix A)

wc =
1
2

κ (J− c0)
2 + κ̄ K, (3.4)

which is a usual notation used nowadays [224, 263].
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Comparing Canham energy Eq. (3.1) and Helfrich energy Eq. (3.3), we see
that Canham equation can be written as

U =
D
2

∫ (
1

R1
+

1
R2

)2
dA− D

∫
1

R1R2
dA, (3.5)

which is a special case of Helfrich’s, corresponding to the situation when
D = κ = −κ̄, and c0 = 0. However, as Helfrich pointed out [109], the saddle
splay term (the Gaussian curvature term) depends only on the boundary con-
ditions, and can be omitted in many calculations, making both calculations
analogous for the purpose of finding the shapes of least energy 1. Further-
more, Helfrich derived the Euler-Lagrange equations for the bending energy
for a given situation, in order to find the shape minimizing the bending energy
without restricting to a given family of curves, as Canham did [44].

Besides, one has to note that these energies Eqs. (3.1), (3.3) are of second
order in curvatures, meaning that the expressions are valid for small curva-
tures2. In addition, the internal structure of the bilayer is only effectively in-
cluded in this model through the elastic parameters, since the bilayer is con-
sidered to be a two-dimensional surface.

One year later, Evans [77] studied the bending resistance of bilayers in or-
der to understand a possible mechanism for red blood cell crenation [20].
He argued that the shape transformation from biconcave discs to crenated
echinocytes might be due to chemically induced bending moments. He stud-
ied the bilayer as a composite of two connected or unconnected monolayers,
depending on whether the layers slip relative to each other or not3. The effect
of such a coupling can be considered as the initial seed for ulterior studies on
more complex bending models, as the area difference elasticity model.

3.2
Gibbs’ description of interfaces

The theory of interfaces was formulated in the late nineteenth century by
J. W. Gibbs [100] in order to understand the elastic properties of layers of
small but finite thickness. This is the case of amphiphile monolayers, but

1) This is by virtue of the Gauss-Bonnet theorem, which we comment
in a while, in Sec. 3.5.2.

2) The units of curvature are inverse length, so we should compare
them with another physical parameter with the same units, in this
case, the thickness of the bilayer, δ. Meaning that the Canham-
Helfrich approximation is valid for ci δ ¿ 1, where ci are the princi-
pal curvatures.

3) We use here the same words as in the original paper [77]. However,
in the third Part of this thesis, we recall such a coupling between
monolayers as laterally coupled and laterally uncoupled monolay-
ers, respectively.
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Figure 3.3 Surface excess approach. A thick interface between two different phases, A and B
(a), is mapped into a dividing surface (b) which sharply separates both phases.

also of the transition region, of a few molecules width, between two immis-
cible liquid phases (as the water-oil interface, for instance). Here, we address
one of the approaches to this problem, the so-called surface excess approach
(see Ref. [141] for a broader description). Within this approach, the actual
thick interface is mapped into a two-dimensional surface, located in the in-
terfacial region, and characterizing the geometrical properties of the interface
(position and orientation). Such a surface is called a dividing surface. The
physical equivalence between both descriptions requires association of ther-
modynamic quantities to the dividing surface. These quantities correspond to
the difference values between the actual system and the system we are taking
into account, which extrapolates bulk properties up to the dividing surface
(see Fig. 3.3). Note that the election of the dividing surface is arbitrary, and
one can choose between multiple choices. In fact, as we will see in a while,
choosing an appropriate dividing surface simplifies the whole mathematical
description.

Let’s see how the internal energy of an element of the dividing surface
can be expressed. This element can be fully characterized, from a geomet-
ric point of view, by giving its area, A, and both invariants of curvature (see
Appendix A): the total curvature, J, and the Gaussian curvature, K. One can
thus express the changes of the internal energy of the dividing surface, dUs,
as

dUs = T dSs + ∑
i

µi dms
i + γ dA + C1 A dJ + C2 A dK, (3.6)

where variations of the entropy, Ss, and of the masses of the components, ms
i ,

as well as of the geometric properties have been included. The stresses γ, C1,
and C2 are called interfacial tension, and first and second bending moments,
respectively. They are multiplied in Eq. (3.6) by the area of the surface element
in order to be intensive quantities. They are defined by the partial derivatives
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of the internal energy

γ =
∂Us

∂A

∣∣∣∣
Ss ,ms

i ,J,K
, (3.7)

C1 =
1
A

∂Us

∂J

∣∣∣∣
Ss ,ms

i ,S,K
, (3.8)

C2 =
1
A

∂Us

∂K

∣∣∣∣
Ss ,ms

i ,S,J
. (3.9)

It has to be noted that Gibbs’ theory of interfaces is a linear theory for the
changes of the energy, higher-order corrections being needed for large defor-
mations of the dividing surface. Besides, it doesn’t explicitly incorporate any
information about the internal structure of the interface.

3.3
Curvature free energy

Let us now consider the free energy per unit area4 of the membrane as being
function of the geometric properties (we disregard the thermodynamic vari-
ables at this point). Up to second order in curvatures, it reads

f (A, J, K) = f0(A) + f1(A)J + f2(A)J2 + f̄2(A)K. (3.10)

The free energy in the flat state is f (A, 0, 0) = f0(A), and the equilibrium
area of the surface element A0, meaning that f ′0(A0) = 0, and f ′′(A0) > 0.
Expanding the coefficients in the right-hand side of Eq. (3.10) around A0 up to
the same order, we get

f (A, J, K) ≈ f0(A0) +
1
2

f ′′0 (A0) (A− A0)
2 + f1(A0)J

+ f ′1(A0) (A− A0) J + f2(A0)J2 + f̄2(A0)K. (3.11)

If we minimize it with respect to the surface area A to find the equilibrium
area of the curved surface, A∗, we get

A∗ = A0 −
f ′1(A0)
f ′′0 (A0)

J, (3.12)

4) We follow here a similar derivation to the one for the free energy per
molecule, presented in Ref. [218].
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And therefore, evaluating Eq. (3.11) for the equilibrium area of the surface
element Eq. (3.12), we get the curvature free energy

f (A∗, J, K) = f0(A0) + f1(A0) J

+

(
f2(A0)−

f ′21 (A0)
2 f ′′0 (A0)

)
J2 + f̄2(A0)K. (3.13)

3.4
Neutral surface

In the previous Section, we calculated the free energy considering a general
dividing surface. One can, however, choose a specific dividing surface which
decouples the area stretching mode and the bending mode. This surface is
called the neutral surface. Shifting the dividing surface a quantity λ to a new
parallel surface, the new geometric quantities (see Appendix A), up to second
order in deformations, are

A′ = A (1− λJ) , (3.14)

J′ = J (1 + λJ)− 2λK, (3.15)

K′ = K. (3.16)

Therefore, after some algebra, the free energy Eq. (3.11) becomes

f
(

A′, J′, K′
) ≈ f0 +

1
2

f ′′0
(

A′ − A0
)2 + f1J

′

+
(

f ′1 + 2A0λ f ′′0
) (

A′ − A0
)
J′ + f̄2K

′ + f1λK′

+
(

2 f ′′0 A2
0λ2 + 2 f ′1 A0λ + f2 − 2 f1λ

)
J′2. (3.17)

From the definition of the neutral surface as the surface on which the stretch-
ing and bending modes are decoupled, we have to ask the coefficient behind
the coupling term in Eq. (3.17) to vanish

f ′1 + 2A0λ f ′′0 = 0 ⇒ λ = − f ′1
2A0 f ′′0

, (3.18)

giving the location of the neutral surface depending on the details of the
model. The free energy, after minimizing with respect to the area of the neutral
plane, reads

f
(

A′∗, J′, K′
) ≈ f0 + f1 J′ +

(
f2 +

f1 f ′1
f0 A0

− f ′21
2 f ′′0

)
J′2 +

(
f̄2 −

f1 f ′1
2A0 f ′′0

)
K′,
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(3.19)

where A′∗ = A0. One can also compare this with the Helfrich model Eq. (3.4)
to get the values of the elastic moduli as a function of the model parameters
[218].

3.5
Curvature models and stationary shapes of fluid vesicles

Stationary shapes of fluid vesicles are found when the corresponding energy
is minimized according to certain geometrical constraints, imposed by some
physical properties of vesicles. Besides, for homogeneous fluid vesicles one
can ignore the Gaussian curvature term of the Canham-Helfrich energy since
it is a topological invariant. Shape diagrams can be traced telling which is the
stationary shape given all the independent parameters of the specific model.
In this Section we briefly discuss these facts in order to get a general perspec-
tive on the topic. We refer to [224] for an exhaustive review on curvature
models and configurations of fluid membranes.

3.5.1
Geometric constraints

As we reported in Ch. 2 of this thesis, membrane lipids are amphiphilic
molecules which in aqueous solution self-assemble due to the hydrophobic
effect [244, 245, 257]. The concentration of lipid molecules in solution out of
the formed bilayer structure is very small, typical values ranging from one
to hundred molecules per µm3 [165]. If there is no externally applied flux of
lipids coming into or going away from the bilayer, the number of lipids within
a vesicle membrane remains constant. Since the area per lipid is also fixed at
constant temperature, due to the relatively high energy needed to stretch the
membrane, the total area of the vesicle surface is also constant.

The energy for a water molecule to cross the hydrophobic core of a lipid
bilayer is of the order of the thermal energy, so lipid bilayers are permeable
to water. However, the same energy for ions or large molecules is of at least
hundred-fold times the thermal energy, meaning that the bilayer is not per-
meable to these molecules, and that is also the reason why ion channels and
pumps exist in biological membranes [116, 222]. The presence, deliberate or
not, of some of these molecules osmotically control the volume enclosed by
the vesicle, since the generation of osmotic pressure can’t be counterbalanced
by the bending forces of the membrane [109].

The shape of a fluid vesicle has to be found taking into account these con-
straints on fixed surface area and vesicle inner volume. A way to include them
in the energy model is by defining two Lagrange multipliers, Σ and P, for
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the conservation of total membrane surface area, A[Ω], and enclosed volume,
V[Ω], respectively. Thus, one can write the following variational effective free
energy

Feff = Fcurv + ΣA[Ω] + PV[Ω], (3.20)

where Fcurv stands for the bending energy of the desired curvature model (see
below).

3.5.2
Gauss-Bonnet theorem

The Gauss-Bonnet theorem [68, 130] states that the integral of the Gaussian
curvature, K, of a compact Riemannian manifold M; plus the integral of the
geodesic curvature, kg, along its boundary, ∂M; plus the sum of the jump
angles of this boundary, αi, is proportional to the Euler characteristic, χ(M),
of the manifold. Mathematically,

∫

M
KdA +

∫

∂M
kgds + ∑

i
αi = 2πχ(M). (3.21)

This is the most general way to write the Gauss-Bonnet theorem. However,
this expression simplifies when the manifold M is a closed regular surface. In
this case there is no boundary, and the Gauss-Bonnet theorem reads

∫

M
KdA = 2πχ(M). (3.22)

The Euler characteristic χ is a topological invariant, meaning that it only
changes when the topology of the shape changes, but remains constant as long
as continuous deformations (homotopies) [180] are performed. For a regular
surface, it can be expressed as

χ = 2 (N − g), (3.23)

where N is the number of objects, and g is the genus of the surface, i.e. the
number of handles or holes it has. For example, a sphere has Euler char-
acteristic χ(sphere) = 2; and a one-handle torus has Euler characteristic
χ(1-torus) = 0 (see Fig. 3.4). This theorem implies that the Gaussian term
of the Helfrich bending energy is a topological constant as long as (i) we are
dealing with a closed regular surface, and (ii) the Gaussian rigidity, kG, is ho-
mogeneous all over this surface. During the rest of this Chapter, we will re-
strict ourselves to discuss the physics arising from the bending terms without
considering the Gaussian curvature term. However, we will see along the the-
sis that the Gaussian curvature term might be relevant in different physical
situations while studying membrane morphology.
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Figure 3.4 Euler characteristic, χ, for different topologies.

3.5.3
Shape equation

The problem of finding the stationary shapes of vesicles given an energy
model and the needed constraints is the problem of finding the minimum
of the energy in the subspace of shapes on which the above mentioned con-
straints hold. Lots of effort have been made in solving this problem, and dif-
ferent approaches appeared in the last decades. Here, we will just mention
some of them, and give some references for further information.

The first approach, and probably the most used, goes back to Helfrich’s sem-
inal paper [109], and is due to variational calculus [99]. He set up an Euler-
Lagrange equation for the shape of rotationally symmetric bilayers. Shape
equations as Euler-Lagrange equations for the energy functional under con-
sideration have been widely studied since then [64, 109, 126, 128, 140, 176, 225,
261, 262]. Although a general shape equation can be found without assuming
any symmetry of the resulting shapes, it is usually of practical reason to get
an axisymmetric parametrization of the vesicle shape. Such a simplification
results in a non-linear ordinary differential equation whose solution under
certain boundary conditions gives the stationary shapes of vesicles5. We will
use this approach in the second part of this Thesis where we study the shape
of periodic biphasic lipid tubes.

In addition to this method, numerical minimization on triangulated sur-
faces has been implemented to find non-axisymmetric shapes [259], and also
in order to find red blood cell shape transformations coupling the curvature
model with the cytoskeleton elasticity [159, 178]. Mesoscopic simulations us-
ing dissipative particle dynamics (DPD) have been performed by Noguchi
and Gompper [187–189] to study hydrodynamic effects on lipid vesicles. Lat-
tice Boltzmann methods [158,237] have also been used to study vesicle shapes.

Different phase-field models have also been implemented to study the sta-
tionary shapes of vesicles [15, 38, 72]. In the first Part of this thesis we will

5) Since the variational problem δ(1) F = 0, and therefore the shape
equation, is only a necessary but not sufficient condition of energy
minimality, further inspection has to be done in order to check the
stability of the solution.
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present our derivation of a bending phase-field model and apply it to study
different dynamic instabilities on membranes.

3.5.4
Stationary shapes and shape diagram of the minimal model

The so-called minimal model, as discussed above, is nothing else than the
initial Canham model [44], or the Helfrich model [109] with no preferred cur-
vature for the bilayer, meaning that a free piece of membrane would relax to a
flat state with zero curvature. Let us recall here this bending energy,

FM =
κ

2

∫

Ω
(2H)2 ds, (3.24)

where κ is the bending rigidity, H is the mean curvature6, and the integral
is done over the whole membrane surface, Ω. It has to be pointed out that
the only elastic parameter in this model is the bending rigidity, which defines
the energy scale, but does not affect the minimization procedure. Besides,
when the area and volume constraints are applied (see Eq. (3.20)), these two
new parameters appear. However, due to the scale invariance of the bending
energies, only the area to volume ratio is relevant for the shape diagram. The
so-called reduced volume, v, is defined as the dimensionless volume to area
ratio,

v ≡ V
Vsph(A)

, (3.25)

where Vsph(A) is the volume of a sphere with area A, namely

Vsph(A) =
4π

3

(
A

4π

)2
, (3.26)

which implies that the reduced volume is bound between 0 < v ≤ 1, where
v = 1 only holds for a sphere, and v = 0 is the limit case of vanishing vol-
ume or infinite area. Therefore, for a given reduced volume, and a given
topology, it is theoretically possible to find the stationary shapes. Seifert and
coauthors [225] used the Euler-Lagrange equation for axisymmetric shapes of
spherical topology to find the stationary shapes of vesicles according to differ-
ent curvature models. For the minimal model, they found three branches of
local minima, corresponding to three qualitatively different shapes: prolates,
oblates and stomatocytes (see Fig. 3.5 a). Some of these shapes can be found
as metastable shapes (see Fig. 3.5 b).

6) In this thesis, we use indistinctly both the mean curvature H, and the
total curvature J = 2H (see Appendix A).
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Figure 3.5 Stationary shapes for the mini-
mal model. (a) Shapes of minimal curvature
energy for different values of the reduced
volume, v: stomatocytes, oblates, and pro-
lates (from left to right), separated by two

discontinuous transitions. (b) Shape dia-
gram showing the bending energy Eq. (3.24)
as a function of the reduced volume, v, for
the three different stable shapes mentioned
above. Figures adapted from Ref. ( [225]).

For non-spherical topologies, lot of work has also been done (see Ref. [224]
and references therein), and different branches of stable shapes have been
found. In Fig. 3.6 we present some of the genus-1 toroidal shapes that mini-
mize the energy of the minimal model.

3.5.5
Refined curvature models

Already in Helfrich’s paper [109], an improvement of the minimal model is
given, by letting the free membrane have a preferred curvature. This model is
known as the spontaneous curvature (SC) model. Let us recall its correspond-
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Figure 3.6 Shapes of genus 1 toroidal topology, from Ref. [223]. Sickle-shaped tori (a), dis-
coids (b), and circular toroids (c) can be found for different values of the reduced volume v.

ing bending energy,

FSC =
κ

2

∫

Ω
(2H− c0)

2 ds, (3.27)

where c0 is the spontaneous curvature of the bilayer. The physical origin of
this spontaneous curvature may stem from different origins. Depending on
the shape of the lipids, they can have a positive or negative spontaneous cur-
vature [263]. However, if the two monolayers are similar in composition, the
resultant bilayer spontaneous curvature vanishes, since one monolayer curva-
ture tendency opposes to the other’s. Thus, an asymmetry between the two
monolayers can be an origin of a bilayer spontaneous curvature. In the third
Part of this thesis we will study mechanisms by which proteins induce spon-
taneous curvature to membranes.

We saw above that the minimal model grasps some of the experimentally
observed vesicle shapes. However, it doesn’t explain, for instance, pear-like
shapes. The spontaneous curvature model explain such shapes, and a shape
diagram has been constructed for a large region of the v− c0 phase-space [225]
(see Fig. 3.7).

In the eighties, Svetina and coauthors introduced another model, the bilayer
couple (BC) model [239–241]. In this model, an extra constraint is required.
Not only the whole area of the bilayer remains fixed, but also the areas of the
two monolayers separately. Thus, the area difference between the outer and
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Figure 3.7 Stationary vesicle shapes cor-
responding to the spontaneous curvature
model. Stomatocytes (blue region), oblates
(red region), and prolates (gray region) are
found similarly to the minimal model. In ad-
dition, pears (green region) are found for

positive values of the spontaneous curvature,
c0. White regions correspond to unexplored
regions of the parameter space. See [225]
for further details on the distinct transitions.
Figure modified from Ref. [225].

the inner monolayers is also fixed (provided that flip-flop of lipids from one
monolayer to the other is slow, and thus not relevant in that situation). This
extra constraint also predicts pear-like shapes [225].

Later on, based on the mechanism proposed in the mid seventies by Sheetz
and Singer [229], and also by Evans [77], several groups proposed the area-
difference-elasticity (ADE) model [28, 226, 258], where the hard constraint of
the BC model was relaxed, and an elastic energy was added to take into ac-
count the energy penalty for deviations of a preferred area difference.

3.6
Thermal fluctuations

Membranes and vesicles are of course subject to thermal fluctuations. Actu-
ally, the typical energy scale of a piece of membrane, given by its bending
rigidity, is of the order of a few tens of kBT. Bending energy is thus compa-
rable to thermal energy, and thermal undulations will be visible. However,
it isn’t still large enough to keep a well-defined shape. Shape fluctuations of
giant vesicles can indeed be seen by light microscopy.
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The main effect of these fluctuations is to absorb membrane area. There-
fore, the real area of the vesicle is larger than the projected area, and the mem-
brane becomes rough. Using Fourier representation of the Helfrich energy in
a Monge representation (see Appendix A) for the height of an almost planar
membrane, the energy of a bending mode can be defined as [111, 224]

E0(q) = κq4, (3.28)

where q is the Fourier wavevector. The mean square amplitudes are con-
trolled by the equipartition theorem [121] which, in equilibrium, assigns to
each mode a mean deformational energy of 1/2 kBT [111].

3.7
Microscopic realization of the bending energy

Let us go back for a moment to the basics of elastic theory of surfaces. The
three classic deformation modes of a two-dimensional surface are (i) area
stretching-compression, (ii) shear deformation, and (iii) curvature [78, 146].
Both area stretching and shear are in-plane deformations, while curvature
generates out-of-plane strains.

For lipid membranes in a fluid state, shear deformations can be neglected,
since lipid molecules can freely diffuse along the membrane plane7.

The stretching mode accounts for the energy cost of changing the area of a
surface element. Assume that, under no externally applied stresses, the sur-
face preferred area is A0. Considering the stretching energy being a function
of the actual area, i.e. EST = EST(A), we have that

∂EST(A)
∂A

∣∣∣∣
A0

= 0. (3.29)

Therefore, the stretching energy, up to the lowest order, and defining the zero
energy at the flat state, can be written as

EST(A) =
1
2

E′′ST(A0) (A− A0)
2 , (3.30)

where E′′ST(A0) = ∂2EST
∂A2

∣∣∣
A0

. By defining the overall stretching-compression

modulus,

Γ ≡ A0 E′′ST(A0), (3.31)

7) Note that, at this level of description, we are not taking into account
the inner structure of a monolayer. In the third Part of this thesis, we
will see that transverse shear is important when building a micro-
scopic model of the monolayer matrix.
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we can rewrite Eq. (3.30) as

EST(A) =
1
2

Γ
(A− A0)

2

A0
. (3.32)

The value of the overall stretching-compression modulus has been measured
experimentally by micropipette aspiration techniques [75, 76, 206], and is of
the order of Γ ≈ 0.1 N/m, for typical monolayers.

The bending mode has been widely discussed above. We will see now how
this mode can be recovered from the energy of stretching and compression
of the different layers of a thick monolayer. Let us assume the monolayer to
be a thick layer of a homogeneous and isotropic elastic material. Because of
this homogeneity, the neutral surface, i.e. the surface which does not vary its
area under bending (see Sec. 3.4), lies in the middle of this layer. Let us further
assume that the monolayer adopts a cylindrical configuration of radius R, and
therefore total curvature J = 1/R. Because of the homogeneity of the layer,
the overall stretching-compression modulus is given by

Γ =
∫ h/2

−h/2
λ(z)dz = λh, (3.33)

where λ = λ(z) is the local stretching-compression modulus which we as-
sumed to be homogeneous, h is the monolayer thickness, and the integration
is done with respect to the z-axis, normal to and centered at the neutral sur-
face. Upon bending, the layers above the neutral plane are stretched, while
the layers below are compressed. The area of a given layer changes as (see
Appendix A)

A(z) = A0 (1 + Jz) . (3.34)

Note that the area of the neutral plane (located at z = 0) does not change.
Therefore the total elastic energy of such a monolayer is

Emonolayer =
1
2

∫ h/2

−h/2
λ(z)

(A(z)− A0)
2

A0
dz, (3.35)

which, using Eqs. (3.33), (3.34), gives

Emonolayer =
1
2

(
1

12
Γ h2

)
J2 A0. (3.36)

which is nothing else than the Canham-Helfrich bending energy for a cylindri-
cal monolayer. Comparing it with Eq. (3.4), the monolayer bending modulus
can be expressed as function of the overall monolayer stretching-compression
modulus [111, 146]

κm =
1

12
Γ h2. (3.37)
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This relation, although being obtained considering homogeneity along the
monolayer, gives a good prediction for the monolayer bending modulus. For
the values of the overall stretching-compression modulus of Γ ≈ 0.1 N/m,
and taking the monolayer thickness to be h = 2 nm, it gives κm ≈ 10 kBT, in
qualitative accordance with experimental measurements (see Sec. 3.9 below).

3.8
Lateral stress profile

We mentioned that lipids in a flat monolayer at equilibrium and under not
too heavy fluctuations acquire their preferred area per lipid. This area per
lipid is the result of a compromise between attractive and repulsive lateral
forces between lipids. Attraction comes from the hydrophobic effect, since
the more distant are the lipids to each other, the more area of the membrane
hydrophobic core is exposed to the polar environment [245]. Repulsion comes
from excluded volume interaction between molecules [69]. Other effects are of
course present, such as electrostatics of the polar head groups interaction, and
lipid tails cohesive and repulsive terms [17,160]. In any case, the configuration
of minimum energy dictates the area per lipid, and therefore creating lateral
stresses along the membrane. This profile, σ0

L(z), is usually called lateral stress
or lateral pressure profile [111, 160, 165, 166] (see Fig. 3.8).

Figure 3.8 Qualitative behavior of the lateral stress profile, σ(z), for a lipid bilayer. Headgroup
and chain repulsion is represented by red arrows, while hydrophobic interface attraction is rep-
resented by blue arrows (all arrows shown only for the top monolayer, for the sake of clarity).

Some of the elastic parameters of the Canham-Helfrich model can be ex-
pressed as moments of this lateral stress profile [110]. The zeroth moment
being the lateral tension, the first moment is related to the spontaneous cur-
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vature and the second moment to the Gaussian modulus. Adding the lateral
stress profile to the monolayer energy Eq. (3.35), and not assuming the neutral
plane to be located at the middle of the monolayer,

Emonolayer =
∫ h

0

[
1
2

λ(z)
(A(z)− A0)

2

A0
+ σ0

L(z) (A(z)− A0)

]
dz. (3.38)

Using A(z) = A0 J (z− zn), zn being the coordinate of the neutral plane mea-
sured from the bottom of the monolayer, Eq. (3.38) is simplified to

Emonolayer

A0
=

1
2

J2
∫ h

0
λ(z) (z− zn)2 dz + J

∫ h

0
σ0

L(z) (z− zn) dz. (3.39)

From direct comparison between Eq. (3.39) and Eq. (3.4), we get

κm =
∫ h

0
λ(z) (z− zn)2 dz, (3.40)

and

cm
0 = −

∫ h

0
σL

0 (z) (z− zn) dz
∫ h

0
λ(z) (z− zn)2 dz

. (3.41)

3.9
Elastic parameter: experimental measurements

In the spontaneous curvature model there are three different elastic param-
eters of the membrane: the bending rigidity, κ; the Gaussian rigidity, κ̄; and
the spontaneous curvature c0. These parameters integrate out the local elas-
tic moduli through the membrane thickness to obtain one modulus defined at
the neutral plane. Lots of effort have been made for experimentally measure
these parameters.

The bending modulus has been measured by different techniques [25, 184,
206]. For instance, it can be measured by micropipette pressurization of giant
bilayer vesicles. In such experiments, apparent area expansion (see Sec. 3.6)
under very low tensions, a regime dominated by smoothing of thermal bend-
ing modes, led to obtain bending rigidities for bilayers composed by different
kinds of lipid molecules [206]. The values found for phosphatidylcholines in
a fluid state are in the range of κ = 5 − 12 × 10−20 J (or, in units of thermal
energy, κ = 12− 30 kBT, where kB is the Boltzmann’s constant, and T is room
temperature, 25◦C), depending on the chainlength and the unsaturation level
of the different lipids.
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To the best of our knowledge, no direct measurement of the Gaussian curva-
ture elastic modulus, κ̄, has been able to be made yet. Thermodynamic stabil-
ity of vesicles impose a range of suitable Gaussian curvature elastic modulus,
−2κ ≤ κ̄ ≤ 0 [105]. Note that this modulus is negative, contrarely to the
classic plate theory [146]. The study of the energetics of the transition from
lamellar and inverted cubic phases for pure lipidic bilayers in the fluid state,
has recently determined the Gaussian modulus to bending rigidity ratio in a
pure phospholipid system [232]. The calculated ratio is κ̄/κ = −0.83± 0.08,
for monolayers.

Depending on its structure, lipids have an effective spontaneous curva-
ture [263]. Different experimental measurements have been reported on the
literature [48, 95, 96, 136, 157, 242]. Typical values for dioleoylphosphatidyl-
choline (DOPC) are c0 ∼ (−1/20)− (−1/8.7) nm−1 [48, 242] (see Tab. 11.1).
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4
Introduction

The first Part of this thesis is concerned on the theoretical study of membrane
morphology. In particular, the aim of this Part is to introduce a numerical
model to study dynamic instabilities in vesicles. Thus, in Ch. 5, we derive a
phase-field model to deal with membrane bending energies of the kind we
reviewed in Ch. 3. In order to understand the reasons why we decided to use
a phase-field model, in this introductory chapter we explain the pros and cons
of phase-field models.

After deriving the phase-field model, in Ch. 6 we apply it to find the station-
ary shapes of fluid vesicles in the simplest of the bending models. Afterwards
we proceeded to study a richer system, composed by lipid membranes with
anchored polymers. Those studies, inspired by experimental findings by the
group of J. Stavans [250, 251], are presented in Ch. 7, which talks about the
pearling instability in membranes, and Ch. 8, which deals with a polymer-
induced tubulation phenomenon in vesicles.

4.1
Method: phase-field model

Imagine we pour some oil drops in a glass full of water. We observe how these
small oil drops floating on the water surface rapidly start to coalesce with each
other. The physics involved in this process is quite complex. First, one have to
take into account the hydrodynamic field on the water, which gets altered by
the addition of the oil drops. Imagine we disregard these effects and assume
that the water is still and that the addition of oil is made quasi-statically, so no
disturbance is caused to the water. We could also take into account the proper-
ties of the glass material, which bounds the water surface. In addition, the oil
drops are three-dimensional 1. Imagine we disregard these three-dimensional
effects, and stay with a two-dimensional surface. In this very simplified case,
we have small circular oil drops in a circular water surface surrounded by

1) With a large enough free water surface, an oil drop will eventually
spread completely and form a monomolecular film, as could be seen
in the famous Lord Rayleigh experiment [208].
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hard walls. The physics of this system is given by an interfacial energy, since
oil molecules and water molecules want to minimize the two-phase boundary
length. Therefore, small drops start to fuse with each other in order to form
larger drops with less perimeter.

In this problem, we see an example of a physical system driven by inter-
facial effects between two phases, where the location of the interface changes
with time, and even suffers from topological transitions. Although the physics
is quite simple, the study of the dynamics of such a problem is very complex.
This is an example of a free boundary problem. Traditional methods to deal
with this kind of problems need to track the position of the interface at each
time, and solve the coupled problem of the bulk dynamics and the dynamics
of this moving boundary.

The fact that the sharp interface has to be tracked during all the system evo-
lution is a huge technical limitation. The aim of so-called phase-field models is
to write a dynamic equation for a bulk field (the phase-field) without any need
to explicitly supply information on the interface position. Indeed, the sharp
interface of free boundary problems is treated as a diffuse interface in phase-
field models, in order to assimilate it to the bulk. Phase-field models convert
free boundary problems into a set of partial differential equations, which in
principle are simpler to integrate numerically (see [83, 106] for reviews).

So, which characteristics should one require to a phase-field? Being a two-
dimensional 2 two-phase problem, the phase-field, φ, has to be a smooth well-
behaved function which takes real values in the whole two-dimensional do-
main, Ω,

φ : Ω ⊂ R2 −→ R

x ∈ R2 7−→ φ(x) ∈ R. (4.1)

Besides, we require the constituent dynamic equations to be such that the so-
lution for the phase-field acquires two different plateaux, φA and φB, one for
each phase (see Fig. 4.1). Therefore, it will be possible to know in which physi-
cal phase a point is by checking the value of the phase-field. The actual values
of these two plateaux are arbitrary, but in the literature they are mainly chosen
to be ±1, or 0 and 1.

In the diffuse interface region, the phase-field can’t have any of these two
bulk values, but it has to change abruptly, albeit continuously, from one to the
other (Fig. 4.1). The width of this region is characterized by a small parameter
of the model, let us call it ε. The abrupt interface, as we said, can be recalled
at any time by finding the level-set {x ∈ Ω : φ(x) = φ0}, where, again, φ0 is
an arbitrary position between the two bulk phases, but it is normally taken to
be φ0 = (φA + φB)/2.

2) We define here the two-dimensional formalism, for simplicity, but it
can be analogously done in any number of spatial dimensions.
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Figure 4.1 Qualitative profile for a phase-
field, φ(x), in one dimension. Two plateaux
φA and φB, correspond to each of the two
stable phases, A and B; and the phase-field

continuously goes from one to the other in
a thin but finite region, the diffuse interface
(dark region).

Using a phase-field method it is possible to substitute a moving boundary
condition by a partial differential equation for this auxiliary field. This new
equation has to be constructed in such a way that the interfacial dynamics was
the most similar possible to the free boundary problem’s. Therefore, one asks
that in the so-called sharp interface limit [74], i.e. the limit when the width of
the diffuse interface goes to zero, the resulting physics will be the same as in
the original problem.

This makes to whole thing simpler, but usually more time-consuming from
a computational point of view. In addition, phase-field models naturally al-
low for topological changes. On the contrary, a new length-scale, the width
of the diffuse interface, is introduced on the model. Although the sharp-
interface limit guarantees equivalence between the free boundary problem
and the phase-field problem, in practice one has to choose a finite value for
this small parameter, ε. This parameter has to be smaller than all the other
length scales in the system, but it still needs to be resolved by the lattice, in
case the partial differential equations were discretized.

Phase-field models were introduced for the first time in the eighties to study
solidification phenomena [33, 52, 84, 148]. They were based in a Ginzburg-
Landau model for the dynamics of phase transitions, the so-called model C
in Hohenberg and Halperin taxonomy [117]. This model was shown to be
a mesoscopic representation of the microscopic solidification free boundary
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problem. Even simpler models of this kind, as model A or Allen-Cahn model
[6], and conserved models as model B or Cahn-Hilliard model [34] can be
seen as phase-field models. Besides the solidification problem, phase-field
models have been used in studying different types of interfacial problems,
like the viscous fingering instability in fluids [85–87, 113, 150] or imbibition
processes [2, 149, 201, 202], among others.

4.1.1
Cahn-Hilliard equation

Here, as a matter of an example, we present a brief derivation of the so-called
Cahn-Hilliard model [34], or model B. This model was born to study spinodal
decomposition in binary alloys. In this case, the phase-field, φ, has a clear
physical interpretation, it is the concentration of one of the two components
of the alloy. Although in the literature it is common to find this field named
by the variable C, we will keep the general variable φ in this Section.

Assume that the total free energy of the system, F can be represented by a
free energy density, ftot(x), such as

F =
∫

Ω
ftot(x)dx, (4.2)

where Ω is the integration domain. Then, consider that the free energy density
is a function of the concentration and its gradients, ftot = ftot(φ, ∇φ). By
symmetry, if the system is isotropic and homogeneous, up to lowest order we
can write

ftot(φ, ∇φ) = f (φ) +
ε2

2
|∇φ|2 . (4.3)

The first term is usually referred to as the homogeneous term, while the sec-
ond is called the gradient penalty. The homogeneous term may be different
depending on the physics of the system. In the case of a binary alloy, it is
chosen to be a bistable potential, as in the Ginzburg-Landau approach. The
parameter ε is the coupling parameter of the gradient term.

Assuming that the system is large enough, we can define the potential µ as

µ =
∂F
∂φ

= −ε2∇2φ + f ′(φ). (4.4)

In the Cahn-Hilliard model, the concentration is locally conserved. Then,
the dynamics can be written like a Fick’s law [59], as the divergence of a flux,
J,

∂φ

∂t
= −∇ · J, (4.5)
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where the flux, up to first order is

J = −Mφ∇µ, (4.6)

with Mφ being the mobility coefficient, which can depend on the phase-field.
Considering a bistable homogeneous term as

f (φ) = −φ2

2
+

φ4

4
, (4.7)

the final dynamic equation for the Cahn-Hilliard model with a homogeneous
mobility is

∂φ

∂t
= Mφ∇2

(
−φ + φ3 − ε2∇2φ

)
. (4.8)

In the case, the concentration was not a conserved variable, the dynamic
equation is written as a model A dynamics,

∂φ

∂t
= −Mφ

∂F
∂φ

, (4.9)

which gives the Allen-Cahn equation [6],

∂φ

∂t
= Mφ

(
φ− φ3 + ε2∇2φ

)
. (4.10)

4.1.2
Level-set methods

Another similar kind of bulk models for dealing with interfaces are the so-
called level-set methods [190, 191]. These methods are based in the definition
of the surface, Γ, by implicit means [24] using the level-set function, φ,

Γ = {(x, y, z) ∈ R3 : φ(x, y, z) = 0}. (4.11)

The level-set function must be smooth and regular enough. Signed distance
functions are a subset of these implicit functions. They are defined as

d(x) = min (|x− xI |) ∀ xI ∈ Γ. (4.12)

Then, level-set methods add dynamics to these implicit surfaces. They were
first introduced by Osher and Sethian [191] using the idea of applying the
Hamilton-Jacobi approach to numerical solutions of a time-dependent equa-
tion for a moving implicit surface. These methods have been applied in many
disciplines, such as image processing, computer graphics, computational ge-
ometry, optimization, and computational fluid dynamics (see Ref. [190] for a
review).
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4.1.3
Phase-field models and lipid vesicles

A vesicle can be seen, from an abstract point of view, as a boundary separating
two media, the inner volume and the outer volume. The shape of this surface
changes dynamically according to the hydrodynamics of the aqueous solu-
tions surrounding it, and also according to its own energetics, given by some
of the models reviewed in Ch. 3. Besides, additional destabilizing effects can
be included in the system, as for instance proteins or polymers changing the
morphology and/or the properties of the membrane, and so on and so forth.
This problem is again a free boundary problem. In this case the boundary
is not a separation layer between two different phases as in the oil-water ex-
ample, but a physically differentiated region, the membrane, separating two
regions of the same phase3. In the simplest case where no destabilizing effects
are added to the system, and hydrodynamics is not relevant, one might need
a phase-field model for studying the morphology of vesicles given a bending
energy model. This is the object of Ch. 6, where the phase-field model for the
Canham-Helfrich free energy derived in Ch. 5 is solved to find the stationary
shapes of fluid vesicles. Ch. 7 and Ch. 8 are concerned with the study of shape
instabilities in membranes due to the anchoring of amphiphilic polymers.

3) In general, the inner and outer solutions can have different viscosi-
ties or densities, but we wanted to point out here the fact that the
boundary between the phases is a real boundary and not a thin layer
of two-phase mixture.
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5
Dynamic model for the morphology of fluid vesicles

In this Chapter, we lay the mathematical bases of the curvature phase-field
model we will be using through the first Part of this thesis. The derivations
here shown, slightly differ from the ones published in our papers [38, 40, 43],
in order to give a whole picture of the model. Thus, we proceed to calculate
the curvature tensor as a function of the phase-field and, from that, the mean
and the Gaussian curvatures, and therefore the bending energy as a function
of the phase-field. This is not the way we initially derived the bending phase-
field model, since our first publication on the topic [38] starts with an ansatz
for the free energy functional, from which, after taking the sharp-interface
limit, its equivalence to the curvature minimal model is shown. Later, while
studying the way to implement the Gaussian curvature in our model [43], we
found a more general way to derive the bending energy. We show here this
last method, for the sake of clarity and generality.

5.1
Phase-field implementation of the Canham-Helfrich bending energy

As we explained in the preceding Chapter, we consider membranes, at
this level of description, as mesoscopic objects with no internal structure.
All the physical parameters describing these membranes are either meso-
scopic/macroscopic, or effectively included in macroscopic averages of micro-
scopic parameters. The membrane is thus considered to be a two-dimensional
surface embedded in the Euclidean three-dimensional space.

In order to build a phase-field model that takes into account the bending
energy of fluid vesicles (see Ch. 3), we should express the surface geomet-
ric properties (the ones involved in the bending energy) as a function of the
phase-field. Also, as part of the physical constraints needed to be taken into
account (see Sec. 3.5.1), the vesicle surface area and enclosed volume have to
be included in the phase-field description.

Let us assume the existence of a field, φ : R3 → R, in all the points of the
Euclidean three-dimensional space R3. This field is the so-called phase-field
(see Ch. (4)). Since phase-fields are regular functions, they can, in general, be
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written in terms of any smooth function of the coordinates. In particular, the
phase-field can be written as a function of the signed distance to the interface,
d(x),

φ(x) = f
(

d(x)√
2ε

)
= tanh

(
d(x)√

2ε

)
, (5.1)

where we assumed a tanh-like profile for the phase-field, and ε is the meso-
scopic parameter of the phase-field, related to the finite width of the diffuse
interface. This parametrization is chosen because it involves the signed dis-
tance to the interface, whose first derivative is a unit normal vector to the
interface

∇d(x) = n̂, (5.2)

and whose second derivative is the curvature tensor [68]

∇ ∇ d(x) = Qij. (5.3)

The derivatives of the phase-field with respect its argument are

f ′
(

d(x)√
2ε

)
= 1− f 2

(
d(x)√

2ε

)
, (5.4)

and

f ′′
(

d(x)√
2ε

)
= −2 f

(
d(x)√

2ε

) [
1− f 2

(
d(x)√

2ε

)]
, (5.5)

where primes precisely denote the derivatives with respect to the argument,
in this case, with respect to d(x)√

2ε
. Let us now consider the derivatives of the

phase-field with respect to the xi coordinates,

∂iφ =
1√
2ε

f ′∂id(x), (5.6)

∂
2

ij φ =
1

2ε2 f ′′∂id∂jd +
1√
2ε

f ′∂ 2
ij d, (5.7)

where we used the notation ∂i ≡ d/dxi for the partial derivatives with respect
to the coordinates. From Eqs. (5.6) and (5.7), it is possible to express the sec-
ond derivatives of the signed distance as a function of the phase-field and its
derivatives, as

∂
2

ij d =
√

2ε

1− φ2

[
∂

2
ij φ +

2φ

1− φ2 ∂iφ∂jφ

]
= Qij, (5.8)

which is the three-dimensional tensor of curvature Q (see Appendix A).
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This tensor has remarkable properties. First of all, it is a symmetric tensor,
Qij = Qji. Second, since the gradient of the signed distance is a unitary vector
(see Eq. (5.2)), the curvature tensor has a zero eigenvalue, with ∂id being the
corresponding eigenvector:

∂
2

ij d ∂jd =
1
2

∂i

[(
∂jd

)2
]

= 0. (5.9)

Therefore, its determinant is zero.
An n × n tensor has at most n independent invariant quantities under

changes of coordinates [147]. These invariants can be expressed by the co-
efficients of the characteristic polynomial. In the case of a 3× 3 tensor, these
coefficients correspond to the determinant, the trace, and the sum of the prin-
cipal minors of the tensor matrix. Since the determinant of the curvature ten-
sor Q is always zero, there are only two non-vanishing invariants. These two
invariants are related to the mean and Gaussian curvatures of the surface [218]

H =
1
2

tr
[
∇ 2

ij d
]

, (5.10)

K = ∑
i,j

[(
QiiQjj −Q2

ij

) 1− δij

2

]
, (5.11)

respectively. From the expression of the curvature tensor as a function of the
phase-field, Eq. (5.8), we can thus write the curvature invariants also as a func-
tion of the phase-field and its derivatives. The mean curvature is

H[φ] =
√

2ε

2
(
1− φ2

)
[
∇2φ +

2φ

1− φ2 |∇φ|2
]

=
√

2ε

2
(
1− φ2

)
[
∇2φ +

1
ε2 φ

(
1− φ2

)]

= −
√

2
2ε

(
1− φ2

)
(
−φ + φ3 − ε2∇2φ

)
, (5.12)

where we used Eq. (5.4). We can express the Gaussian curvature, after some
algebra, as

K[φ] =
ε2

(
1− φ2

)2

(
T1 +

2φ

1− φ2 T2

)
, (5.13)

where

T1 = φ,11φ,22 + φ,11φ,33 + φ,22φ,33 − (φ,12)
2 − (φ,13)

2 − (φ,23)
2 , (5.14)

and

T2 =φ,11 (φ,2)
2 + φ,22 (φ,1)

2 + φ,11 (φ,3)
2 + φ,33 (φ,1)

2 + φ,22 (φ,3)
2

+ φ,22 (φ,3)
2 − 2φ,1φ,2φ,12 − 2φ,1φ,3φ,13 − 2φ,2φ,3φ,23. (5.15)
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5.1.1
Minimal model

We are now in position to express the minimal model for the bending energy
as a function of the phase-field. Just to bear in mind, we write here again the
expression for the minimal model free energy (see Ch. 3),

FM =
κ

2

∫

Γ
(2H)2 ds, (5.16)

where Γ is the membrane surface, H the mean curvature, and κ the bending
modulus. There is a fundamental difference between this free energy and the
one we seek in terms of the phase-field. This is that the former is a surface
integral, and the latter should be a volume integral, since one of the aims
of the phase-field method is that there is no need to track the interface (the
membrane location in our case). Therefore, we seek for something of the form

F [φ] =
∫

Ω
ρF [φ] dx, (5.17)

where Ω is the three-dimensional domain of the phase-field, and dx is the
three-dimensional volume element.

One way to express a surface integral as a volume integral is by using dis-
tributions [209]. In our case, an obvious manner is by implementing a Dirac
delta function on the interface, where the signed distance d(x) vanishes,

ds = δ (d(x)) dx. (5.18)

We need then to find a representation of the Dirac delta in terms of the phase-
field. Phase-field functions are continuous functions which only change sub-
stantially in a neighborhood of size ∼ ε around the interface. In the sharp-
interface limit, a phase-field function becomes a step function. For this reason,
a first candidate for a delta function would be the derivative of the phase-field.
Rewriting Eq. (5.4), using the tanh-like profile for the phase-field Eq. (5.1),

f ′
(

d(x)√
2ε

)
= sech2

(
d(x)
ε
√

2

)
. (5.19)

Using the fact that

lim
ε→0

{
3

4
√

2ε
sech4

(
d(x)
ε
√

2

)}
= δ (d(x)) , (5.20)

we can write that

ds =
3

4
√

2ε
sech4

(
d(x)
ε
√

2

)
dx =

3
4
√

2ε

(
1− φ2

)2
dx. (5.21)
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Now, using Eqs. (5.12), (5.21), we are able to explicitly write the minimal
model Eq. (5.16) as as a function of the phase-field

FM[φ] =
3
√

2κ

8ε3

∫

Ω

(
−φ + φ3 − ε2∇2φ

)2
dx, (5.22)

or, in other words,

FM[φ] =
κ̄

2

∫

Ω
(Φ[φ])2 dx, (5.23)

where

Φ[φ] = −φ + φ3 − ε2∇2φ, (5.24)

and

κ̄ =
3
√

2
4ε3 κ. (5.25)

Note that the free energy density functional in Eq. (5.23), Φ2, is nothing else
other than the square of the chemical potential (the functional derivative of
the free energy) associated with the Cahn-Hilliard problem [34] (see Ch. 4).

The minimum of the free energy Eq. (5.23) is ideally obtained by setting
Eq. (5.24) equal to 0. In one dimension, this leads to the tanh-like solution
φ(x) = tanh

(
x√
2ε

)
, given the usual boundary conditions φ(±∞) = ±1.

Therefore, we recover our original assumption on the profile of the phase-field
Eq. (5.1).

5.1.2
Spontaneous curvature

With the phase-field expressions of the local geometric properties of the mem-
brane found above, we can generalize the minimal model by letting the mem-
brane adopt a non-vanishing preferred curvature. This model, first proposed
by Helfrich [109] is normally referred in the literature as the spontaneous cur-
vature model, as we explained in Ch. 3. Let us remind how it looks:

FSC =
κ

2

∫

Γ
(2H− c0)

2 ds, (5.26)

where c0 is the membrane spontaneous curvature. Proceeding similarly than
before, we can write the spontaneous curvature free energy as a function of
the phase-field [38]

FSC[φ] =
κ̄

2

∫

Ω
(Φ SC[φ])2 dx, (5.27)



56 5 Dynamic model for the morphology of fluid vesicles

where

Φ SC[φ] = Φ[φ]− ε C0

(
1− φ2

)
, (5.28)

where C0 ≡ c0/
√

2 may, in general, be position-dependent, or even φ-
dependent. Indeed, we will use a non-homogeneous spontaneous curvature
in Ch. 8 in order to study the elongation of membrane tubes by the anchoring
of polymers inhomogeneously distributed in space.

5.1.3
Gaussian curvature

Up to this point we only used the mean curvature for the energy of a mem-
brane. The Gaussian curvature did not play any role in our energetics due to
the Gauss-Bonnet theorem (see Sec. 3.5.2), which basically states that the en-
ergy part coming from the Gaussian curvature only depends on the topology
for monocomponent closed vesicles 1. As we will see in Ch. 9, the Gaussian
curvature term is relevant when phase separation occurs in the membrane,
with the two phases having different elastic constants. In addition, when
topological changes such as fusion and fission events happen in the dynamic
evolution of membranes, one has to be aware of this energy term. Finally, it
may even be relevant when none of these situations happen and the Gaussian
curvature term might influence the dynamics to reach to a stationary state
(which should be the same independently of this term).

We can calculate, with the knowledge form the previous parts, the part of
the free energy due to the Gaussian curvature

FG =
∫

Γ
κ̄ K ds, (5.29)

where κ̄ is the saddle-splay modulus, or Gaussian bending rigidity. Thus,
using Eqs. (5.13), (5.21),

FG =
∫

Ω
κ̄′

(
T1 +

2φ

1− φ2 T2

)
dx, (5.30)

where

κ̄′ ≡ 3
√

2ε

8
κ̄. (5.31)

5.1.3.1 Gaussian curvature in cylindrical coordinates

The general expression Eq. (5.11) for the Gaussian curvature in terms of the
phase-field can be significantly simplified if we assume the existence of an

1) We should say, to be more precise, for monophasic monocomponent
closed vesicles, since a phase-separation can even occur for mono-
component vesicles.
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axis of symmetry. For this purpose, we use cylindrical coordinates {r, ϕ, z},
and assume that the phase-field does not depend on the angular coordinate ϕ,
i.e. φ = φ(r, z). The derivatives of the phase-field under such assumption can
be written, in matrix notation, as

∂iφ =




∂rφ

0
∂zφ


 , (5.32)

∂iφ∂jφ =




(∂rφ)2 0 ∂rφ∂zφ

0 0 0
∂rφ∂zφ 0 (∂zφ)2


 , (5.33)

∂ijφ =




∂2
rrφ 0 ∂2

rzφ

0 1
r ∂rφ 0

∂2
rzφ 0 ∂2

zzφ


 . (5.34)

Then, we can rewrite the curvature tensor Q as

Qij =
√

2ε

1− φ2




∂2
rrφ + 2φ

1−φ2 (∂rφ)2 0 ∂2
rzφ + 2φ

1−φ2 ∂rφ∂zφ

0 1
r ∂rφ 0

∂2
rzφ + 2φ

1−φ2 ∂rφ∂zφ 0 ∂2
zzφ + 2φ

1−φ2 (∂zφ)2


 . (5.35)

Since the curvature tensor has zero determinant, the expression for the
Gaussian curvature as the sum of the principal minors simplifies as

K =
2ε2

(
1− φ2

)2
1
r

∂rφ

(
∇2

rzφ +
2φ

1− φ2 |∇rzφ|2
)

, (5.36)

where we defined the two-dimensional nabla operator, ∇rz ≡ ∂r êr + ∂z êz.
Therefore, we can simplify expression Eq. (5.30) for axisymmetric vesicles

as

FG[φ] = 2
∫

Ω
κ̄G

1
r

∂rφ

(
∇2

rzφ +
2φ

1− φ2 |∇rzφ|2
)

dx

= 4π

∫

Ω
κ̄G ∂rφ

(
∇2

rzφ +
2φ

1− φ2 |∇rzφ|2
)

drdz, (5.37)

where we also expressed the volume element in cylindrical coordinates as
dx = 2πrdrdz, where we integrated out the angular coordinate.
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5.2
Geometrical constraints

Vesicle shapes are often subject to certain geometrical constraints. Their en-
closed volume and surface area remain constant (see Sec. 3.5.1). Here, we
implement these constraints in our phase-field model.

5.2.1
Local surface area

We have implemented this constraint in our phase-field model via a Lagrange
multiplier function coupled with the surface area in the free energy functional.
Thus, we define an effective free energy functional

Feff[φ] = F [φ] +
∫

Ω
σ(x)a[φ]dx, (5.38)

where F [φ] can be any bending free energy, e.g. Eqs. (5.23), (5.27), σ is a La-
grange multiplier (interpreted as a surface tension), and a[φ] is the local sur-
face area functional,

a(x) = δ (d(x)) , (5.39)

which we rewrite in terms of the parameter ε using the representation of the
delta, Eq. (5.20), as

a[φ] =
3

4
√

2ε

(
1− φ2

)2
=

3
4
√

2ε
|∇φ|2 . (5.40)

Using Eq. (5.39), i.e. Eq. (5.40) in the sharp-interface limit, the last expression
integrated over the whole domain Ω is equivalent to the surface area of the
vesicle,

lim
ε→0

∫

Ω
a[φ]dx =

∫

Γ
ds. (5.41)

5.2.2
Enclosed volume

An obvious way to implement the condition of fixed inner vesicle volume in
the free energy would be, as done before with the surface area constraint, to in-
troduce another Lagrange multiplier coupled with the volume term, ensuring
its conservation. However, there is a straight-forward manner to implement
this constraint without the need of a Lagrange multiplier. This is, to introduce
it through the dynamic equation. Let us show that a Model-B-like dynamics
(see Sec. 4.1.1) conserves the vesicle volume throughout the whole time evo-
lution. The dynamic equation (see Sec. 5.3 below) is

∂φ

∂t
= ∇2

(
δFeff

δφ

)
. (5.42)
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This dynamic equation ensures that
∫

Ω φ(x)dx is constant in time, since it is
nothing else than the divergence of a flux (see Sec. 4.1.1). This integral is equal
to the difference of the inner and outer volumes (φ takes its stable values +1
and −1 inside and outside the vesicle, respectively), as ε → 0. As the sum of
the inner and outer volumes is the volume of the integration domain Ω (which
is constant), then we can write the inner volume as

Vinn =
1
2

(
V(Ω) +

∫

Ω
φ(x)dx

)
, (5.43)

wherefrom it can be seen that model-B dynamics ensures conservation of the
inner volume through the dynamic evolution.

5.3
Dynamic equation

The dynamic relaxation towards a free energy minimum is achieved in our
model by conserved relaxation dynamics, Eq. (5.42). Relaxational dynamics
[88] have been used before, for instance, to study phase-separation dynamics
of two-component vesicles [246]. In our phase-field approach, we need to
compute the functional derivative in Eq. (5.42). This calculation leads to the
following dynamic equation for the phase-field φ(x) of the minimal model 2

Eq. (5.23)

∂φ

∂t
= κ̄∇2

{
(3φ2 − 1)Φ[φ]− ε2∇2Φ[φ] + ε2σ̄(x)∇2φ

+ ε2∇σ̄(x) ·∇φ
}

, (5.44)

where σ̄ is defined as

σ̄(x) =
√

2
6ε3κ̄

σ(x). (5.45)

The term proportional to ∇σ̄(x) in the dynamic equation (the last term in
Eq. (5.44)) is shown numerically to be small, and the Lagrange multiplier, σ̄,
can be considered homogeneous. To show this, we numerically computed
these variations for an initial profile of σ̄(x), and see how they rapidly relax

2) Considering a functional such as

F [φ] =
∫

dx f
(
φ(x), ∂µφ(x), ∂µ∂νφ(x)

)
,

its functional derivative with respect to φ(x) is (see e.g. [103])

δF [φ]
δφ(x)

=
∂ f

∂φ(x)
− ∂µ

∂ f
∂

(
∂µφ

) + ∂µ∂ν
∂ f

∂
(
∂µ∂νφ

) .
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to a nearly constant function (i.e the time scale of the relaxation of the effec-
tive surface tension is smaller than the time scale related to the shape change).
Moreover, σ(x) appears as an effective surface tension which prevents the sur-
face area from changing. In any case, its value in membranes is very small
compared with other energy scales in the system (e.g. bending rigidity) [76].
Therefore, its variations are also small.

We can write down the dynamic equation for the spontaneous curvature
model Eq. (5.27), as

∂φ

∂t
= κ̄∇2

{ (
3φ2 − 1− 2εC0(x) φ

)
Φsc[φ]− ε2∇2Φsc[φ]

+ ε2σ̄(x)∇2φ
}

. (5.46)
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6
Stationary shapes of fluid vesicles

In this Chapter we present the results for the stationary shapes of fluid vesi-
cles we obtained by integrating the phase-field model for the bending energy
of monocomponent vesicles we derived in Ch. 5 [38]. We use here the most
simple model, the minimal model, and compare the found results with ex-
isting solutions for the stationary shapes found by other means. The good
agreement between these methods verify the ability of our phase-field model
to deal with such energy minimization problems. Besides, the fact that our
method is inherently dynamic, allows for out of equilibrium investigations, as
those we present in Chs. 7 and 8.

6.1
Phase-field integration: numerical method

Vesicles adopt stationary shapes which correspond to the minimum energy of
curvature subject to the constraints of fixed surface area and inner volume. In
the previous Chapter, we derived a way of expressing this energy as a function
of a phase-field in all the points of the Euclidean three-dimensional space. The
zero isosurface of this field locates the position of the vesicle membrane at each
time. From this energy, we build a relaxational conserved dynamic equation,
which tells us how a vesicle in a non-stationary configuration evolves in time
into its corresponding stationary shape. Our aim in this Section is to explain
in which manner one can solve this dynamic equation and find which are the
characteristic parameters defining a vesicle shape.

First, we have to realize that the partial differential dynamic equations
Eqs. (5.44), (5.46) are highly non-linear (notice, for instance, the coupling be-
tween the field φ2 and the functional Φ[φ]). We thus need to solve these equa-
tions numerically in order to study dynamic relaxation towards stationary
vesicle shapes. We choose to discretize the partial differential equation in a
regular lattice, and express the differential operators through second-order fi-
nite differences for the spatial dependence, and an Euler scheme for the time
dependence [238]. Up to this order, the discrete derivatives of a general three-
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dimensional function f (x, y, z) can be written as [1, 238] (see Fig. 6.1),

∂ fi,j,k

∂x
=

1
2h

(
fi+1,j,k − fi−1,j,k)

)
+O(h2), (6.1)

and

∇2 fi,j,k =
1
h2

(
fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k + fi,j,k+1 + fi,j,k−1

−6 fi,j,k)
)

+O(h2), (6.2)

where h is the mesh size, which is homogeneous in all the directions since
the lattice is assumed to be regular. The Laplacian in two dimensions, can be
expressed as

∇2 fi,j =
1
h2

(
fi+1,j + fi−1,j + fi,j+1 + fi,j−1k − 4 fi,j)

)
+O(h2). (6.3)

The time derivative in the Euler scheme is

∂ fi,j,k(t + ∆t) = ∂ fi,j,k(t) + ∆t
∂ fi,j,k(t)

∂t
+O

(
∆t2

)
. (6.4)
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(a) Partial derivative

(i,j,k)
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(b) Laplacian

Figure 6.1 Finite differences scheme. Neighbors taken into account in the discretized version
of (a) partial derivative with respect to the x coordinate, and (b) Laplacian.

This discretization of the differential equation (5.44) is a consistent finite dif-
ference method (standard second-order finite differences). We choose the time
step following the Courant-Friedrichs-Lewy stability criterion, ∆t ≤ |k| ∆x,
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where k is some constant depending on the equation parameters. We can thus
assume that the algorithms used are convergent [19, 204].

Second, the effective free energy functional Eq. (5.38) explicitly contains a
Lagrange multiplier, σ(x). Then, in order to assure the accomplishment of the
associated constraint throughout the dynamic evolution, we need to know
the time evolution of the Lagrange multiplier. To do this, we have used a first
order Lagrangian method to study how the multiplier evolves to its stationary
value [19]

σk+1(x) = σk(x) + α
(

a[φk(x)]− a0(x)
)

, (6.5)

where α > 0 is the stepsize, k is the discretized time, and a0(x) is the fixed
local surface area. Since we are not interested in the actual dynamics of the
multiplier, our choice is justified because it does not change the dynamics of
the phase-field, but it just keeps the surface area of the vesicle constant during
the time evolution without altering the dynamics. We refer to Appendix B for
more details on Lagrangian methods.

All we said is general in a three-dimensional space. However, most of the
time we are only interested in axisymmetric shapes. In this case, the dis-
cretization of the dynamic equation is easier and we can perform it in a two-
dimensional lattice.

Shape evolution is done starting from an arbitrary initial shape. Since the
dynamic equation has no external noise (just numerical noise), we start from
different initial shapes corresponding to each value of the reduced volume.
The initial condition for the phase-field is a sharp distribution of φ = +1 and
φ = −1. There is thus a transient period in the first steps of the evolution,
where the diffuse interface is created and a tanh-like profile is obtained, which
remains during the subsequent evolution. This transient is needed to calculate
the surface area using Eq. (5.41), since a gradient in φ is required. The bound-
ary conditions which we use here are reflexive, or non-flux, condition in the
axis wall when axisymmetry is assumed, and periodic boundary conditions
otherwise.

6.2
Results

In our model, there seem to be several free parameters (ε, A0, V0). However, ε

is a small parameter of the phase-field model (the model is shown to be robust
under variations of this parameter), which will be set, in what follows, to be
equal to the mesh size.

In addition, scale invariance [224] causes that the ratio between the con-
strained total volume and the total surface area is the only relevant parameter
in the model (for a fixed topology). Thus, we define a dimensionless volume
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v ∈ (0, 1] as the ratio between the actual volume and the volume of a sphere
with the same area,

v =
V

(4π/3)R3
0

, (6.6)

where

R0 =
(

A
4π

)1/2
, (6.7)

analogously as in Sec. 3.5.4. We will thus look for stationary shapes for dif-
ferent fixed topologies: spherical (Euler characteristic equal to 2) and non-
spherical (e.g. genus-1 toroidal topologies with Euler characteristic equal to
0). We will focus mainly on spherical topology, in order to discuss the model
and the results obtained.

6.2.1
Spherical topology

For this topology, the three qualitatively different axisymmetric stationary
shapes for the minimal model are found, in agreement with [225]. These are,
in order of decreasing reduced volume, the prolate and oblate ellipsoids and
the stomatocyte (see Fig. 6.2).

(a) v = 0.69 (b) v = 0.60 (c) v = 0.43

Figure 6.2 Stationary shapes for the minimal model, as stationary states of the dynamic evo-
lution of certain initial conditions under Eq. (5.44). (a) Prolate, (b) oblate, and (c) stomatocyte
are shown.

We have solved Eq. (5.44) numerically on a three-dimensional lattice. The
possibility of finding non-axisymmetric shapes then arises. In Fig. 6.3, four
snapshots of the shape evolution towards a prolate ellipsoid with v = 0.69 are
shown. This is a stable shape, since the actual transition between prolates and
oblates happens at a value of the reduced volume that is lower than this value
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(vD ' 0.65) [225]. The dynamic evolution towards this axisymmetric prolate
is done with general three-dimensional non-axisymmetric dynamics, and no
axis of symmetry has been supposed at an rate. The initial shape (Fig. 6.3(a)) is
a non-axisymmetric box, which dynamically evolves towards an axisymmet-
ric shape.

(a) 104 ∆t (b) 0.5× 106 ∆t

(c) 2× 106 ∆t (d) 8× 106 ∆t

Figure 6.3 Shape evolution for a vesicle with v = 0.69, which eventually reaches a prolate
shape. the integration was performed on a 3-dimensional 50 × 50 × 50 lattice with time step
∆t = 10−4. No axis of symmetry is supposed here, and the initial shape is a non-axisymmetric
40× 10× 10 box.

We have also studied the behavior of the dynamic equation in the axisym-
metric case, where we can discretize Eq. (5.44) on a two-dimensional lattice.
Fig. 6.4 shows the time evolution to eventually reach a stomatocyte-like shape.
Plots show the value of the phase-field on a gray-level scale, where black rep-
resents φ = +1, or the inner volume of the vesicle; and white corresponds to
φ = −1, or the outer volume of the vesicle.

We have also found the level-set of these gray-level scale plots, to track the
position of the vesicle membrane. In Fig. 6.5 a continuous fit of this contour
is plotted and the evolution towards a discocyte-like shape is shown. We can
see that the reduced volume corresponding to this figure is v ' 0.5, which
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(a) 103 ∆t (b) 0.1× 107 ∆t (c) 0.5× 107 ∆t

(d) 107 ∆t (e) 2× 107 ∆t (f) 8× 107 ∆t

Figure 6.4 Shape evolution for a vesicle with v = 0.43, which eventually reaches a stomato-
cyte shape. A two-dimensional section is shown, where an axis of symmetry exists, located on
the lower side of each snapshot. Integration was performed on an axisymmetric 60× 30 lattice
and the time step was ∆t = 10−4.

is conserved during evolution (so they are the surface area and the volume
separately). This shape is known to be metastable. However, it is obtained
here from the initial ellipsoid because the actual stable shape, corresponding
to that value of the reduced volume, is far away in the shape landscape from
our initial choice.

Note also that the dynamic equation (5.44) is such as the free energy (5.23)
is a monotonically decreasing function1, which reaches metastable or stable
states where the value of the energy remains constant.

All these stationary shapes are collected in a shape diagram where the bend-
ing energy is plotted as a function of the reduced volume (see Fig. 6.6). The
curvature energy of the shapes obtained as stationary states of the dynamic
evolution under Eq. (5.44), is calculated in the following way. First, the inter-

1) This can be seen easily by calculating the derivative of the total free
energy with respect to time [60]

dF[φ]
dt

=
d
dt

∫

Ω
f [φ(x, t)]dx =

∫

Ω

δ f
δφ

∂φ

∂t
dx,

which, using the general form of a relaxational conserved dynamics
Eq. (5.42), and integrating by parts, can be written as

dF[φ]
dt

=
∫

Ω

δ f
δφ

∇2
(

δ f
δφ

)
dx = −

∫

Ω

(
∇ δ f

δφ

)2

dx ≤ 0.
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(a) 1.1× 108 ∆t; v ' 0.494 (b) 2.2× 108 ∆t; v ' 0.493

(c) 3.3× 108 ∆t; v ' 0.492 (d) 7.8× 108 ∆t; v ' 0.496

Figure 6.5 Snapshots of the time evolution towards a discocyte-like shape. Figures shown
here are for the axisymmetric case. The dot-dashed line indicates the axis of symmetry.
Curves are continuous fits of the level-set of the phase-field on a 80 × 40 lattice. The time
step is set to ∆t = 10−4.

face is located as the level-set, φ = 0, of the phase-field. An interpolation is
then performed over the discrete data in order to obtain a continuous function
describing the membrane. Using surface differential geometry [68, 218], the
curvature tensor on the surface defined by the interpolating function rotated
about the axis of symmetry is worked out. The trace of this tensor, related with
the mean curvature, is then calculated. Integrating over the surface eventually
gives the bending energy.

Once these pairs {v, F} are obtained, a comparison with known results is
presented. Thus, in Fig. 6.6, we plot the lines corresponding to the minimiza-
tion of the Canham-Helfrich free energy, Eq. (5.16), with fixed volume and
surface area [225]. There are three branches of different shapes (stomatocytes,
oblates and prolates), which intersect at certain values of the reduced volume,
v, where a change in the stability of the shape occurs. We see that the re-
sults obtained for stationary shapes with the phase-field Eq. (5.23) are in good
agreement with this.

6.2.2
Non-spherical topologies

We have also studied non-spherical topologies, such as the genus-1 toroidal
topology [129, 223] (see Figs. 6.7a and 6.7b). Circular tori are found for large
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Figure 6.6 Shape diagram for the minimal model with spherical topology. Lines correspond
to the minimization of the Canham-Helfrich energy (C-H) [225], and symbols to the results of
the phase-field model (P-F). The three different kinds of shapes, stomatocytes, oblates and
prolates, are also shown, respectively, from left to right.

values of the reduced volume v, and sickle-shaped tori for small values of v.
Discoids can be found for intermediate values of v, although they are not sta-
ble shapes, and they will eventually fall to stable ones. In addition, spherical
shells are also found (see Fig. 6.7c). They have a different topology with an
Euler characteristic χ = 4. These shapes can be thought of as a limit case of a
sickle-shaped torus, when the outer radius vanishes thus changing the global
topology of the shape (see Fig. 6.8).

The shapes shown in Fig. 6.7 may be found in different ways. First, it is pos-
sible to take an initial shape of a given topology, and let it relax to a stationary
shape of that same topology. Within this relaxation process there is no topo-
logical change, and a non-spherical stationary shape can be found. Second,
in some cases, dynamic evolution within a given topology leads to shapes
close to a topological transition. Then, because of the natural way of dealing
with topological transitions of phase-field models, topology may change. In
Fig. 6.8, we show an example of how we get the shape in Fig. 6.7c in this way.
In this Figure there is a topological transition between steps 6.8d and 6.8e. The
poles of the torus get closer to the axis of symmetry and, eventually, fuse to
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get spherical-shell-like topology. The actual dynamics of this transition is not
explained by our model, neither by energetics of the Canham-Helfrich model,
since the process of membrane fusion is beyond the scope of this model [49].
When membranes are fused or broken, the Helfrich approach is not valid,
since the microscopic details of the bilayer become then relevant (namely, the
radii of curvatures involved are of the order of the membrane width). In addi-
tion, when a topological change occurs, there is an energy change due to the
Gaussian curvature term (see Sec. 3.5.2).

In any case, once the shape has changed its topology the evolution leads the
shape to a stationary state given that new topology (we can think of the initial
shape as being the shape after the topological change).

(a) v = 0.44 (b) v = 0.71 (c) v = 0.27

Figure 6.7 Stationary shapes for non-spherical topologies, as stationary states of the dy-
namic evolution of certain initial conditions under Eq. (5.44). (a) Sickle-shaped torus of genus-
1 toroidal topology, (b) circular toroid (Clifford torus [223]) and genus-1 toroidal topology, and
(c) spherical shell with an Euler characteristic χ = 4 are shown.

6.3
Discussion and conclusions

To test the numerical robustness of our results, we performed simulations on
lattices of different sizes and equivalent shapes and dynamic evolutions were
obtained. In addition, during the time evolution, we checked the value of the
free energy evolution in time to see how it relaxes to a stationary value in a
monotonically decreasing way. The values of the inner volume and the sur-
face area were also computed during the evolution and it can be seen that the
volume remains constant (up to the numerical precision) during all the pro-
cess, and similarly with the surface area (the value of the Lagrange multiplier
converges rapidly to the stationary solution).
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(a) 103 ∆t (b) 107 ∆t (c) 5× 107 ∆t

(d) 6.8× 107 ∆t (e) 7× 107 ∆t (f) 8× 107 ∆t

Figure 6.8 Shape evolution for a vesicle
with v = 0.27, which eventually reaches a
spherical shell shape. A two-dimensional
section is shown, where an axis of symme-
try exists, located on the lower side of each
snapshot. Integration was performed on an

axisymmetric 50× 25 lattice and the time step
was ∆t = 10−4. The initial shape (a) has a
genus-1 toroidal topology. It evolves dynam-
ically until it changes its topology towards an
spherical shell.

As a conclusion for this Chapter, we might say that the phase-field model
for bending energy of fluid vesicles, and not surface tension as in usual phase-
field models, derived in the previous Chapter has been studied. Within this
framework, stationary shapes of vesicles with different topologies are found,
in agreement with those obtained by minimization of the Canham-Helfrich
free energy [224]. In addition, they are found dynamically, from arbitrary
initial shapes. Moreover, a shape diagram for spherical topology vesicles is
presented. These facts show that our phase-field model is a good descrip-
tion of the bending elasticity of membranes, and that it could be used within
a generalized dynamic framework. This will be the subject of the next two
Chapters of this thesis, where morphological changes in vesicles are induced
by the anchorage of hydrophobic groups on the membrane.

Further generalization of the model could be done by including, for in-
stance, hydrodynamic effects. In this case, a hydrodynamic equation for the
velocity field (e.g. the Navier-Stokes equation) could be introduced, with a
force acting on the membrane due to the bending elasticity [21, 254]. How-
ever, our future aim is to study the shape instabilities seen in [250,251]. There,
the relevant characteristic time scale that needs to be studied is that associ-
ated with the relaxation of the curvature, which turns out to be related to the
diffusion coefficient of the polymer in the membrane, and not directly to the
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membrane viscosity. Therefore, a dynamic model which couples the polymer
concentration in the membrane with the local spontaneous curvature would
be needed.
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7
Pearling instability

In this Chapter, we study the curvature-driven pearling instability in vesicles
induced by the anchorage of amphiphilic polymers on the membrane [39].
These polymers insert hydrophobic anchor groups on the outer part of the
bilayer, generating membrane curvature. We use the phase-field model re-
ported in Chap. 5 to understand the instability, in which the formation of a
homogeneous pearled structure is achieved by consequent pearling of an ini-
tial cylindrical tube from the tip. Both homogeneous and inhomogeneous size
distributions of pearls are found depending on the polymer concentration.
These results are compared with experimental ones reported previously [251],
which motivate our research on this topic. It is important to remark that this
pearling instability is driven by curvature, and not by tension, as the classical
Rayleigh-Plateau instability of liquid jets [46].

7.1
Experimental motivation

Experiments by Ringsdorf and collaborators [61, 210, 211], revealed a pearl-
ing instability in tubular vesicles incubated in a solution of amphiphilic poly-
mers having a certain number of hydrophobic anchors in a polysaccharide
hydrophilic backbone. This instability started when the polymer concentra-
tion was high enough. This critical concentration above which the instability
was seen, decreased for increasing number of anchors per backbone. The in-
stability was nonexistent when the polymers contained only the hydrophilic
backbone, suggesting that the curvature generated by the anchorage of the hy-
drophobic anchors was a possible mechanism for the pearling of the vesicle.

Further experimental evidence for this claim was brought by the group of
Joel Stavans at the Weizmann Institute of Science. They experimentally stud-
ied the morphological changes of lipid vesicles upon interaction with am-
phiphilic polymers [249]. In particular, they observed pearling of tubular vesi-
cles [251]. The system they studied consisted of monocomponent membranes
made of stearoyloleoylphosphatdylcholine (SOPC) with C18 alkyl chains in
a liquid disordered state (see Ch. 2). Similarly to Ringsdorf and collabora-
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tors, hydrophilic dextran was used as the polymer backbone. This polymer,
consisting of multiple glucose units, was functionalized with dodecanoic ni-
trobenzoxadiazole (NBD) chains as fluorescent markers, and palmitoyl alkyl
chains acting as hydrophobic anchor groups. For more details on these exper-
iments, see Refs. ( [249, 251]).

By fluorescence imaging, they demonstrate first the association of polymer
with the membrane (Fig. 7.1). Afterwards, they showed that there is a cou-
pling between the polymer concentration on the membrane and the local cur-
vature. The polymer hydrophobic backbones anchor to the outer leaflet of the
bilayer in order to minimize its hydrophobic interaction [245], acting thus as
a wedge changing locally the curvature of the bilayer (see Fig. 7.2).

Figure 7.1 Polymer association with the membrane. Fluorescence image showing how poly-
mer molecules attached to fluorescent probes are clearly associated with the membrane.
Lighter colors represent fluorescent intensity. Figure taken from Ilan Tsafrir’s Ph.D. thesis,
Ref. [249].

7.2
Pearling instabilities in physics

The formation of pearled structure is ubiquitous in nature [247]. For in-
stance, the classical Rayleigh-Plateau instability [198,207] which explains how
a falling stream of fluid breaks up into smaller packets with the same volume
but less surface area, is responsible for the pearling observed when water is
dripping from a faucet. When the free surface of a liquid cylinder undulates
with a wavelength λ, its area decreases [46], provided that λ is larger than the
circumference of the cylinder (in the case of a liquid jet of radius R, larger than
2πR) (see Fig. 7.3).
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Hydrophilic group Hydrophobic anchor

(a) (b)

Amphiphilic polymerPhospholipid

Figure 7.2 Polymer wedge effect inducing a spontaneous curvature in a bilayer. A bilayer
formed by one kind of lipids with zero spontaneous curvature tends to be flat (a). When a cer-
tain amount of anchor groups of an amphiphilic polymer gets stuck in the outer leaflet of the
bilayer, a spontaneous curvature is induced (b).

Figure 7.3 Rayleigh-Plateau instability. When water is dripping from a faucet, small drops
form. When the initial jet starts to break apart due to the weight of the tip drop (a), a neck is
formed and then stretched. If the diameter of the faucet is big enough, the neck doesn’t get
sucked back in, and it undergoes a Rayleigh-Plateau instability (b).

Besides, pearling instabilities in lipid vesicles have been reported due to dif-
ferent mechanisms. Pearling was induced when perturbing cylindrical vesi-
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cles with optical tweezers. This produced tension in the membrane [12, 13].
Such an instability is understood also in the framework of the Rayleigh-
Plateau instability [104, 181], in the sense that it is a capillary instability in
which there exists a competition between creating droplets which minimize
the surface energy, and the kinetic cost of moving such quantities of water over
large distances. It has also been studied in charged membrane tubes [182].

In addition, the Rayleigh-Plateau instability has also been used as an anal-
ogy to study instabilities of black strings ( [45]). It has to be noted that black
hole event horizons have been studied in the so-called membrane paradigm,
which considers them as a kind of fluid membrane [248].

Pearled geometries are also found in Golgi tubules [256]. This pearling and
prefission neck narrowing are explained theoretically [230] by lateral parti-
tioning of diacylglycerol (DAG), a membrane lipid with a large negative spon-
taneous curvature, using a fourth order elastic energy [177].

7.3
Curvature-driven pearling instability in membranes

A lipid vesicle subject to an effect which causes an asymmetry between the
two monolayers can be elastically described, as we explained in Ch. 3, by the
spontaneous curvature model Eq. (3.27), repeated here for convenience,

HSC =
κ

2

∫

Γ
(2H− C0)

2 dS, (7.1)

where κ is the bending modulus, H is the mean curvature, and Γ is the vesicle
surface. The asymmetry is enclosed in the spontaneous curvature, C0.

To incorporate the effect of curvature generation by the anchored polymers,
we assume a linear coupling between the spontaneous curvature and the poly-
mer concentration [42, 156]1,

C0(x, t) = C
(0)
0 + C

(1)
0 ρ(x, t), (7.2)

where C
(0)
0 is the bare spontaneous curvature, i.e. due to the asymmetry be-

tween the two leaflets of the bilayer before the polymer anchorage, C
(1)
0 is

the polymer-induced spontaneous curvature, and ρ(x, t) is the local density of
polymer. It has to be noted that here, the spontaneous curvature is, a priori, a
dynamic non-homogeneous function.

1) In the third Part of this thesis, we quantify how the insertion of hy-
drophobic domains into the bilayer induces membrane curvature.
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7.3.1
Delaunay shapes

Exact solutions to the spontaneous curvature model Eq. (7.1) for axisymmetric
infinite tubelike vesicles were analytically found by H.J. Deuling and W. Hel-
frich [64]. For an axisymmetric geometry, as that sketched in Fig. 7.4a (see also
Ch. 9), the two principal curvatures can be expressed as

cp =
sin ψ(x)

x
, (7.3)

cm = cos ψ(x)
dψ(x)

dx
, (7.4)

which relate to the symmetry axis, z, as

dz
dx

= − tan ψ. (7.5)

Since the spontaneous curvature energy Eq. 7.1 is positive defined, its mini-
mum configuration might correspond, if possible, to the situation of vanishing
energy. Namely,

cm(x) + cp(x)− c0 = 0. (7.6)

From Eq. (7.4), we can rewrite it as

dcp(x)
dx

=
c0 − 2cp(x)

x
. (7.7)

We can solve this first order ordinary differential equation, up to an integra-
tion constant, as

cp(x) =
c0

2
+

x0

x2 , (7.8)

where x0 is this constant of integration. At the minimum and maximum val-
ues of the radial x-coordinate, Rm and RM, respectively, the parallel curvature
is cp(x) = 1

x , which gives

c0 =
2

Rm + RM
, (7.9)

x0 =
1
4

(Rm + RM)

[
1−

(
RM − Rm

RM + Rm

)2
]

. (7.10)

The shape contour, z(x), can be found by integration, leading to the following
result,

z(x) = z(Rm)−
∫ x

Rm

x′cp(x′)√
1− x′ 2 c2

p(x′)
dx′, (7.11)
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which exist for spontaneous curvatures in the range 0 ≤ c0 RM ≤ 2.
These shapes were already found in the mid nineteenth century by C. De-

launay [62], that is the reason why there usually known as Delaunay shapes.
In C. Delaunay’s own words [62], one can find such surfaces in the following
manner:

Pour trouver la courbe méridienne de la surface de révolution dont la
courbure moyenne est constante et égale à 1

2a , il faut faire rouler sur l’axe
de la surface une ellipse ou une hyperbole dont le grand axe ou l’axe trans-
verse soit égal à 2a, et le foyer décrira la courbe cherchée2.

In Fig. 7.4, we show some examples of Delaunay shapes, which are surfaces
of constant mean curvature (see also the front and back covers of this thesis).

Figure 7.4 Delaunay shapes. Three example of Delaunay surfaces shown for (a) c0RM =
1.25, (b) c0RM = 1.50, and (c) c0RM = 1.75. In (a) we sketch the axisymmetric coordinates
used to describe Delaunay shapes.

2) To find the meridian curve of the surface of revolution whose mean
curvature is constant and equal to 1

2a , an ellipse or a hyperbole with
one of both axes equals to 2a has to be rolled over the surface axis.
The focus will follow the desired curve.
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7.4
Results and discussion

In the experiments by Tsafrir et al. [251], amphiphilic polymers are introduced
in the bulk outside the vesicle, both globally and locally close to the tip of the
tube. These molecules diffuse in the bulk until they come across the mem-
brane, where they get stuck in such a way that their hydrophobic part anchors
in the bilayer (in order to satisfy the hydrophobic interaction). Once a polymer
is anchored in the bilayer, it diffuses superficially within the membrane.

Here, we consider the situation of global application of the polymer. In this
case, we assume that the polymer concentration almost immediately reaches
a homogeneous profile along the membrane. The dynamic evolution is thus
fully understood from the shape dynamics, so there is no need of a dynamic
equation for the density field.

7.4.1
Onset of the instability

Tsafrir et al. [251] studied the pearling instability in tubes whose length is
much larger than their diameter. Within our model, we can find the shape
of the tube at the onset of the instability (see Fig. 7.5). The experimental and
predicted shapes are in good qualitative and quantitative agreement with each
other. For instance, we can measure the ratio between the radius of the first
pearl and the radius of the neck connecting it with the tube, and see that it
gives a value of about 3 in both the experiment and the simulation. We can
thus assert that there is no need for an inhomogeneous polymer concentration
on the membrane in order to start the instability, but it can just be triggered by
the global change of the preferred curvature.

7.4.2
Low polymer concentration

Further addition of polymer solution increases the concentration of anchor
chains in the membrane, therefore increasing the induced spontaneous cur-
vature. Fig. 7.6 shows the time evolution of a long cylindrical tube with an
endcap and the other end connected to a lipid reservoir. The homogeneous
spontaneous curvature induced by the anchorage of the polymers made the
initial cylindrical shape to be unstable and to create pearls.

We define the volume to area ratio, λ = V/A. For spontaneous curvatures
between C0 = 1/(2 λ) and C0 = 2/(3 λ), Deuling and Helfrich [64] showed
that there exist minimal surfaces, called Delaunay surfaces, which are global
minima of the bending energy Eq. (7.1), for cylindrical shapes. The two lim-
iting Delaunay shapes are a cylinder (for C0 = 1/(2 λ)) and a set of spheres
(C0 = 2/(3 λ)). Unduloids, the one-parameter family of Delaunay shapes,
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(a) Experimental result (from Ref. [251])

(b) Phase-field numerical result

Figure 7.5 Onset of the pearling instabil-
ity. Comparison of the experimental result
from Ref. [251] (a), and the phase-field nu-
merical result (b). It is important to note that
in the numerical integration there is no fit-

ting parameter, but we just let the system
evolve from an initial tubular shape, under a
relatively low homogeneous induced spon-
taneous curvature, C0 = 0.48, below the
pearling instability limit.

interpolate smoothly between them. For higher spontaneous curvatures, the
condition of vanishing bending energy cannot be fulfilled, and therefore the
stationary shape corresponds to a non-vanishing minimum of the free energy.
Our simulations show that, when the polymer solution is applied globally,
i.e. when there is a simultaneous anchoring of polymer everywhere on the
surface, the way of reaching a pearled structure from a cylindrical one is not
by going through the family of equilibrium Delaunay shapes, but by a com-
pletely different dynamic evolution: creating pearls one by one from the tip of
the tube (see Fig. 7.6b).

We checked how the free energy Eq. (5.27) varies in time seeing how each
pearl formation is associated with an energy barrier which is crossed by ther-
mal activation (due to numerical noise in our simulations). It is important to
remark that there occurs no fission in the tube, but there is a narrow neck join-
ing any pair of pearls, as seen in the experiments. The width of this neck is of
the order of the mesh size. There is therefore no change in the topology of the
tube. The tip of the semi-infinite tube is the point where pearls start when the
polymer solution is applied both locally on the tip and globally [251]. The rate
of formation of pearls with time is shown in Fig. 7.7.
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(a) Experimental result (from ref. [251])

(b) Phase-field numerical result

Figure 7.6 Dynamic evolution (time goes
by from upper images to down) of a tube
with an polymer concentration on the mem-
brane such that C0 = 0.68. We show (a)
the experimental results and (b) the phase-
field numerical integration, for comparison.

Pearls start at points where the tube loses
its perfect cylindrical geometry, namely the
cap. The simulation has been performed on a
200× 40 axisymmetric lattice. No-flux bound-
ary conditions at the lateral walls have been
implemented.

7.4.3
High polymer concentration

It is seen in the experiments (see Fig. 7.8a) that when the concentration of an-
chored molecules on the membrane increases, there appears a gradient in the
size of the pearls. The higher the concentration, the more pronounced the
size gradient is. This is so because the higher the amount of anchored poly-
mer on the membrane, the higher the induced spontaneous curvature. As
we mentioned before, there are no energy-vanishing surfaces for C0 > 2/3
(here, we define the lengthscale by setting λ = 1). Tsafrir et al. [251] sug-
gested that a shape consisting of a chain of equally sized Helfrich spheres
connected to a larger sphere is, in terms of free energy, favorable to a chain
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Figure 7.7 Number of pearls as a function of time (number of integration iterations) for a typ-
ical pearling numerical integration. Time scale is showed in arbitrary units. We see that the
formation of pearls follow a linear behavior.

of equally-sized spheres. Some pearls having the mean curvature equal to the
spontaneous curvature are formed, but not all of them can fulfill this condi-
tion, under the volume and area constraints. Then, a larger sphere should
form in order to keep these constraints. They argued that an inhomogeneity
in the polymer concentration on the membrane (and thus in the distribution of
the induced spontaneous curvature), may reduce the Helmholtz free energy
F = HC-H − TS, T being the temperature and S the entropy.

However, we found that for higher values of the spontaneous curvature,
a situation with a pearl size gradient may be energetically favorable to that
of a chain of equally-sized pearls, even with the same spontaneous curvature
all along the vesicle (Fig. 7.8). It is interesting to note that for values of the
spontaneous curvature just slightly higher than 2/3, the homogeneous case
keeps its stability against the inhomogeneous case. Once a critical value C c

0 is
achieved, the homogeneous case destabilizes against the inhomogeneous one
(see Fig. 7.8c). This critical value depends on the area of the vesicle or, in other
words, on the length of the initial tube. This critical value decreases with
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(a)

(c)

(b)

Figure 7.8 Inhomogeneous pearling. (a)
Experimental result from Ref. [251], and (b)
phase-field simulation using C0 = 1.1. (c)
Plot of the energy difference ∆E between
the bending energy corresponding to a set
of spheres, and the one associated with a
set of small spheres added to a bigger one,
with respect to the increment of spontaneous
curvature from the value C0 = 2/3, when

equally-sized spheres have zero bending en-
ergy. For spontaneous curvatures bigger than
a critical value, the homogeneous configura-
tion is energetically less favorable than the
inhomogeneous one. The area of the vesi-
cle is finite, and chosen in such a way that
the homogeneous pearled chain consists
of 8 spheres. Magnitudes are measured in
normalized units, given by κ = 1 and λ = 1.

increasing tube length, reaching 2/3 in the case of infinite tubes. Therefore,
we state that the inhomogeneous pearl size experimentally found by Tsafrir
et al. [251], is not due to a inhomogeneous polymer distribution, but it is of a
purely energetic nature.

7.5
Conclusions

In summary, a phase-field model for dealing with dynamic instabilities in vesi-
cles has been studied in the case of curvature-driven pearling instability in-
duced by the anchorage of amphiphilic polymers on the bilayer. We showed
in this Chapter that the morphological changes reported in the experiments
are explained by the generation of curvature by the anchors. We considered
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the situation in which polymer is applied globally, accounting for the main
experimental results. Calculations in the framework of the Canham-Helfrich
model showed that for a high enough homogeneous concentration of anchors,
the homogeneous pearled shape is energetically less favorable than an inho-
mogeneous one, with a large sphere connected to an array of smaller spheres.
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8
Tubulation instability

In this Chapter, we present a mechanism of extraction of tubular membranes
from a lipid vesicle due to the presence of amphiphilic polymers [41]. A con-
centration gradient of these anchoring polymers generates tubes from bud-
like vesicle protrusions. We explain this mechanism in the framework of the
Canham-Helfrich model reviewed in Ch. 3. The energy profile is analytically
calculated and a tube with a fixed length, corresponding to an energy mini-
mum, is obtained in a certain regime of parameters. Further, using the phase-
field model derived in Ch. 5, we numerically corroborate these results. We
obtain the growth of tubes when a polymer source is added, and the bud-like
shape after removal of the polymer source, in accordance with experimental
results [250].

8.1
Experimental motivation

As part of cellular dynamic processes, membranes adopt different shapes in
order to exchange matter with their surroundings. Many possibilities appear
here, from budding and eventual fission of small transport vesicles [79] to for-
mation of large tethers connecting distant organelles, as in the Golgi appara-
tus and the endoplasmic reticulum (ER) [252, 255], or even between different
cells [217]. Actually, the endoplasmic reticulum is a huge network of inter-
connected tubules, vesicles, and cisternae, which act as transport carriers for
proteins and other functional entities to be transported to other parts of the
cell [3].

The formation of these tethers can be driven by the application of a point-
like force to the membrane [63, 200]. Understanding the nature of this force is
of major importance, and we will review the main theoretical aspects of such
a mechanism in Sec. 8.2.

There are different mechanisms leading to such a tubulation phenomenon
in cells as, for instance, the growing of microtubules pushing the membrane
from inside [97], and the extrusion from vesicles due to a hydrodynamic shear
flow [26, 31, 213]. Other works have experimentally studied the force gener-
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ated by molecular motors pulling membrane tubes in vitro [36, 151, 214] and
by optical tweezers [55, 56, 138].

Besides, Tsafrir et al. studied the tubulation induced in highly oblate vesi-
cles by the anchoring of amphiphilic polymers [249,250] without any directed
force. In those experiments, similar to the ones they did on pearling insta-
bility [251] (see Ch. 7), macromolecules containing hydrophobic groups were
administered in the surroundings of a giant oblate vesicle. Those molecules
diffused in the bulk and eventually anchored the membrane inducing a local
spontaneous curvature by the mechanism of hydrophobic insertion [42, 263],
leading to the formation of one or several buds. Even, under certain circum-
stances, those buds can grow into long tubular structures (see Fig. 8.1).

Figure 8.1 Tube formation in a highly oblate vesicle after local addition of multianchor poly-
mer. Scale bar represents 10 µm. Experimental images from Ref. [250].

Motivated by these experimental results [250], we present a theoretical treat-
ment of a novel mechanism of tube extraction, due to the generation of spon-
taneous curvature by anchoring macromolecules which are distributed along
a gradient of concentration, maintained by a source. We show that the elon-
gation of a bud into a tube may be, under certain circumstances, energetically
favorable when a polymer concentration gradient is present. We obtain that
these tubes do not grow indefinitely, but stop at a certain length. In Sec. 8.3, we
analyze the problem in the framework of the Canham-Helfrich model [44,109]
with a simple geometry and a stationary linear concentration profile, in or-
der to solve analytically and to understand qualitatively the tube formation.
Afterwards, we use the bending phase-field model derived in Ch. 5, cou-
pled with a stationary polymer concentration profile, to numerically study
the problem.

8.2
Theoretical background

When a force is applied on a small spot of a vesicle, deformation occurs. De-
pending on the conditions of this force a membrane tube can be extruded from
the mother vesicle. There are lots of works, both experimental and theoretical,
in the literature about the physics of membrane tube extraction by a directed
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force. We will review here a theoretical explanation of tube extraction by a
localized force, based on Refs. [63, 200].

Given a fluid vesicle with fixed tension, σ, and pressure, p, on which a force,
f , is locally applied normally outwards the vesicle, the energy can be written,
according to the minimal model Eq. (3.24),

E =
∫

S

κ

2
(2H)2 dS + σA− pV − f L, (8.1)

where A and V are, respectively, the area and volume of the vesicle; L is the
end-to-end distance in the direction defined by the force vector. For a cylindri-
cal tube of length L, radius R, at vanishing osmotic pressure, since the pressure
effects are misleading (see Ref. [200] for a discussion on this issue), the energy
reads

Etube =
( κ

2R2 + σ
)

2πRL− f L, (8.2)

where we see that the bending term favors the radial growth of the tube
(since this decreases the bending energy), and the tension terms favors the
tube shrinkage. Therefore, the competition between these two forces lead to
an equilibrium intermediate solution that can be easily found by minimizing
Eq. (8.2) with respect to the radius and length of the tube,

∂Etube
∂R

= 0, (8.3)

∂Etube
∂L

= 0, (8.4)

from where one obtains

R0 =
√

κ

2σ
, (8.5)

f0 = 2π
√

2κσ. (8.6)

This has been done for the minimal model Eq. 3.24. However, a membrane
bare spontaneous curvature can also be straightforwardly introduced and pro-
ceed analogously (see Ref. [263]).

Typical values for this force and optimal radius, are of the order of f0 ∼
10 pN, and R0 ∼ 20 nm. Actually, the value of the needed force to extract
a membrane tube is of the order of the force generated by a few molecular
motors [36,119], meaning that these motors are plausible candidates to extract
and form intracellular carriers.
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8.3
Polymer-induced tubulation in lipid vesicles

Let us assume that a hemispherical bud of radius R is already formed out
from a giant vesicle. This bud has not to be necessarily stable, appearing for
instance just as a vesicle rim fluctuation [250]. The mother vesicle is large
enough to be considered as a lipid reservoir during the whole extraction pro-
cess, so we can study the isolated tube on its own. In addition, there are am-
phiphilic macromolecules (e.g. polymers as in [250]) in the volume outside the
vesicle. We assume here, in order to find analytical estimations for the extrac-
tion of membrane tubes due to an inhomogeneous polymer concentration in
the bulk, that these macromolecules are applied in a line located at a distance
zp from the mother vesicle (see Fig. 8.2) and follow a linear stationary profile
for this concentration,

ρ(r, t) = ρ0
(
1− |z/zp − 1|) , (8.7)

where rappl = (0, 0, zp).

r

L
pz

R

ρ

z

Figure 8.2 Geometrical sketch of the system: a cylindrical tube of radius R and length L, with
a hemispherical cap of radius R. A linear polymer concentration gradient is ρ(z) is also out-
lined in the figure (dashed line).

The bending energy of a membrane treated as an elastic sheet is given by
the spontaneous curvature model Eq. (3.27),

E =
∫

S

(κ

2
[2H(r)− c0(r)]2 + σ

)
dA. (8.8)

Since the tube is connected to a lipid reservoir, we have also included a surface
tension term, where σ is the surface tension of the membrane. A pressure-like
term could also be introduced, but its effects, as mentioned above, are sub-
leading [200]. Using a cylindrical tube with a hemispherical cap, as sketched
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in Fig. 8.2, Eq. (8.8) can be written as

E =
∫

SL

(
κ

2

[
1
R
− c0(r)

]2
+ σ

)
d2 A +

∫

SR

(
κ

2

[
2
R
− c0(r)

]2
+ σ

)
d2 A, (8.9)

where R is the radius of the cylinder and the cap, and SL and SR denote the
cylindrical and the hemispherical parts of the tube (Fig. 8.2) with areas AL and
AR, respectively. The spontaneous curvature of the membrane is coupled with
the local concentration since the hydrophobic anchor groups of the polymer
tend to insert themselves into the bilayer, acting thus as a wedge1. A linear
coupling [156], as stated previously while studying the pearling instability in
Ch. 7, has shown to be justified, the spontaneous curvature field outside the
vesicle being

c0(z) = c̄0 ρ(z), (8.10)

where c̄0 is the proportionality constant, depending on the nature of the poly-
mer and of the membrane where it anchors.

Therefore, in the case where the polymer gradient in space is set to be linear
(see Eq. (8.7), we get for the tube energy Eq. (8.9)

E
κπ

=
1
3

ξ2L3 + ξ (ξ − 1) L2 +
(

πξ2

2
− 4ξ + 2σ̄ + 1

)
L

+
(

2ξ2

3
− πξ + 2σ̄ + 4

)
(8.11)

where R = 1 sets the length scale, σ̄ = σ/κ, and we defined ξ = c̄0 ρ0/zp, as
the slope of the linear spontaneous curvature profile.

In Fig. 8.3 (inset) we show how the tube energy Eq. (8.11) looks like as a
function of the length L of the tube for different slopes of the spontaneous
curvature profile, ξ, when the tension σ is negligible. Note that the energy
Eq. (8.11) is cubic in the tube length. The energy extremes correspond to two
equilibrium lengths: one stable length corresponding to an energy minimum,

L∗ = 1/ξ − 1 +
√

2/ξ − π/2 + 1; (8.12)

and another smaller length being unstable,

Lc = 1/ξ − 1−
√

2/ξ − π/2 + 1. (8.13)

The larger the slope of the linear concentration profile is, the smaller these
lengths are. For

ξ > ξcrit = 4/π(1−
√

1− π/8) ' 0.28, (8.14)

1) In the third Part of this thesis, we build a model to calculate the ef-
fective spontaneous curvature a shallow insertion, such as these
hydrophobic anchor groups, induce depending on the elastic prop-
erties of the bilayer and the geometry of the insertion.
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there is only a local minimum and no local maximum of the energy for pos-
itive lengths (see Figs. 8.4 and 8.3). This means that the initial bud becomes
unstable against the formation of a tube. For smoother concentration gradi-
ents (ξ < ξcrit), the initial bud, in order to grow up to its preferred length
L∗, needs to cross an energy barrier ∆E0, or to start with a certain initial length
larger than Lc (see Fig. 8.3). For very steep slopes of the concentration gradient

ξ > ξmax = 4/π(1 +
√

1− π/8) ' 2.27, (8.15)

the local energy minimum at L∗ disappear, and no stable tubes can be found
(see Fig. 8.4).

L L
c

*

ξ = 0.2
ξ = 0.1

ξ = 0.2

ξ = 0.3

ξ = 0.4

L / R

Figure 8.3 Energy vs. tube length for differ-
ent values of the rate of polymer molecules
added to the system, i.e. the slope of the
linear polymer profile ξ (inset). Initial buds
need to overcome an energy barrier ∆E0 to

elongate into tubes for a certain range of val-
ues of ξ. Then, the elongated tube needs to
overcome another barrier ε in order to be re-
absorbed by the mother vesicle. The surface
tension here is negligible.

For an initially formed bud-like fluctuation (Lini = 0 in Fig. 8.4), when we
increase the slope of the spontaneous curvature, ξ, the bud cannot grow un-
less the critical slope, ξcrit, is reached, and then a finite-length tube is formed
out (dashed line in Fig. 8.4). This transition is discontinuous in the value of
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Figure 8.4 Stability diagram of tube formation as a function of the initial tube of length Lini
(Lini = 0 corresponds to a bud), and the dimensionless slope of the spontaneous curvature
gradient ξ. The dashed line correspond to the stable tube length, L∗, for a given concentration
gradient.

the stable length of the tube. In addition, we see that the tube length is max-
imum for ξcrit, decreasing for steeper profiles, ξ > ξcrit. Eventually, at ξmax

the equilibrium tube length vanishes, and buds become again unstable. This
transition is therefore continuous.

For non-vanishing but relatively small values of the surface tension, σ, the
stable tube length decreases as

L∗(σ̄) = L∗(0)− σ̄/(ξ2
√

1− π/2 + 2/ξ)), (8.16)

where L∗(0) is the tube length for zero tension. For tensions larger than a
critical tension σ̄c = 4− π/2, bud to tube transition disappear, altough stable
tubes may be formed out from a tube with a finite given length.
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8.4
Numerical model

In the experiments by Tsafrir et al. [250], polymer molecules diffuse from a
source and eventually anchor the membrane, inducing a local spontaneous
curvature which modifies the vesicle shape. In order to study dynamically this
process, we present here a numerical model dealing with a stationary polymer
profile and the spontaneous curvature model without any assumption on the
tube geometry.

In order to do so, we use the phase-field method developed in Ch. 5 to
numerically deal with the bending energy of the membrane. Within this ap-
proach, the Helfrich Hamiltonian Eq. (8.8) is written as a dynamic function of
a field, φ, whose level-set {x : φ(x) = 0} locates the membrane position at each
time. The dynamic equation for the phase-field, and hence for the membrane
shape, is given by Eq. (5.46) [39], which we rewrite here for convenience

∂φ

∂t
= κ̄∇2

{ (
3φ2 − 1− 2εC0(x) φ

)
Φsc[φ]− ε2∇2Φsc[φ]

+ ε2σ̄(x)∇2φ
}

. (8.17)

where Φ[φ(x), ρ(x)] = (φ2 − 1) (φ− ε C0(ρ(x))) − ε2∇2φ(x), C0(ρ(x)) =
c̄0 ρ(x) is the spontaneous curvature induced by the local concentration ρ(x)
of polymer molecules anchored on the membrane, and ε is a small parameter
related to the width of the interface (see Ch. 4). This dynamic equation in-
cludes a tube surface tension σ̃, and conserves locally the inner volume, due
to the use of a relaxational model-B-like conserved dynamics [117].

The assumption we did before of a linear stationary polymer profile is re-
laxed at this point. Since our aim is to show how an inhomogeneous stationary
polymer concentration profile is a possible mechanism of tube formation, we
are going to use in our numerical treatment a Gaussian stationary profile such
as

ρ(x) =
ρ0

Σ
√

2π
exp


−

∣∣∣x− xappl

∣∣∣
2

2Σ2


, (8.18)

where Σ is the standard deviation, related with the width of the distribution,
and ρ0 is the total number of polymer molecules introduced in the system.
This problem is then reduced to numerically solve Eq. (8.17) using this station-
ary polymer concentration for different sets of initial conditions and parame-
ters. We used a standard finite-difference scheme for the spatial discretization
and an Euler method for the time-derivatives (see Sec. 6.1).

The parameters which are relevant in these simulations in order to study
the growth and the shrinkage of tubes are: the length of the initial tube, and
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the characteristics of the polymer gradient profile. We fixed the position of
the polymer source to be zp = 7.5 R, where R is the radius of the initial tube
formed by a cylinder and a hemispherical cap. Due to the axisymmetry of the
problem, the integration is performed in a two-dimensional lattice, whose size
is 80× 20 throughout this Chapter.

8.5
Results and discussion

In Fig. 8.1 we showed three snapshots of the experimental results from
Ref. [250], where a fluctuating oblate vesicle undergoes a shape instability
which forms an initial bud and eventually grows into a tube, due to the an-
chorage of amphiphilic polymer molecules. The presence of the polymer
molecules enhance fluctuation of the vesicle rim (Fig. 8.1a). One can divide
the dynamics of this process in four different regimes:

1. The formation of the initial bud and suppression of rim fluctuations
(Fig. 8.1b).

2. When the tube starts to grow up to a certain length (Fig. 8.1c).

3. Then, the polymer source is shut down (Fig. 8.5a) and tubes shrink
reaching a metastable bud-like shape (Fig. 8.5b).

4. In the last regime, they eventually disappear reabsorbed by the mother
vesicle.

Within our model, we find, as shown in Fig. 8.5c, the shape of a large tube,
which is qualitatively in good agreement with the experimental results. For
a large range of values of the standard deviation, Σ, the tube length we get is
essentially the same. In other words, when the source of polymer molecules
is shut down, the concentration profile gets stretched as time goes by, but the
length of the stable tube continues being the same.

Then, after some time, the polymer molecules are more homogeneously dis-
tributed, and a new configuration of short length is found (Fig. 8.5d). These
buds are also in agreement with those found by Tsfarir et al. [250], and we can
quantitatively compare them by measuring the ratio between their width and
length to be ∼ 0.3.

In other recent experiments, Roux et al. [216] generated dynamin-coated
membrane tubes. They observed the growth of these tubes by the addition
of this protein. Further addition of guanosine triphosphate (GTP) molecules
to these tubes induces fission by a conformational change of dynamins. Al-
though our model is capable of explaining the initial tubulation by the gen-
eration of membrane curvature by dynamin, it does not consider topological
changes such as fission.
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(c) (d)

Figure 8.5 Tubes extruded from a vesicle by
a non-homogeneous polymer profile. Com-
parison between the experimental results
from Ref. [250] (a,b) and the phase-field in-
tegrations (c,d). For short times (small stan-
dard deviation Σ) long tubes are obtained

(a,c), and for long time (wider distributions)
buds appear (b,d). The resulting profile for
the spontaneous curvature is shown for the
phase-field integrations. We choose ξ = 0.3,
Σ = 3.5R (c), and ξ = 0.3, Σ = 10R (d).
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9
Two-phase periodic membrane tubes

In this Chapter, we investigate the formation of two-phase lipidic tubes of
membrane in the framework of the Canham-Helfrich model [37]. The two
phases have different elastic moduli (bending and Gaussian rigidity), different
tensions and a line tension prevents the mixing. For a set of parameters close
to experimental values, periodic patterns with arbitrary wavelength can be
found numerically. A wavelength selection is detected via the existence of
an energy minimum. When the chemical composition induces an important
enough size disequilibrium between both phases, a segregation into two half
infinite tubes is preferred to a periodic structure.

9.1
Introduction

Inhomogeneous lipid membranes have received increasing attention recently
[73, 168]. They are formed by multiple lipid components which laterally sep-
arate into coexisting liquid phases with specific composition. In cell biology,
this separation is responsible for cholesterol-enriched micro-domain forma-
tion. These domains, called rafts, are believed to concentrate important bio-
logical functions such as polarized sorting of proteins [132, 234], cellular sig-
naling [235], and viral entry and budding [233].

In this Chapter, we focus on inhomogeneous tubular membranes and we
ask the question of the existence of periodic and steady patterns. Tubular
membranes exist in the cell, allowing transport functions from an intracellu-
lar compartment to another. They also appear during cell development and
motility [29]. Made of a ternary mixture of lipids (sphingomyelin (SM), di-
oleoylphosphatidylcholine (DOPC), and cholesterol) in varying composition
(see Sec. 2.1.1), these vesicles exhibit various and complex shapes and domain
organizations, as the temperature approaches the mixing/demixing composi-
tion temperature. For a composition which favors cholesterol enriched phases,
periodic tubular vesicles have been experimentally observed [14]. Here, in
the framework of the Canham-Helfrich model (see Ch. 3), we explain the ex-
istence of periodic membrane tubes and the selection of the wavelength in
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terms of physical parameters such as the elastic coefficients, the surface and
line tensions. Other non-periodic inhomogeneous tubes have been experi-
mentally observed [5, 215] like quasi-semi infinite tubes where the complete
separation seems to be energetically preferred: each half-infinite tube is made
with a unique phase separated from the neighbor by a unique junction. Our
goal is also to explain this duality between periodicity or homogeneity when
the chemical composition between both phases is approximately balanced.

9.2
Variational treatment for biphasic tubes

The physics of membrane tube formation has been studied both theoretically
and experimentally (see Sec. 8.2) [27, 63, 200]. We will use the variational free
energy minimization that we adapt to an infinite periodic biphasic tube with
a prescribed chemical ratio composition SLo/SLd, where SLo and SLd are the
areas covered by the liquid ordered, Lo, and liquid disordered, Ld, phases,
respectively (see Fig. 9.1). The free energy is obtained by extending the tubular
energy with an effective force acting at some ends, giving

F = ∑
i=Ld,Lo

∫

Ωi

[κi
2

(J− ci)
2+κ̄i K+ σi

]
dS+

∮

∂Ω
τ d`−

∫
f dz. (9.1)

We denote the two phases by Lo or Ld following the classical terminol-
ogy which distinguishes a liquid-ordered and a liquid-disordered phase (see
Sec. 2.3). Both phases will be treated in the same way but the Lo-phase is more
rigid. For each phase, we integrate the free energy over its membrane area.
The length of each phase i measured on the z-axis is λi and the total wave-
length is thus λ = λLd + λLo. We choose as length unit the radius RLo, which
is the value of the radius at its extremal value in the Lo-phase (see Fig. 9.1).
Our study will fix all the lengths of the pattern as a function of RLo, which is
fixed by the total available mass of lipids. The free energy Eq. (9.1) includes
the spontaneous curvature model Eq. (3.4), where J is the total curvature, and
K the Gaussian curvature. The characteristic elastic coefficients are κi and κ̄i,
the bending and Gaussian rigidities, respectively. One can also include the
spontaneous curvature of the phase i, ci, if the two leaflets of the membrane
are different. This occurs by anchoring amphiphilic molecules in vesicles for
example, which may induce a tubular instability [41, 250] (see Ch. 8). In each
phase, σi, the tension of the membrane in phase i, remains constant if the area
per lipid does not vary, so the surface of each phase remains constant. Not in-
cluded here, a small pressure effect may be incorporated [200]. The interface
between the two phases is described by a jump in the values of the bending
and Gaussian rigidities and in the values of the surface tension. Moreover, a
line energy is associated to this interface, with a line tension τ.
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 Ld

 Lo
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Lds
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0
λ
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Figure 9.1 Geometry sketch of a periodic biphasic membrane tube. The z-axis is the axis
of symmetry of the tubes. Half of the wavelength of both Ld and Lo phases is depicted. The
{r, ψ} parametrization used when deriving the Euler-Lagrange equations is shown. The inter-
face is located at s = z = 0.

9.2.1
Axisymmetric parametrization

Since we consider here axisymmetric tubes, we parametrize the surface in
cylindrical coordinates (see Fig. 9.1). We have therefore the following geo-
metric relations

ṙ = cos ψ, (9.2)

ż = − sin ψ, (9.3)

where the dot represents the derivative with respect to the arclength, s, along
the curve. The total and Gaussian curvatures can be written in these coordi-
nates in the following way

J = ψ̇ +
sin ψ

r
, (9.4)

K =
sin ψ

r
ψ̇, (9.5)

as well as

d2S = 2πr(s)ds, (9.6)

is the surface element. Therefore, we can rewrite the Canham-Helfrich part of
the Hamiltonian (9.1) as

F i
CH =

∫

Ωi

[
κi
2

(
ψ̇ +

sin ψ

r
− c0

)2
+ κ̄i

sin ψ

r
ψ̇ + σi

]
2πrds. (9.7)
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Since we describe the tube shape by the angle ψ and the local radius r as a
function of the arclength s, one needs a Lagrange multiplier Γ(s) to impose the
relation Eq. (9.2). The total energy of the tube, in the axisymmetric variational
form reads

F = ∑
i=Ld,Lo

[
F i

CH +
∫

Ωi

f sin ψds +
∫

Ωi

Γ(s) (ṙ− cos ψ) ds
]

. (9.8)

9.2.2
Euler-Lagrange equations and Hamiltonian of the system

In order to find an equation for the tube shape, we first need to derive the
Euler-Lagrange equations of our variational problem. The free energy Eq. (9.1)
is a Lagrangian, in classical mechanics vocabulary [103]. Since we are going to
present some detailed calculations on how the shape equation is obtained, we
will restrict ourselves here to the case of vanishing spontaneous curvatures,
ci = 0, for the sake of simplicity. The case for non-vanishing spontaneous
curvatures can be done straightforwardly in an analogous way. Then, the
Lagrangian of each phase, Li, reads

Li
2π

=
κi
2

(
rψ̇2 + 2ψ̇ sin ψ +

sin2 ψ

r

)
+ κ̄i sin ψψ̇ + rσi

+ f̄ sin ψ + Γ̄(s) (ṙ− cos ψ) , (9.9)

where f̄ = f /2π and Γ̄(s) = Γ(s)/2π.
In order to find the two Euler-Lagrange equations, corresponding to the

two coordinates, r and ψ, we need to find the partial derivatives with respect
to these coordinates and their arclength-derivatives. Explicitly, for the ψ coor-
dinate, we get

1
2π

∂Li
∂ψ

=
κi
2

(
2ψ̇ cos ψ +

2 sin ψ cos ψ

r

)
+ κ̄i cos ψψ̇

+ f̄ cos ψ + Γ̄(s) sin ψ, (9.10)

1
2π

∂Li

∂ψ̇
=

κi
2

(
2rψ̇ + 2 sin ψ

)
+ κ̄i sin ψ, (9.11)

d
ds

(
1

2π

∂Li

∂ψ̇

)
= κi

(
2 cos ψψ̇ + rψ̈

)
+ κ̄i cos ψψ̇. (9.12)

Wherefrom the Euler-Lagrange equation [103] associated to the variable ψ can
be found. After some algebra,

rψ̈ + cos ψψ̇− 1
r

sin ψ cos ψ− f̄ cos ψ− Γ̄(s) sin ψ = 0. (9.13)
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For the radial coordinate, r, the needed derivatives are

1
2π

∂Li
∂r

=
κi
2

(
ψ̇2 − sin2 ψ

r2

)
+ σi, (9.14)

1
2π

∂Li
∂ṙ

= Γ̄(s), (9.15)

d
ds

(
1

2π

∂Li
∂ṙ

)
= ˙̄Γ(s). (9.16)

And the corresponding associated Euler-Lagrange equation reads

˙̃Γ =
1
2

ψ̇2 − sin2 ψ

2r2 + σ̃i, (9.17)

where Γ̃ = Γ̄/κi and σ̃i = σi/κi.
Following the usual classical mechanical procedure [103], the Hamiltonian

of the system is defined as

H = L− ψ̇Lψ̇ − ṙLṙ (9.18)

After some algebraic manipulation, we arrive to the following expression for
the Hamiltonian,

Hi = −2π

[
κi
2

r

(
ψ̇2 − sin2 ψ

r2

)
− rσi −

f
2π

sin ψ +
γ

2π
cos ψ

]
. (9.19)

Since the Lagrangian Eq. (9.9) does not depend explicitly on s, the Hamilto-
nianHi is a constant in each phase. The mechanical equilibrium at the junction
imposes that HLo = HLd. For a detailed discussion on the Hamiltonian, see
Appendix A in Ref. [127]. Moreover, and as it is frequently done in standard
experiments, we assume that at least one end of the tube is connected to a
reservoir of lipids (a vesicle for example) at infinity so no force is required for
an extension of the tube length. This imposes that

HLo = HLd = 0, (9.20)

which gives an extra equation

Γ̃ cos ψ = −1
2

rψ̇2 +
1
2

sin2 ψ

r
+ σ̃ir + f̃ sin ψ. (9.21)

9.2.3
Shape equation

Rewriting Eq. (9.13),

Γ̃(s) sin ψ = rψ̈ + cos ψψ̇− 1
r

sin ψ cos ψ− f̃ cos ψ, (9.22)
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and if we perform the derivative with respect to the arclength to both sides of
Eq. (9.22), we get that

˙̃Γ(s) sin ψ + Γ̃(s) cos ψψ̇ = r
...
ψ + 2 cos ψψ̈− sin ψψ̇2 +

1
r2 sin ψ cos2 ψ

− 1
r

(
cos2 ψ− sin2 ψ

)
ψ̇ + f̃ sin ψψ̇. (9.23)

Multiplying Eq. (9.17) by sin ψ, we get

˙̃Γ(s) sin ψ =
1
2

ψ̇2 sin ψ− sin3 ψ

2r2 + σ̃i sin ψ. (9.24)

And multiplying Eq. (9.21) by ψ̇,

Γ̃(s) cos ψψ̇ = −1
2

rψ̇3 +
1
2

sin2 ψ

r
ψ̇ + σ̃irψ̇ + f̃ sin ψψ̇. (9.25)

Plugging Eqs. (9.22), (9.21), and (9.25) together, we can write down, after some
algebra, the shape equation

...
ψ = − ψ̇3

2
− 2

cos ψ

r
ψ̈ +

3
2

sin ψ

r
ψ̇2 +

3 cos2 ψ− 1
2r2 ψ̇

− cos2 ψ + 1
2r3 sin ψ +

σi
κi

ψ̇ +
σi
κi

sin ψ

r
, (9.26)

which has to be solved together with the condition Eq. (9.2).

9.2.4
Boundary conditions at the junction

The continuity of the functions r(s) and ψ(s) across the junction, located at
s = 0, by definition of the origin of the s-coordinate, can be expressed mathe-
matically as

r(ε) = r(−ε),

ψ(ε) = ψ(−ε). (9.27)

The boundary conditions at the junction, as coming from the variational min-
imization of the free energy [4, 103] are expressed as

Lψ̇ δψ
∣∣∣
s=ε

s=−ε
+

(
L− Lψ̇

)
δs

∣∣∣
s=ε

s=−ε
= 0, (9.28)

for the ψ coordinate. After some calculations it reads

καψ̇(ε)− κβψ̇(−ε) =
(
κβ + κ̄β − κα − κ̄α

) sin ψ(0)
r(0)

, (9.29)
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where we have assumed the continuity relations Eq. (9.27). Analogously, for
the r coordinate, we have

Lṙδr|s=ε
s=−ε + 2πτδr(0) = 0, (9.30)

which transforms into

καψ̈(ε)− κβψ̈(−ε) = τ
sin ψ(0)

r(0)

+
(
2κα + κ̄α − 2κβ − κ̄β

) sin ψ(0) cos ψ(0)
r2(0)

. (9.31)

9.2.5
Effect of non-vanishing spontaneous curvatures

When non-vanishing spontaneous curvatures are considered in both phases,
the previous results are modified. We present here the result, since the deriva-
tion can be easily done in the same way as we proceeded for the symmet-
ric case. The condition of zero Hamiltonian in this case gives a first relation
between the force f ,the radius at the dip rmin = RLd/RLo and the tensions
σLo = σ̄LoR2

Lo and σLd = σ̄LdR2
Lo. As f is a constant, we get

RLo f /π =
κLd
rmin

[
(1− cLdrmin)2 + 2σLdr2

min/κLd

]

= κLo

[
(1− cLo)2 + 2σLo/κLd

]
. (9.32)

In addition, the shape equation in each phase [5, 27, 63, 200] reads

...
ψ = −

.
ψ3

2
− 2 cos ψ

r

..
ψ +

3 sin ψ

2r

.
ψ2 +

3 cos2 ψ− 1
2r2

.
ψ

− cos2 ψ + 1
2r3 sin ψ +

σi
κi

.
ψ +

σi
κi

sin ψ

r
+

1
4
c2

i

[
.
ψ +

(
1− 2

.
ψ

) sin ψ

r

]
, (9.33)

with boundary conditions at the interface located at s = 0. From Eq. (9.33) we
deduce two new relations,

σLo

κLo
=

1
2
− 1

4
c2

Lo, (9.34)

and,

σLd
κLd

=
1

2r2
min

− 1
4
c2

Ld, (9.35)

which finally give the value of both tensions σi as a function of rmin, know-
ing the bending rigidities. The boundary conditions due to mechanical equi-
librium (momentum and force balance [127]) at the junction give two of the
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boundary conditions,

κLd

(
ψ̇(ε)− 1

2
cLd

)
− κLo

(
ψ̇(−ε)− 1

2
cLo

)
=

(κLo + κ̄Lo − κLd − κ̄Ld)
sin ψ(0)

r(0)
, (9.36)

κLdψ̈(ε)− κLoψ̈(−ε) = τ
sin ψ(0)

r(0)

+ (2κLd + κ̄Ld − 2κLo − κ̄Lo)
sin ψ(0) cos ψ(0)

r(0)2 , (9.37)

with ci the spontaneous curvature if the bilayer is asymmetric. It is possible
to transform any of both Eqs. (9.26), (9.33) by integrating once to obtain a
second order nonlinear equation for ψ(r) with a free parameter [161,179]. That
equation was useful to find explicit solutions and indicates that the space of
possible solutions has three degrees of freedom for ψ and four for the profiles,
which are necessary to solve the junction conditions.

9.3
Results and discussion

9.3.1
Exact results

It turns out that explicit solutions of Eq. (9.33) have been found but they re-
quire a lipid membrane model incorporating both a spontaneous curvature
and pressure effect. A simplification arises for a periodic tube since we do
not have to consider non divergent asymptotes at infinity and in principle we
can truncate the solutions. As an example, the catenoid, which is a solution of
Eq. (9.33), may be a good candidate to represent the concave phase of the tube.
Exact known solutions have been discovered [161,179]; they include as special
limits catenoids and unduloids. Taking into account our choice of length unit,
they are represented by

sin ψ =
2

cLo

[(
r +

1
r

)
±

√
4− 1

2
c2

Lo

]
, (9.38)

for the Lo-phase while the concave Ld-phase may be represented by

sin ψ =
2

cLd

[(
r

r2
min

+
1
r

)
±

√
4

rmin
− 1

2
c2

Ld

]
. (9.39)
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Since we have chosen as length unit RLo at its maximum, the spontaneous
curvature cLo, which is indeed responsible for the length scale of the system,
is equal to 8/3 while rmin = 2/3 cLd. Except for the catenoid, these solutions
exist only in the case where the two layers of the membrane are asymmetric,
the tension and the pressure being Lagrange multipliers function of the spon-
taneous curvatures in both phases. Nevertheless, it turns out to be impossible
to satisfy the boundary conditions Eqs. (9.36) and (9.37) simultaneously for
arbitrary physical elastic coefficients since all the parameters of the solution
are fixed by the spontaneous curvature of the bilayers. The only possibility
remaining is the catenoid, sin ψ = rmin/r, which may represent the concave
phase when the spontaneous curvature cLd vanishes.

9.3.2
Linear analysis

From above, one notices that the known exact analytical solutions are too
much constrained and one really need a family with three real degrees of free-
dom in ψ to solve the constraints at the interface. Moreover, we also neglect
at this point the spontaneous curvature assuming the two leaflets of the mem-
brane to be symmetric. Assuming a linear perturbation in the vicinity of the
cylindrical exact solution for any of the two phases,

r(z) = Ri (1 + Ui(z)) , (9.40)

where Ri are the radii at the infinity, given by [63, 200] (see Sec. 8.2),

Ri =
√

κi
2σi

, (9.41)

and f is the force, which is unique for both phases, given by

f = 2π
√

2κασα = 2π
√

2κβσβ. (9.42)

These two equations imply that

κα

κβ
=

σβ

σα
=

Rα

Rβ
. (9.43)

With this information, we can expand the useful quantities in terms of the
perturbation function Ui(z). Therefore, up to linear order in Ui,

z(s) = −s, (9.44)

sin ψ = −ż = 1, (9.45)

cos ψ = ṙ = Ri
dUi(z(s))

ds
= −RiU′

i (z), (9.46)
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ψ̇ = −RiU′′
i (z), (9.47)

ψ̈ = RiU′′′
i (z), (9.48)

...
ψ = −RiU

(iv)
i (z). (9.49)

Linearizing the shape equation Eq. (9.26) gives a fourth-order linear differen-
tial equation

R4
i

∂4Ui

∂z4 + Ui = 0. (9.50)

Its solution, symmetric with respect to the middle of each domain ελi/2 is

Ui(z) = Ai

[
cosh

(
z + ελi/2√

2

)
cos

(
z + ελi/2√

2

)

+ri sinh
(

z + ελi/2√
2

)
sin

(
z + ελi/2√

2

)]
, (9.51)

with ε = +1 for the Lo-phase, and ε = −1 for the Ld-phase. In a linear ap-
proach, Ai and ri may be chosen arbitrarily, giving the four degrees of freedom
needed to satisfy the junction conditions, which in the linear approximation
read as

Uα(0) = Uβ(0) + δκ̃, (9.52)

U′
α(0) = U′

β(0), (9.53)

U′′
α (0)−U′′

β (0) = − (δκ̃ + ∆ ˜̄κ) , (9.54)

U′′′
α (0)−U′′′

β (0) = −τ̃, (9.55)

where we defined the following elastic dimensionless parameters,

κ̃ = 1 + δκ̃ = κβ/κα = Rβ/Rα, (9.56)

∆ ˜̄κ =
κ̄β − κ̄α

κα
, (9.57)

τ̃ := τ
Rα

κα
. (9.58)

Note that the wavelength of the pattern λ = λLd + λLo = λLd(1 + SLd/SLo), is
a real degree of freedom at fixed composition ratio between phases, SLd/SLo:
in principle, the problem can be solved without fixing the wavelength.

9.3.3
Nonlinear numerical treatment

In order to check the validity of the former linear analysis and to show that so-
lutions for periodic tubes exist, we have performed the numerical integration
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Figure 9.2 Tube profiles r(z) for the peri-
odic tube where zLo = 3, zLd = −3, and
RLd = 1 (see Fig. 9.1). The elastic coef-
ficients of both Lo and Ld phases are the
same, except those mentioned. In each fig-
ure, we present the solution for the linearized

problem (dark curves) and for the complete
non-linear problem (light curves). We can see
there that for small enough relative parame-
ters, both curves are almost the same in each
case.

of the non-linear differential equations Eq. (9.26), according to the matching
relations Eqs. (9.27, 9.29, and 9.31), using the shooting to a fitting point nu-
merical method [4, 204]. Integrations in the regime of validity of the linear
analysis have been performed in order to check the consistency of both calcu-
lations. A systematic study of the tube profile r(z) when changing uniquely
one of the three elastic dimensionless parameters (see Fig. 9.2) allows to mea-
sure the effects of a mismatch between the physical constants of both phases.
We systematically compare the non-linear solutions to the one found in the
linear approximation, for double checking of our numerical procedure. As
expected, we see that both solutions are almost equal when the differences be-
tween the elastic constants of the two phases are small, κ̃, ∆ ˜̄κ, τ̃ ¿ 1. These
figures illustrate the effects induced by the mismatch of elastic constants be-
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tween the two phases and the line tension on the geometry of the periodic
tube.

Figure 9.3 (a) Three-dimensional representation of the numerical tube, with the energetically
selected wavelength. Blue (light) phase stands for the Lo-phase, and red (dark) phase for the
Ld-phase. (b) the periodic multiphase tube, from Ref. [14]. Scale bar: 5 µm.

9.3.4
Comparison with experimental results

To treat a relevant example, we compare our analysis with the only exper-
iment on periodic tubes we are aware of [14]. We choose the physical pa-
rameters given in Ref. [14] (see Fig. 9.3b). The ratio of the bending moduli is
fixed to κLo/κLd ' 1.25, and the line tension τ ' 9× 10−13 N. The values of
the Gaussian rigidities are hard to measure since the Gaussian elastic energy
manifests itself only in topological changes for homogeneous membranes and
as boundary contributions for inhomogeneous membranes (see Sec. 3.9). We
use the values estimated in Ref. [232] of κ̄i = −0.83 κi. The chemical composi-
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Figure 9.4 Tube energy per unit length as a function of the imposed wavelength in units of
RLo

tion is set to keep the area ratio between both phases equal to S Lo/S Ld = 1.5.
We perform different numerical integrations for different values of the wave-
length of the periodic tube. In all these calculations, the wavelength value is
an input, meaning that we can choose arbitrarily the domain size. In other
words, solving the Euler-Lagrange Eq. (9.26) with the boundary conditions
does not allow to find the wavelength, a situation which is commonly found
in pattern formation such as rolls in Rayleigh-Bénard convection [46] or cells
in directional solidification [16].

Since the wavelength can be chosen freely a priori, the wavelength selec-
tion for the periodic tube may result from energy minimization. Fixing the
surface ratio of both phases to the chemical composition, we calculate the en-
ergy per unit length incorporating in Eq. (9.1) the numerical solutions given
by the Euler-Lagrange equation (9.26). The plot of this energy density versus
the domain size is presented in Fig. 9.4. The energy minimum corresponds to
λ = 4.4 (in units of RLo), the experimental value [14] being λ ∼ 5 in the same
units. We can estimate that the results are in agreement since the determina-
tion of the experimental wavelength, not indicated by the experimentalists, is
imprecise. Moreover, since tube formation occurs at a temperature close to
the critical mixing temperature, one can expect some uncertainty on the value
of the line tension, which vanishes at the critical temperature. Not surpris-
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ingly, for a variational treatment, Fig. 9.4 shows that the competition between
elastic and capillary energies occurs for a wavelength of the order of the tube
radius, short and very large wavelength compared to this length scale being
eliminated. Recall that long wavelengths correspond to a half-infinite tube,
not selected for the parameters in Ref. [14].

9.3.5
Periodic tubes vs . two-phase separation

Imposing the bending rigidities and line tension as indicated previously, one
can vary the composition value and calculate the selected wavelength. By
changing the S Lo/S Ld ratio, we can explore if a periodic tube is preferred
to two half-infinite tubes. In Fig. 9.5 we plot the inverse of the size of the Ld-
domain with respect to the area fraction. We can see there that for high enough
composition difference, there is no finite wavelength selection, and the tube is
completely phase-separated into two phases separated by a unique junction.

9.4
Conclusions

In this Chapter, periodic membrane tubes have been found numerically for
arbitrary wavelength once the physical parameters like the chemical composi-
tion, the elastic rigidities and the line tension are fixed. We show that periodic
tubes are preferred to a complete phase separation as soon as the chemical
composition does not favor too much one phase, for a realistic set of physical
constants. It means that the periodicity allows a decrease of the elastic energy
which compensates the increase of capillary energy. The agreement between
the only reported experiment and the numerics confirms the validity of the
model for tubular structures and the accuracy of the physical constants.
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Figure 9.5 Plot of the inverse of the selected wavelength as a function of the normalized
chemical ratio. For extreme chemical ratios, semi-infinite tubes are preferred.
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10
Starfish shapes in monolayer lipid domains

10.1
Introduction

Monolayer lipid domains [160] are model systems for understanding the in-
termolecular interactions between lipids or proteins found in cell membranes.
The competition between dipole-dipole interaction between lipid molecules
and line tension leads to the formation of non-circular lipid domains, like
starfish shapes. A deep comprehension of domain shapes in monolayers is a
crucial step in order to seek for the stability and functionality of the so-called
lipid rafts [234], cholesterol-enriched lipid domains found in in vitro exper-
iments on multicomponent bilayer vesicles [67], and thought to be used as
platforms for virus assembly in host cells [47].

Biological membranes are made of two opposed coupled lipid monolayers
with proteins and other macromolecules anchored on them (see Ch. 2). Lipid
monolayers can be studied at the air-water interface, behaving as an almost
two-dimensional planar system. Hence, they become useful models for un-
derstanding not only the intermolecular interactions between different mem-
brane components, but also the physics of two-dimensional systems [160].

As we explained in Sec. 2.3, the phase behavior of lipid monolayers depend
on different factors. Lipid composition, surface pressure, and temperature are
some of the most relevant among them. The addition of surfactant proteins,
like the pulmonary surfactant protein B, has been shown to play a role in the
micro- and nanostructure of phospholipid films [54]. In certain circumstances,
both microdomains and nanodomains of ordered lipid phases bloom from the
liquid expanded phase –the most common phase of actual biomembranes–,
when the monolayer is compressed up to surface pressures in the plateau of
the pressure–area isotherm [160].

These domains present a high diversity of forms, ranging from circular and
elliptic domains, to starfish- and kidney-like shapes [54,131,152]. Understand-
ing how these shapes are formed by the action of intermolecular interactions is
of a conceptual importance for many different physico-chemical and biophys-
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ical aspects. In addition, it is the comprehension of such fundamental issues
which might lead to biomedical developments, as for instance the improve-
ment of the treatment for neonatal respiratory distress syndrome, caused by
a congenital lack of surfactant protein B [51, 186], which, as we mentioned
above, alters the monolayer microstructure [54].

In order to understand the formation of such shapes, in this Chapter
we study the monolayer domain model consisting of two opposing forces:
a line tension between domains, and a long-range repulsive force due to
dipole–dipole interaction [8, 131]. We use the approximation due to Iwamoto
and Zhong-can [125] which maps the former model to a shape- and size-
dependent line tension model with a bending term. This model can be dy-
namically studied within the framework of our bending phase-field model,
derived in Ch. 5.

10.2
Theoretical treatment

The energy of monolayer lipid domains consists of, at least, two opposing
forces. First, a line tension tends to minimize the interfacial length between
the two phases. Second, as Andelman et al. proposed [8], long-range repul-
sive dipolar forces, either due to the presence of permanent dipoles in neutral
monolayers, or being induced in charged monolayers, favor domain elonga-
tion. The total domain energy, F, can thus be split in an electrostatic term due
to molecule polarization, Fel, and a line tension term, Fλ, as [131]

F = Fel + Fλ =
1
2

µ2
∫∫ ∣∣r − r′

∣∣−3 dAdA′ + λ

∮
dl, (10.1)

where µ is the dipole density, r is the position vector within the domain, λ

is the line tension, and dA and dA′ are the area elements interior and exte-
rior to the domains, respectively. The line tension term is shape independent,
only depending on the domain length, while the electrostatic term is shape
dependent. The total domain energy Eq. (10.1) is

F = −1
2

µ2
∮ ∮

dl · dl′
(
|r(l)− r(l′)|2 + δ2

)1/2 + λ

∮
dl. (10.2)

Iwamoto and Zhong-can [125] showed that –expanding the polarization en-
ergy term up to second order in a small parameter given approximately by the
ratio between the dipole-dipole distance and the domain size– Eq. (10.2) has
the approximate form

F = α

∮
κ2dl + τ

∮
dl, (10.3)
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where τ = λ − µ2

2 log (L/h) is an effective line tension, which can be either
positive, negative, or zero; L is the boundary length; h is an effective cutoff of
the order of the dipole-dipole separation distance [125,152]; and α = 11

96 µ2L2 ≥
0 is an effective two-dimensional bending rigidity, since κ is the curvature. We
have to note that although the actual line tension, λ, is always positive, the
dipole-dipole interaction renormalizes it by introducing a µ-dependent term.

This last Eq. (10.3) is the two-dimensional analogous to the usual Canham-
Helfrich bending energy for lipid vesicles [44, 109], as it was already pointed
out [125]. Here, we apply our phase-field model for bending energy [38,39,41]
to study the morphology of two-dimensional lipid domains. We will thus be
able to find the stationary domain shapes, as well as the dynamics of these
processes. Expressing Eq. (10.3) as a function of a phase-field, φ(x) describing
the phase within the monolayer [38],

F [φ] =
3
√

2
4ε3

[
α

∫
Φ2(φ) dA +

ε2

2
τ

∫ (
1− φ2

)2
dA

]
, (10.4)

where Φ(φ) = −φ + φ3 − ε2∇2φ, and ε is a small parameter related to the
interface width, whose limit ε → 0 corresponds to the macroscopic model
Eq. (10.3) [38]. Besides, the length of the domain boundaries can be written, in
terms of the phase-field, as L = 3/(4

√
2ε)

∫
(1− φ2)2dA.

The time evolution of such a system is described by a conserved relaxational
dynamic equation of the form ∂φ

∂t = ∇2( δF
δφ ), which for the free energy func-

tional Eq. (10.4) reads

∂φ

∂t
=

3
√

2
2ε3 ∇2

{
α

[
(3φ2 − 1)Φ[φ]− ε2∇2Φ[φ]

]
− ε2τφ

(
1− φ2

) }
, (10.5)

where, in turn, α and τ depend on a global shape property, its boundary
length, L.

10.3
Results and discussion

Our problem is then reduced to numerically solve Eq. (10.5) with the appro-
priate initial and boundary conditions, taking into account that α = α(t) and
τ = τ(t), since the domain boundary length, L(t), changes in time. We used
a standard finite-difference scheme for the spatial discretization and an Euler
method for the time-derivatives [38]. In all the results here shown we used
the value of the small parameter, ε, equal to the mesh size of the lattice. The
results are robust under variations of this parameter. Both the time and space
discretizations are chosen in order to satisfy the Courant-Friedrichs-Lewy sta-
bility criterion [19]. Besides, the cutoff length h is chosen to be equal to the
mesh size, which in turn is of the order of the size of a lipid molecule.
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The stationary domain shapes only depend on the dimensionless ratio of
the lines tension to the squared dipole density, Λ = λ/µ2 ≥ 0. For different
values of this parameter, and starting with different initial shapes, it is possi-
ble to systematically explore this parameter space. In Figs. 10.1, 10.2 and 10.3,
we present some of these shapes, and compare them with experimentally ob-
served domain patterns.

(a) Experimental figures from Ref. [152]

(b) initial condition (c) 3.6× 104∆t (d) 7.2× 104∆t

Figure 10.1 Starfish domain shapes. (a) Ex-
perimental figures from Ref. [152], showing
the shape transition from an initial circular do-
main (not shown) to a starfish shape (right),
through a quasi-hexagon intermediate (left),
in a lipid monolayer composed by a binary
mixture of DMPC and dihydrocholesterol.

(b-d) Three snapshots of the numerical inte-
gration of the phase-field dynamic equation
Eq. (10.5), where an initially instable circular
domain evolves into a starfish shape. This
integration corresponds to a normalized neg-
ative effective line tension τ/µ2 = −50.
∆t = 10−3.
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(a) Experimental figures from
Ref. [152]

(b) 104∆t (c) 2× 104∆t

Figure 10.2 Four-fold domain shapes. (a)
Experimental figures from Ref. [152], show-
ing the shape transition from an initial almost
circular domain (left) to a shape with four
branched arms (right), in a lipid monolayer
composed by a binary mixture of DMPC and
dihydrocholesterol. (b,c) Two snapshots of
the numerical integration of the phase-field

dynamic equation Eq. (10.5), where an ini-
tially instable elongated domain (not shown)
evolves into a shape with a four-fold sym-
metry, through an intermediate shown in (b).
This integration corresponds to a normalized
negative effective line tension τ/µ2 = −20.
∆t = 10−3.

(a) Experimental figures from Ref. [131] (b) Phase-field numerical integra-
tion

Figure 10.3 Elliptic domain shapes. Comparison between experimental observations (a) and
a numerical integration of the phase-field model Eq. (10.5) (b). The normalized effective line
tension vanishes in this integration, τ/µ2 = 0.

10.4
Discussion and conclusions

Even when we did not performed a systematic exploration of the parameter
space, the presented results clearly show that the competition between line
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tension and polarization explains non-circular shapes found in lipid mono-
layer domains. Actually, our model is based on the Iwamoto approximation,
which maps the line tension-polarization model into a two-dimensional cur-
vature model with an effective line tension between domains. The fact that
this effective line tension can either be positive or negative explains that dur-
ing the dynamics the interface length may increase.

Again, it will be interesting to understand how chirality appears in domain
shapes, as shown in, e.g., [170], and if, within this model, we can explain the
effect of pulmonary surfactant protein B on the domain shape [54].
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11
Introduction

In the first Part of this thesis, we saw how to deal with membrane curva-
ture models, in the framework of the Canham-Helfrich theory. The concept of
spontaneous curvature was introduced, and afterwards, in Chs. 7 and 8, we
applied it to study morphological instabilities and membrane shape dynamics
in lipid vesicles with anchored polymers. We assumed that those polymers
anchor some hydrophobic groups in the bilayer, mimicking integral mono-
topic proteins (see Sec. 2.1.2). However, we disregarded the way those anchor
groups generate membrane curvature, and on which physical factors this cur-
vature depends.

In this third Part of the thesis we address this question, that is, which are the
mechanisms of membrane curvature generation in biological membranes, and
how they work. In this introductory Chapter, we review the general mecha-
nisms thought to date to be biologically relevant in such a process of both gen-
eration and stabilization of membrane curvature [79, 171, 263]. In particular,
in Ch. 12, we quantitatively study one of these mechanisms, the hydropho-
bic insertion mechanism of membrane curvature by proteins. Then, in the last
Chapter of this Part, the concept of curvature sensing by proteins is introduced
and analyzed as opposed to curvature generation.

11.1
Mechanisms of membrane curvature generation

Most cellular membranes have regions of very high curvature yet lipid bilay-
ers resist bending [109]. Therefore, active production of membrane curvature
is one of the major challenges faced by a cell in the course of formation of
its internal organelles and generation of membrane transport containers [3].
How proteins can produce and stabilize the enormous range of membrane
curvatures that exist in vivo is beginning to be understood.

So far, we have seen that lipid bilayers composed by two equal monolayers,
want to be locally flat, in order to minimize their energy. However, a flat bi-
layer would have some free edges which are energetically unfavorable. Then,
lipid bilayers wrap themselves to form closed vesicles. In this process of vesi-
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cle formation, curvature has been generated. The stationary vesicle shape will
be according with the corresponding energy minimization together with the
accomplishment of some geometric constraints (see Sec. 3.5.4).

Besides, in cells, different mechanisms of membrane curvature generation
or stabilization have to exist, in order to create the broad range of traffick-
ing intermediates, like membrane tubes and vesicles, to mention some. These
mechanisms can be divided in five major groups [171]: due to lipid compo-
sition, transmembrane proteins, cytoskeleton activity, the scaffolding mecha-
nism, or the hydrophobic insertion mechanism, as we will see in the following
Sections.

11.1.1
By lipid composition

In actual biological membranes, the two leaflets of the bilayer are not sym-
metric at all, but differ in composition. For instance, phospholipids like phos-
phatidylserine (PS) are almost uniquely kept in the inner leaflet of cell mem-
branes by a translocase enzyme. Flippase enzymes transfer phospholipid
molecules from one leaflet of the bilayer to the other in a process called flip-
flop or transverse diffusion. Although this diffusion is much slower than lat-
eral diffusion, flippases may create membrane asymmetry [66, 120, 199].

Thus, the presence of lipids with large headgroups (thus with a positive
spontaneous curvature) in one leaflet, but not in the other, induce curvature
towards the former. Similarly, lipids with wide acyl chains, that is, with neg-
ative spontaneous curvature per lipid, also induce bilayer curvature when
present mainly in one of the bilayer leaflets (see Fig. 11.1a). In Tab. 11.1, re-
produced from Ref. [263], we present some experimentally measured effective
spontaneous curvature for different lipids.

Table 11.1 Effective spontaneous curvature, Js, for different membrane lipids. From Ref. [263]
(see references therein).

Lipid Js(nm−1)

Lysophosphatidic acid (LPA) 0.5
Lysophosphatidylcholine (LPC) 0.15 to 0.26
Dioleoylphosphatidylserine (DOPS) 0.07
Lysophosphatidylethanolamine (LPE) < 0.025
Dioleoylphosphatidylcholine (DOPC) −0.05 to − 0.11
Phosphatidic acid (PA) −0.22
Cholesterol −0.34 to − 0.43
Dioleoylphosphatidylethanolamine (DOPE) −0.5
Dicaprylglycerol (DCG) −0.77
Diacylglycerol (DAG) −1
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Figure 11.1 Mechanisms of membrane cur-
vature generation. (a) By lipid composition,
depending on the acyl chain or the head-
group compositions. (b) By transmembrane
proteins, due to membrane protein oligomer-
ization or shape. (c) By cytoskeleton activity,
both due to the force done by actin polymer-

ization and by microtubule-walking molecular
motors. (d) By scaffolding mechanism, both
direct or indirect. (e) By hydrophobic inser-
tion mechanism, induced by the insertion of
amphipathic helices. Figure modified from
Ref. [171].

11.1.2
By transmembrane proteins

Transmembrane proteins spanning through the entire bilayer might induce
membrane curvature in different ways. First, due to their shape, since some
of these proteins have a net conical or funnel shape (see Fig. 11.1b, right). Even
if the transmembrane domains of these proteins cannot induce curvature be-
cause of their geometry, it is possible that protein oligomerization still gen-
erates a bending deformation in the membrane if the protein domains which
remain at each side out of the bilayer are asymmetric (see Fig. 11.1b, left).
Some ion channels, for instance, seem to induce membrane curvature in such
a way [162]. However, this field has not been yet extensively studied and it is
poorly understood to date.

11.1.3
By cytoskeleton activity

The formation of cytoskeletal filaments affects the membrane shape because
of its role in membrane remodelling and other trafficking events [119, 228].
Also, cell motility is in most cases due to the assembly and disassembly of
cytoskeletal proteins [29]. Actin filaments, forming the cytoskeleton, are in-
volved in such motility processes. They generate a force acting on the mem-
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brane, which in turn reaccommodates its shape by bending itself if needed
(Fig. 11.1c).

Besides, in vitro experiments showed that a small number of kinesins,
molecular motor proteins, can pull tubular membranes out of a lipid vesi-
cle [36, 151, 214, 215]. It is thus believed that such motor proteins are partly
involved in the generation and maintenance of the shape of some tubulated
and fenestrated cellular organelles, like Golgi or the endoplasmic reticulum.

11.1.4
By scaffolding mechanism

Different membrane proteins have curved domains which associate with the
membrane by attaching to its surface like a scaffold. Protein coats that are
known to cover the membrane surface in budding or endo- and exocyto-
sis processes, like the COPI and COPII complexes, and the clathrin-adaptor-
protein complex, are thought to provide membrane curvature using this scaf-
fold mechanism. Scaffolding can either be direct or indirect (see Fig. 11.1d),
depending on whether they bind directly to membrane lipids or this binding
is mediated by other proteins.

BAR (Bin, amphiphysin, Rvs)-domain-containing proteins are involved
in the formation of cylindrical membranes and vesicles. BAR domains are
banana-shaped dimers which bind to lipid membranes through electrostatic
interactions [264] between their concave shape and the membrane [195] (see
Fig. 11.2).

Figure 11.2 Amphiphisin BAR domain, formed by two dimers, and showing a
crescent-like curved shape [195]. From H.T. McMahon’s laboratory web page,
http://www.endocytosis.com .

11.1.5
By hydrophobic insertion mechanism

We mentioned that lipid molecules might have an intrinsic non-zero sponta-
neous curvature. Then, if the bilayer is asymmetric, in the sense that the two
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monolayers have different spontaneous curvatures, curvature is energetically
favored. Proteins can also induce spontaneous curvature to the membrane
by the insertion of amphipathic groups into the bilayer. Epsin is a protein
involved in clathrin-mediated endocytosis [89]. It contains an ENTH (epsin
N-terminal homology) domain, which in turn has an amphipathic helix that
binds to membranes. These helices are generally small in size (of the order
of half a lipid molecule), therefore upon membrane insertion, they might gen-
erate membrane curvature. In this Part of the thesis we quantitatively study
this bending mechanism, and show that it is able to generate large membrane
curvature as experimentally observed.
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12
The hydrophobic insertion mechanism of membrane cur-
vature generation by proteins

A wide spectrum of intracellular processes is dependent on the ability of cells
to dynamically regulate membrane shape. Membrane bending by proteins
is necessary for the generation of intracellular transport carriers and for the
maintenance of otherwise intrinsically unstable regions of high membrane
curvature in cell organelles. Understanding the mechanisms by which pro-
teins curve membranes is therefore of primary importance. In this Chapter we
suggest a quantitative mechanism of lipid membrane bending by hydropho-
bic or amphipathic rod-like inclusions which simulate amphipathic α-helices
–structures shown to sculpt membranes. Considering the lipid monolayer
matrix as an anisotropic elastic material, we compute the intra-membrane
stresses and strains generated by the embedded inclusions, determine the
resulting membrane shapes and the accumulated elastic energy. We charac-
terize the ability of an inclusion to bend membranes by an effective sponta-
neous curvature, and show that shallow rod-like inclusions are more effective
in membrane shaping than are lipids having a high propensity for curvature.
Our computations provide experimentally testable predictions on the protein
amounts needed to generate intracellular membrane shapes for various in-
sertion depths and membrane thicknesses. We also predict that the ability of
N-BAR domains to produce membrane tubules in vivo can be ascribed solely
to insertion of their amphipathic helices.

12.1
Introduction

12.1.1
Biological motivation

Generation of high membrane curvature requires action of specialized mem-
brane associated proteins [133, 171, 263]. These can either function as direct
effectors by interactions with the membrane or as indirect scaffolds interact-
ing with membranes via linking proteins [171]. The list of proteins and pro-
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tein complexes shown to be crucial for strong bending of membranes is con-
stantly expanding [9, 10, 30, 57, 79, 80, 89, 93, 94, 98, 102, 112, 154, 167, 195, 203,
231, 252]. Complexes of clathrin with accessory proteins [133, 219], and COPI
and COPII coat-complexes [30,134,153] generate small vesicles. Narrow mem-
brane tubules are produced by proteins of the dynamin family (see e.g. [115,
173,203,216,227]), BAR domain-containing proteins [79,80,93,94,98,112,195],
epsins [89], EHD-family proteins [57], C2 domain-containing proteins, such
as synaptotagmins [167], and proteins of the reticulon and DP1/Yop1 fami-
lies [231, 252].

Quantitative elaboration of the physical mechanisms by which proteins
bend membranes is indispensable for classification of the rapidly accumulat-
ing phenomenology on the effects of proteins on membrane curvature and the
understanding of the relationships between the structure of a protein and its
efficiency in membrane shaping. It was suggested that proteins can generate
the membrane curvature either by embedding small hydrophobic or amphi-
pathic regions into the membrane matrix (see for reviews [171, 263]) or by
attaching the membrane surface to the intrinsically curved protein scaffolds
by virtue of cognate charge interactions [23, 171].

A common realization of the former mode of membrane bending referred
to as the hydrophobic insertion mechanism is through a shallow embedding
of amphipathic helices into the upper part of a lipid monolayer. Epsins were
the first proteins shown to induce membrane curvature by amphipathic he-
lix insertion [89]. On interaction with phosphatidylinositol-4,5-biphosphate
polar groups amphipathic α-helices fold and embed into the lipid monolayer
matrix, transforming the flat membrane into tubules of 20 nm diameter [89].
Small G-proteins Arf1 and Sar1 expose amphipathic α-helices upon exchange
of GDP to GTP, which results in the anchoring of such proteins to lipid bi-
layers and the subsequent bilayer bending [10, 102, 154]. Amphipathic helices
of N-BAR domains of amphiphysin and endophilin bind peripherally in the
bilayer resulting in the midpoint of the helix insertion being aligned with the
phosphate level of the lipid headgroups. This insertion is essential for gener-
ation of membrane tubules of 35− 50 nm diameter which get converted into
vesicles of the same diameter at increased amounts of the protein [98, 195].
The C2A and C2B domains of synaptotagmin-1 interact in Ca2+-dependent
manner with the polar groups of negatively charged phospholipids and in-
sert hydrophobic loops into the lipid monolayers at a depth of up to third of
the monolayer thickness [114] resulting in the formation of narrow membrane
tubes of ∼ 17 nm diameter [167].

A number of proteins have the potential to scaffold membranes into curved
shapes. These include dynamin family proteins [173, 236], BAR superfamily
proteins [93,112,171], EHD2 [57], the clathrin coat [90] and COPI/IIcoats [153].
Notably, scaffolding proteins can contain hydrophobic and/or amphipathic
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fragments able to penetrate the membrane to a certain depth, thus contribut-
ing to the membrane curvature generation. For example, while dynamin
forms a helical oligomer capable of scaffolding high curvature, the variable
loops of its PH domain are suggested to interact with the membrane and the
VL1 loop is proposed to insert into the membrane [32, 174, 205, 260]. The effi-
ciency of membrane bending by N-BAR domains depends crucially on the in-
tegrity of their amphipathic helices [98, 171]. COPI, COPII, and some clathrin
adaptors, are recruited to the membrane by small G-proteins (Arf1p for AP1
and COPI, and Sar1p for COPII), which couple their respective scaffolding ap-
paratuses to the potential to bend membranes by insertion of the amphipathic
α-helices [172]. The reticulons and DP1/Yop1 family proteins possess two
long hydrophobic hairpin segments which could induce membrane curvature
changes by forming a wedge that occupies more space in the upper than the
lower leaflet of a lipid bilayer [252].

Hence, it is becoming clear that the majority of membrane bending pro-
teins may employ membrane insertion of hydrophobic or amphipathic regions
with, in some cases, a coupling to scaffolding domains.

In this Chapter, we suggest and analyze quantitatively a mechanism by
which the amphipathic and hydrophobic insertions bend membranes into
tubular shapes with diameters of a few tens of nanometers [42]. The analysis is
based on a physical model of lipid monolayers. Our computations show that
membrane insertions like amphipathic α-helices are more powerful in mem-
brane bending than use of non-bilayer lipids, and that biologically relevant
numbers of such insertions are sufficient to create even the extreme membrane
curvatures of intracellular organelles and transport intermediates. Our analy-
sis also considers the role of lipid monolayer coupling in curvature generation
and demonstrates that shallow insertions are best suited to the production of
high membrane curvature. We draw the experimentally testable predictions
on the dependence of the membrane curvature on the bilayer thickness and
the membrane area fraction occupied by the amphipathic helices.

12.1.2
Qualitative essence of membrane bending by hydrophobic inclusions

We consider an initially flat lipid membrane with rod-like inclusions inserted
into its interior (Fig. 12.1). To grasp the major features of the mechanism
of membrane bending by inclusions, we address here a simple case of two-
dimensional deformations, meaning that the membrane adopts a form of a
tube with rod-like inclusions ordered in rows along the tubular axis. The
membrane shape is then characterized by the form of the tube cross-section.
The diameter of the inclusion rod is assumed to be 1 nm, which is typical
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Figure 12.1 Schematic representation of
lipid monolayer bending (lipid molecules
shown in light blue) by insertion of a cylindri-
cal inclusion (shown in dark blue), whereLis
the half distance between the inclusions, h is

the monolayer thickness, and is the inclusion
radius. (a) The monolayer is flat before the
inclusion insertion; (b) the monolayer bends
as a result of inclusion insertion.

for an amphipathic α-helix with side chains; the lipid monolayer thickness is
taken to be 2 nm.

The inclusion pushes aside the elements of the membrane matrix and pro-
duces, in this way, the intra-membrane strains and stresses leading to the ac-
cumulation of elastic energy. The curving of the membrane from the initial
flat configuration results in the partial relaxation of these stresses and mini-
mizes the elastic energy. While being a part of a peripheral membrane pro-
tein, an amphipathic-helix has a shallow membrane matrix penetration pos-
sibility. However, for generality and a broader understanding of the physics
of membrane bending by small inclusions, we consider the effects of differ-
ent modes of insertion including those where the inclusions reach the bilayer
mid plane. The cases of deep insertions can account for membrane bending
by isolated hydrophobic inclusions such as synthetic peptides mimicking fu-
sion peptides. An inclusion inserted into one membrane monolayer results
in curving of the whole bilayer. The extent of the bilayer bending depends
on the way the monolayers are coupled to each other. There are two kinds of
such coupling (Fig. 12.2). Due to their mutual attachment along the common
hydrophobic interface the monolayers are always coupled in the transverse
direction (perpendicular to the membrane plane). In addition, there may be
monolayer coupling in the in-plane direction meaning that the areas of the
two monolayers can not change independently [65].

In most of the biologically relevant circumstances the inclusions are inserted
only into small fragments of a large membrane such as the membrane re-
gions destined for conversion into intracellular membrane carriers (Fig. 12.2a).
The two monolayers of such a fragment can, independently of each other, ex-
change their areas with the rest of the membrane, the latter providing a large
reservoir of lipids (Fig. 12.2a). Due to the free and independent exchange
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Figure 12.2 Different cases of monolayer
coupling within a bilayer. (a) Laterally uncou-
pled monolayers. The inclusions (rectangles)
are inserted only into a small fragment of
a large membrane. The two monolayers of
the fragment can independently exchange
lipids with the monolayers of the surrounding

membrane which plays a role of lipid reservoir
(the exchange is indicated by the arrows).
(b) Laterally coupled monolayers. The inclu-
sions are inserted across the whole area of a
closed membrane. The effects of slow trans-
monolayer flip-flop of lipids are neglected.

of lipid between the reservoir and each of the monolayers of the membrane
fragment in question, there is no in-plane coupling between the latter. The in-
plane coupling comes into play if the inclusions are inserted across the whole
area of a closed membrane. This happens, for example, in in vitro experiments
where proteins are added to liposomes and embed without spatial restriction
everywhere across the entire surfaces of the lipid membranes (Fig. 12.2b). In
this case, there is no reservoir for the monolayer area exchange, and, provided
that the effects of slow flip-flop of lipid molecules between the monolayers can
be neglected, the expansion of one monolayer cannot proceed independently
of deformation of the second monolayer.

Membrane monolayers subject to the transverse coupling only, will be re-
ferred to as the laterally uncoupled monolayers. In cases where there ex-
ists also in-plane coupling, the monolayers will be called laterally coupled.
While in vitro experiments on liposome membrane curvature may not there-
fore closely mimic the in vivo situation, the potential for lateral monolayer
coupling at the plasma membrane exists and may be provided by, for exam-
ple, actin based corrals, which would limit lipid exchange with endocytic sites.
For completeness we model both possibilities.

Consider first the case of laterally coupled monolayers. A shallow inser-
tion of inclusions into the upper monolayer expands its upper part, while
the rest of this monolayer underneath the inclusions and the lower mono-
layer resist this expansion. To minimize the generated stresses that are asym-
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metrically distributed through the bilayer depth, the membrane must bulge
towards the upper monolayer (Fig. 12.3a). According to a common conven-
tion, curvature resulting from bulging in this direction is defined as positive.
A somewhat deeper insertion up to the middle of the upper monolayer ex-
pands this monolayer (Fig. 12.3b). Because of the lateral coupling between the
monolayers, this expansion is opposed by the lower monolayer. According
to the monolayer area asymmetry model [65], this leads to further generation
of asymmetric stresses within the membrane and a positive membrane cur-
vature (Fig. 12.3b). If the inclusion penetrates deeper into the membrane and
reaches its mid plane, the strains and stresses are distributed symmetrically
within the bilayer (Fig. 12.3c), so that bending in either direction will not re-
lax the elastic energy. Such insertion does not induce membrane bending but
results in the overall expansion of the membrane area (Fig. 12.3c). An even
deeper inclusion insertion expands the lower membrane part with respect to
its upper part, which results in bending towards the lower monolayer and,
hence, generation of a negative curvature (Fig. 12.3d).

In the case of laterally uncoupled monolayers with inclusion inserted in the
upper leaflet of the membrane, a qualitative consideration similar to the above
one has to be applied to the upper monolayer only. Due to the transverse cou-
pling between the monolayers, bending of the upper monolayer will result in
bending also of the lower one, and, hence, of the whole membrane. Therefore,
similarly to the above case of coupled monolayers, shallow insertions generat-
ing asymmetric strains in the upper monolayer produce a positive curvature
of the latter and of the whole membrane (Fig. 12.4a). However, a bare expan-
sion of the upper monolayer by an inclusion reaching its middle (Fig. 12.4b)
will not result in the membrane bending since the upper monolayer can ex-
pand independently of the lower one due to the lipid exchange with the reser-
voir. As a result, for this depth of the inclusion insertion the membrane will be
flat (Fig. 12.4b). This is different from the above case of coupled monolayers,
in which insertion up to the middle of the upper monolayer resulted in the
membrane curvature (Fig. 12.3b). Penetration of an inclusion into the lower
part of the upper monolayer generates its negative curvature, and, hence, a
negative curvature of the whole membrane (Fig. 12.4c).
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Figure 12.3 Qualitative essence of the
mechanism of membrane bending by small
cylindrical inclusions. The case of laterally
coupled monolayers. (a) A shallow inclu-
sion insertion expands the upper layer of the
membrane (left). Partial relaxation of the gen-
erated stresses results in positive curvature
(J > 0) (right). (b) Deeper insertion produces
an expansion of the upper monolayer (left),

which due to the lateral coupling generates
stresses in the lower monolayer leading to
positive membrane curvature (right). (c) In-
sertion in the bilayer mid plane generates
symmetrically distributed stresses, causing
an overall membrane expansion but no cur-
vature. (d) Insertion into the lower monolayer
expands the lower part of the membrane,
hence generating negative curvature (J < 0).
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Figure 12.4 Qualitative essence of the
mechanism of membrane bending by small
cylindrical inclusions. The case of laterally
uncoupled monolayers. (a) A shallow inclu-
sion insertion expands the upper part of the
upper monolayer (left), which generates a
positive curvature of the upper monolayer
leading to positive curvature of the whole

membrane (J > 0) (right). (b) Deeper inser-
tion produces a bare expansion of the upper
monolayer, which, due to the monolayer un-
coupling, does not generate curvature. (c)
Insertions in the lower portion of the upper
monolayer (left) induces negative membrane
curvature (J < 0).

12.2
Model

12.2.1
Elastic model of a lipid monolayer

A large literature exists on modeling membrane deformations by proteins
spanning the whole lipid bilayer and generating small membrane curvatures
[11, 50, 81, 91, 144]. These studies employ the Helfrich model of bending elas-
ticity considering a membrane as an elastic surface (see Ch. 3) [109]. Here we
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can not use this common description since the cross-section of an inclusion in
question is smaller than the lipid monolayer thickness and we are interested in
the intra-membrane deformations for different depths of the inclusion inser-
tion generating large curvatures. Therefore, we consider a lipid monolayer as
a three-dimensional layer with finite thickness and bulk elastic properties. To
describe the system, we use the standard theory of elasticity of an anisotropic
three-dimensional medium (see Appendix C) [146]. The volume density of
the elastic energy is determined by

f = σ0
ikuik +

1
2

λiklmuikulm, (12.1)

where σ0
ik is the tensor of the initial intramonolayer stresses existing before the

inclusion insertion; λiklm is the tensor of the elastic moduli of the monolayer
interior; and uik is the strain tensor related to the displacement vector of the
monolayer elements by

uik =
1
2

(
∂ui

∂ξk +
∂uk

∂ξ i

)
, (12.2)

ξ j, being the coordinates [146].
Since we consider only the tubulelike shapes of membranes, we choose the

Cartesian system of coordinates, with the x, y axes lying in the initial mem-
brane plane, the y axis directed along the tube axis, and x axis lying in the
tube cross-section originating (x = 0) in the middle of inclusion (Fig. 12.1).
The z axis points towards the hydrophilic heads and originates (z = 0) at the
bottom surface of the monolayer. The position of the inclusion will be charac-
terized by the coordinate of its center, zinc.

The contribution to the elastic energy of an arbitrary anisotropic medium
Eq. (12.1) depending on the elastic moduli can be simplified for the lipid
monolayer, which has properties of an isotropic liquid in the lateral (x, y) di-
rection. In this case, the energy Eq. (12.1) must be invariant with respect to
rotations around the z direction perpendicular to the x, y plane, or, using cylin-
drical coordinates {r, φ, z}, this condition is that there is no φ-dependence of
the free energy. We define new variables, {ξ, η}, as

ξ = x + i y,

η = x− i y. (12.3)

Rotating the full system an angle φ around the z axis, these variable change
according to

ξ → ξ(φ) ≡ ei φ ξ,

η → η(φ) ≡ e−i φ η, (12.4)
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and, since the free energy should remain invariant under this rotation, we
have that

f =
1
2

λiklm u(φ)
ik u(φ)

lm . (12.5)

The only non vanishing components of the elastic modulus tensor are those
which contain the same number of indexes ξ and η, in order to have no angu-
lar dependence. These components are λzzzz, λξξηη , λξηξη , λξηzz, λξzηz. Then,
taking into account multiple counting in the summation in Eq. (12.1),

f =
1
2

λzzzzu2
zz + λξξηηuξξ uηη + 2λξηξηu2

ξη

+ 2λξηzzuξη uzz + 4λξzηzuξz uηz. (12.6)

The tensor uik is a 2-contravariant tensor, therefore its components change
according to the contravariant rules, that is, in the same way as the product
of the coordinate changes (they are contravariant components as well) [221].
Thus,

uξξ = uxx − uyy + 2iuxy,

uηη = uxx − uyy − 2iuxy,

uξη = uxx + uyy, (12.7)

and the free energy reads

f =
1
2

λzzzzu2
zz + 2λξηξη(uxx + uyy)2 + λξξηη

[(
uxx − uyy

)2 + 4u2
xy

]

+ 2λξηzz
(
uxx + uyy

)
uzz + 4λξzηz

(
u2

xz + u2
yz

)
. (12.8)

On the other hand, the components of the elastic modulus tensor transform
covariantly, therefore we have that,

λxxxx = λyyyy = 4λξηξη + 2λξξηη ,

λxyxy = 2λξξηη ,

λxxyy = 4λξηξη − 2λξξηη ,

λxxzz = λyyzz = 2λξηzz,

λxzxz = λyzyz = 2λξzηz, (12.9)

are the non-vanishing components of the tensor in the original cartesian coor-
dinates. Therefore, there are only five independent components of the elastic
modulus tensor, which are λxxxx, λzzzz, λxxzz, λxzxz, λxxyy.
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The corresponding elastic energy per unit volume is given by

f =
1
4
(λxxxx + λxxyy)

(
uxx + uyy

)2 +
1
2

λzzzzu2
zz

+ λxxzz(uxx + uyy)uzz + 2λxzxz

(
u2

xz + u2
yz

)

+
1
4
(λxxxx − λxxyy)

[(
uxx − uyy

)2 + 4u2
xy

]
, (12.10)

with the last term of this expression corresponding to the lateral shear. Be-
cause of the lateral fluidity of the monolayer, the energy of the lateral shear
must vanish meaning that λxxxx = λxxyy. The final form of the free energy is

f =
1
2

λxxxx
(
uxx + uyy

)2 +
1
2

λzzzzu2
zz + λxxzz(uxx + uyy)uzz

+ 2λxzxz

(
u2

xz + u2
yz

)
, (12.11)

and the only four non-vanishing independent elastic moduli are λxxxx, λzzzz,
λxxzz, and λxzxz.

For a quantitative analysis we need the values of all these bulk elastic mod-
uli and their dependencies on the position within the lipid monolayer matrix.

To the best of our knowledge, only little experimental information has been
obtained on the local elastic moduli of the lipid monolayer matrix. The orien-
tational and positional average of the volume compressibility of lipid material
was measured to constitute about ∼ 5× 10−11 cm2/dyne [107], meaning that
the corresponding averaged volume stretching-compression elastic modulus
is 2× 109 N2/m2. Yet separate measurements exist neither of anyone of the
four bulk elastic moduli, nor of their dependence on the position within the
monolayer. At the same time, the values have been determined for the overall
elastic moduli characterizing a lipid monolayer as a surface, namely, the mod-
uli of monolayer bending, κ ≈ 4× 10−20 J [184], area stretching-compression,
Γ ≈ 0.1 N/m [75], and tilt of the lipid hydrophobic chains with respect to the
membrane plane, κt ≈ 0.03 N/m [108, 169]. In addition, experimental studies
revealed position within lipid monolayers of the so called neutral surface, an
intra-monolayer plane for which the deformations of bending and stretching-
compression are energetically decoupled [142, 143, 157]. For monolayers of
different lipid compositions, the neutral surface was found to lie close to the
interface between the lipid polar heads and the hydrocarbon tails at a depth
of about one third of the monolayer thickness, meaning that the coordinate of
neutral surface can be taken to be zN = 2

3 h.
There are few relationships between the bulk elastic moduli of the mono-

layer material and the overall elastic moduli of lipid monolayer as a surface.
The transverse shear modulus can be related to the monolayer tilt modulus by

∫ h

0
λxzxzdz = κt, (12.12)
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where the integration is performed over the monolayer thickness h. We will
assume that the two volume stretching-compression moduli are equal at any
position within the monolayer, λxxxx = λzzzz, and denote their values by λST.
The modulus and λST the coupling modulus λxxzz are related to the overall
monolayer stretching-compression modulus Γ by

∫ h

0
λST

(
1− λ2

xxzz

λ2
ST

)
dz = Γ. (12.13)

Finally, the position of the monolayer neutral surface (51-53), zN , corresponds
to vanishing first moment of λST(1− (λ2

xxzz/λ2
ST)),

∫ h

0
λST

(
1− λ2

xxzz

λ2
ST

)
(z− zN)dz = 0. (12.14)

The bulk elastic moduli must satisfy the relationships Eqs. (12.12, 12.13, 12.14).
To satisfy Eq. (12.14) for the position of the neutral surface zN, we assume

that the moduli λST and λxxzz have different values in the regions of the lipid
polar heads and the hydrocarbon tails. Taking the interface between these two
regions to lie at z0 = 2/3 h, we present the two bulk moduli as step functions

λST =
{

λh
ST, z0 < z < h

λt
ST, 0 < z < z0

λxxzz =
{

λh
xxzz, z0 < z < h

λt
xxzz, 0 < z < z0

. (12.15)

Inserting Eq. (12.15) into Eq. (12.14) and requiring that, in accord with the
measurements, the coordinate of the neutral surface coincides with that of
the interface between the polar groups and the hydrocarbon tails, zN = z0 =
2/3 h, we obtain

λt
ST

[
1−

(
λt

xxzz
λt

ST

)2
]

=
1
4

λh
ST


1−

(
λh

xxzz

λh
ST

)2

 . (12.16)

Taking into account this relationship together with Eq. (12.13) and a require-
ment that the positional average of the bulk stretching-compression modulus
is 1

h
∫ h

0 λSTdz = 2 × 109 N/m2 , we obtain λh
ST = 4 × 109 N/m2, λh

xxzz =
3.93× 109 N/m2, λt

ST = 109 N/m2, λt
xxzz = 0.98× 109 N/m2.

The transverse shear modulus is assumed to be constant through the mono-
layer thickness and equal λxzxz = 1.5 × 107 N/m2. In the case of coupled
monolayers, we take a vanishing shear modulus λxzxz at the interface between
the two monolayers. We assume the inclusions to be much more rigid than the
lipid material, and, therefore, neglect the potential for the inclusions them-
selves to be deformed.
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12.2.2
Computations

The equilibrium membrane configurations can be found by solving a set of
equations for the intramonolayer displacements ul following from minimiza-
tion of the elastic energy (Eq. (12.1)) [146]. We assume that the inclusions
are evenly distributed along the circumference of the membrane tube cross-
section, and using the related symmetry of the cross-section shape we perform
calculations for a membrane element corresponding to half distance between
the neighboring inclusions (Fig. 12.1). The total membrane shape is composed
of such elements.

We derive the equilibrium equations based on the local force balance. The
condition of local mechanical equilibrium, which is a vanishing total force
acting on each infinitesimal element of the system, is expressed through the
gradient of the stress tensor σik by [146]

∂σik

∂xk = 0. (12.17)

The stress tensor, σik = λiklm ulm + σ0
ik, consists of a contribution of the defor-

mation expressed by a product of the strain tensor ulm and the elastic modulus
tensor λiklm, and the initial stresses σ0

ik. In the following we will consider only
the former contribution to the stress tensor since σ0

ik must satisfy Eq. (12.17) on
its own -provided that the initial configuration is an equilibrium one.

Based on Eq. (12.17), we can write one equilibrium equation for each spatial
direction. To this end, we first express explicitly the components of the stress
tensor through the strains. Using the relationships between the nonvanish-
ing components of the elastic modulus tensor (λxxxx = λyyyy = λxxyy, λzzzz,
λxzxz = λyzyz, λxxzz = λyyzz) derived above, the components of the stress
tensor can be presented as

σxx = σyy = λxxxx(uxx + uyy) + λxxzzuzz,

σzz = λzzzzuzz + λxxzz(uxx + uyy),

σxz = 2λxzxzuxz,

σyz = 2λxzxzuyz. (12.18)

Plugging these relations into Eq. (12.17) and after some algebra, we get the
equilibrium equations for a monolayer with rotational invariance with respect
to the z axis and lateral fluidity:





λxxxx

(
∂2ux
∂x2 + ∂2uy

∂x∂y

)
+ λxzxz

∂2ux
∂z2 + (λxxzz + λxzxz) ∂2uz

∂x∂z = 0,

λxxxx

(
∂2uy
∂y2 + ∂2ux

∂x∂y

)
+ λxzxz

∂2uy
∂z2 + (λxxzz + λxzxz) ∂2uz

∂y∂z = 0,

λxzxz

(
∂2uz
∂x2 + ∂2uz

∂y2

)
+ λzzzz

∂2uz
∂z2 + (λxxzz + λxzxz)

(
∂2ux
∂x∂z + ∂2uy

∂y∂z

)
= 0.



140 12 The hydrophobic insertion mechanism of membrane curvature generation by proteins

(12.19)

Now, considering the case of two-dimensional deformations, where the y axis
represents the tubular axis, we can simplify the former set of equations as





λxxxx
∂2ux
∂x2 + λxzxz

∂2ux
∂z2 + (λxxzz + λxzxz) ∂2uz

∂x∂z = 0,

λxzxz
∂2uz
∂x2 + λzzzz

∂2uz
∂z2 + (λxxzz + λxzxz) ∂2ux

∂x∂z + ∂2uy
∂y∂z = 0.

(12.20)

The equilibrium equations above (Eq. (12.20)) have to be solved for a mem-
brane element related to one inclusion as illustrated in Fig. 12.1. To derive the
boundary conditions for this solution, we characterize the position of the in-
clusion by coordinates of its center: x = 0, and z = zinc. Based on the circular
shape of the inclusion cross section, the horizontal displacement ux at the left
boundary of the membrane element, x = 0, must be

ux(x = 0, z) =

{
0 : z < zinc − r√

r2 − (z− zinc)
2 : z ≥ zinc − r

, (12.21)

where r is the inclusion radius.
The vertical displacement at the left boundary must be constant for the re-

gion of insertion,

uz(x = 0, z) = zleft
0 for z ≥ zinc − r. (12.22)

The top and bottom surfaces of the monolayer elements are free, and, there-
fore, the stresses σik must vanish on these boundaries.

Finally, the right boundary of the membrane element separated from the left
one by a distance L, is a symmetry plane. Therefore, it must remain straight
but can rotate with respect to the left boundary by certain angle θ and get
shifted in the horizontal and vertical directions by xright

0 and zright
0 , respec-

tively.
We solve, numerically, the equilibrium equations (Eq. (12.20)) with the

above-mentioned boundary conditions. We then compute the elastic energy
of the obtained conformation by integrating the energy density Eq. (12.1) over
the volume of the membrane fragment, and seek for the parameter values zleft

0 ,

zright
0 , xright

0 , and θ corresponding to minimum of this energy. The resulting pa-
rameters determine the final membrane shape.

Although the obtained membrane shape is not ideally circular (Fig. 12.5) we
can define its effective curvature, JS, by the relationship

JS =
sin θ

L + xright
0

, (12.23)
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where the values of θ and xright
0 are found in the course of the energy mini-

mization.
To analyze the case of the laterally uncoupled monolayers, we compute the

deformations of an isolated monolayer and determine the effective monolayer
curvature generated by the inclusions. The curvature of the bilayer mid plane,
Jb

S, can then be expressed, with good accuracy, through the induced curvatures
of the upper, Jout

S , and lower, Jin
S , monolayers,

Jb
S =

1
2

(
Jout

S − Jin
S

)
. (12.24)

In the case of laterally coupled monolayers, we compute deformations of
the bilayer as a whole, accounting for the ability of the monolayers to locally
slide with respect to each other, in spite of the global coupling between their
areas, by taking a vanishing shear modulus λxzxz at the interface between the
two monolayers.

To analyze the results, it is convenient to relate the induced curvature to the
area fraction occupied by the inclusions on the membrane surface,

φ =
r
L

, (12.25)

where r is the radius of the inclusion cross-section and L is the half-distance
between the inclusions (Fig. 12.1).

In the case of an isolated monolayer, we present this relation in the form

Jm
S = ζincφ, (12.26)

where Jm
S is the monolayer curvature and ζinc can be seen as a spontaneous

curvature of an effective particle composed of the inclusion and the deformed
portion of the lipid matrix. The value ζinc referred to as the inclusion sponta-
neous curvature can, in general, depend on the area fraction φ.

In the case of laterally coupled monolayers, where the computed value is
the curvature of the bilayer, Jb

S, we will use the relationship

Jb
S =

1
2

ζincφ, (12.27)

taking into account that the tendency of one monolayer to bend due to the
inclusion insertion is offset by the second monolayer and the resulting bilayer
curvature is smaller than the favored monolayer curvature by a factor of two.

We perform here the calculations for a vanishing initial intra-monolayer
stress profile, σ0

L(x). Analysis presented below shows that σ0
L(x) does not

significantly change the induced membrane curvature. We perform the cal-
culations by the designated COMSOL Multiphysics 3.3 software.
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12.3
Results

12.3.1
Isolated monolayer (laterally uncoupled monolayers)

A typical conformation of a bilayer consisting of two laterally uncoupled
monolayers with inclusions inserted at a relatively large distance from each
other is presented in Fig. 12.5. The internal strains and stresses of the lipid
matrix are maximal near the inclusion and decay along the monolayer with
a characteristic length ξ of a few nanometers. Such an order of magnitude of
the relaxation length could be expected based on the ratio between the over-
all shear, κt = 30 mN/m, and bending, κ = 4 × 10−20 J, moduli of a lipid
monolayer

√
κ
κt
≈ 1 nm [108].

The monolayer as a whole undergoes sharp bending within the strained
areas around the inclusions and remains nearly flat in the regions between
the inclusions where the strains vanish. The resulting monolayer shape is not
smoothly circular but can be characterized by an effective curvature Jm

S (see
Sec. 12.2.2). Dependence of Jm

S on the inclusion area fraction φ (Eq. (12.25)) is
presented in Fig. 12.6 for a depth of insertion typical for amphipathic α-helices
[98]. This dependence appears linear unless φ approaches the values for which
the distance between the adjacent inclusions is comparable to the decay length
of the intra-monolayer stresses, ξ. For even smaller interinclusion distances,
the growth of Jm

S with increasing φ becomes stronger than linear (Fig. 12.6).
In the range of the linear dependence of Jm

S on φ, the effective spontaneous
curvature of the inclusion, ζinc , defined according to Eq. (12.26), is constant
and represents a convenient characteristic of the capability of the inclusion to
curve the monolayer. The value of the inclusion spontaneous curvature is pre-
sented in Fig. 12.7a as a function of the insertion depth. In early stages of inser-
tion, ζinc grows with the insertion depth and reaches its maximal value when
more than half of the inclusion cross-section is embedded into the monolayer
matrix. The maximal value of ζinc corresponds to the insertion depth of∼ 40%
of the monolayer thickness (0.4h) typical for the amphipathic α-helices [98].
Further insertion of the inclusion results in the monolayer unbending and the
inclusion spontaneous curvature vanishes when the center of the inclusion
attains a position just above the monolayer mid plane. Continuation of the
inclusion insertion results in generation of a negative monolayer curvature,
which goes over a maximal negative value and then vanishes when the inclu-
sion leaves the monolayer (Fig. 12.7a).

It is instructive to determine the dependence of the effective inclusion spon-
taneous curvature ζinc on the lipid monolayer thickness, h, which is variable
for different cell membranes. This dependence is illustrated in Fig. 12.8. The
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Figure 12.5 A typical conformation of a
membrane with cylindrical inclusions (dark
blue). (a) The case of laterally uncoupled
monolayers (where the second monolayer
is not considered to influence the ability to
bend). The membrane shape corresponds
to the preferred shape of the upper mono-
layer containing the inclusions as if the lower
monolayer (depictured in gray) would not re-
sist bending and just fit the upper one. (b)

The case of laterally uncoupled monolayers.
The membrane shape is determined by the
interplay of the tendency of the upper mono-
layer to adopt the conformation presented in
(a) and the resistance of the lower monolayer
to bend. (c) The case of laterally coupled
monolayers. The shear strain (dimension-
less) in the monolayers is represented as a
logarithmic color scale.

value of ζinc is weakly dependent on h (Fig. 12.8a). The slow decrease of ζinc
with increasing h is illustrated in Fig. 12.8b for the insertion depth of ∼ 0.8 nm
characteristic for the amphipathic α-helices.

12.3.2
Laterally coupled monolayers

A representative conformation of a bilayer with laterally coupled monolayers
containing inclusions is presented in Fig. 12.5c. The spontaneous curvature
of the inclusion, ζinc, determined according to Eq. (12.27) from the computed
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Figure 12.6 Monolayer spontaneous curvature plotted as a function of the inclusion area frac-
tion for a 0.8 nm depth of insertion.

bilayer curvature Jb
S is presented in Fig. 12.7b. There is a qualitative difference

between the behavior of ζinc in the cases of laterally uncoupled and coupled
monolayers. In the latter case, ζinc, remains positive for all depths of the in-
clusion penetration into the upper membrane monolayer, while in the former
case ζinc changes its sign as discussed above. The reason for this difference
is stretching of the upper monolayer area induced by the inclusions, which
has no effect on the curvature for the case of laterally uncoupled monolay-
ers but generates a positive contribution to the bilayer curvature in the case
of laterally coupled monolayers. At the same time, in the cases of both later-
ally uncoupled and coupled monolayers, the inclusion spontaneous curvature
reaches its maximum for shallow insertions of the inclusion into the mem-
brane matrix (Fig. 12.7).

We define the energetic penalty of the inclusion insertion as the elastic en-
ergy accumulated within the monolayer matrix in the course of embedding
of the inclusion. The density of this energy per unit length of the cylindrical
inclusion is presented in Fig. 12.9 as a function of the insertion depth. The
nonmonotonous character of this function is related to the uneven profile of
the intramonolayer elastic moduli (Eq. (12.13)) and a complex distribution of
strains generated within the monolayer matrix by a cylindrical inclusion. For
the typical depth of 0.4h, the energy density is 1.2 kBT/nm.
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Figure 12.7 Spontaneous curvature for an inclusion plotted as a function of the position of the
center of the inclusion for (a) uncoupled, and (b) coupled monolayers. Cartoons of the bilayer
are shown for different insertion depths.

12.3.3
The hydrophobic insertion mechanism is sufficient for N-BAR domains to tubu-
late membranes

The N-BAR domains constitute one of best explored groups of protein mod-
ules capable of membrane bending in vivo and in vitro [79, 80, 98, 195]. The N-
BAR domain-containing proteins amphiphysin and endophilin are very im-
portant for membrane budding in endocytosis, and their N-BAR domains
were shown to convert flat lipid bilayers into tubules of 35-50 nm diame-
ter [98,195]. As mentioned in Sec. 12.1, the N-BAR domains have the potential
to bend membranes according to two mechanisms: scaffolding the membrane
by attaching its surface to the crescent-shaped BAR dimer, and by inserting
amphipathic helices into the membrane matrix. Dimerization of N-BAR do-
mains results in an effective local concentration of the amphipathic helices un-
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Figure 12.8 Sensitivity of the effective spontaneous curvature of the inclusion, ζinc, to the
monolayer thickness h. (a) ζinc as a function of the position of the center of the inclusion for
different values of the monolayer thicknesses h, where h can either be 1.8, 2.0 or 2.2 nm. (b)
ζinc as a function of the monolayer thickness h for the insertion depth of 0.8 nm.

Figure 12.9 Energetic penalty per unit length of the inclusion plotted as a function of the
depth of the insertion for coupled monolayers.

derneath the BAR scaffold, and, hence, enhances the ability of the protein to
bend membranes. A question arises about the contribution of the hydropho-
bic insertion mechanism to the membrane tube formation by N-BAR domains
and whether this mechanism may solely drive the entire membrane bending
process.

To answer this question we computed the area fraction φ of the α-helices
needed to produce membrane tubes of 35− 50 nm diameter. The results are
illustrated in Fig. 12.10, which presents the range of the required values of φ

for different depths of insertion of the α-helices. We found that for a broad
range of insertion depths, the required inclusion area fractions φ are < 15%.
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For the most relevant depths of ∼ 0.4h, to produce the experimentally ob-
served curvature, only 7-10% of the tubule area has to be occupied by the in-
clusions in the case of laterally uncoupled monolayers and 9-15% for laterally
coupled monolayers. The obtained values of are feasible. Indeed, according
to crystallographic measurements the total area occupied in the membrane
plane by one N-BAR dimer and one α-helix are 47 nm2 and ∼ 6 nm2, respec-
tively. Hence, for amphiphysin, which has two α-helices per N-BAR dimer,
the maximal possible area fraction φ corresponding to a complete coverage
of the membrane by the N-BAR domains is ∼ 25%. For endophilin having
four α-helices per N-BAR dimer assuming that the second amphipathic helix
on each N-BAR monomer has the same length and inserts to the same depth,
the maximal can approach 50%. In both cases, the limit of the α-helix area
fraction is considerably larger than the inclusion amount required to induce
the 35− 50 nm tubes. This means that the hydrophobic insertion mechanism
alone may drive the experimentally observed membrane bending by N-BAR
domains. However, given that BAR domain alone can generate membrane
curvature in vitro, one should not ignore the significance of this structure.
Given the potency of curvature generation by amphipathic helix insertions
it is likely that BAR domains function more as curvature stabilizers/limiters
(or sensors) (see Ch. 13).

12.3.4
Effect of the initial lateral stress profile

To model the distribution of the initial stresses over the monolayer thickness,
we follow the results of the extensive previous studies of this issue [166] and
assume the initial stresses to be directed only along the monolayer plane and
to be isotropic in this plane σ0

xx = σ0
yy = σ0

L(z). We take the distribution of
σ0

L(z) through the monolayer thickness to be similar to the stress profile found
by computer simulations [122]. The parameters of this distribution, have to be
specified based on the relationship between σ0

L(z) and the monolayer sponta-
neous curvature in the initial state J0

S determined at the neutral surface,

J0
S = −

∫ h

0
σ0

L(z) (z− zN)dz

∫ h

0
2λST

(
1− λ2

xxzz

λ2
ST

)
(z− zN)2dz

, (12.28)

where the integration is performed over the monolayer thickness. The initial
stress profile we use corresponds to the monolayer spontaneous curvature of
J0

S = −0.1 nm−1 characterizing the most abundant lipid DOPC [48].
We took into account the initial inter-monolayer stress profile, σ0

L(z), by
computing deformation of the whole bilayer in the case of laterally coupled
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Figure 12.10 The range of α-helix area fractions required to form cylindrical membrane tubes
of diameter 35-50 nm, plotted as a function of the position of the center of the inclusion, for
uncoupled (red) and coupled (gray) monolayers. The maximal possible area fractions of α-
helices for endophilin and amphiphysin are represented by straight lines.

monolayers. According to our results, σ0
L(z), practically, does not change the

bilayer conformation and, consequently, the inclusion spontaneous curvature
(Fig. 12.11). This is expected since the effects of a non-vanishing on the shapes
of the two monolayers mutually compensate and do not affect the bilayer
shape. At the same time, the energetic penalty of the inclusion insertion is
sensitive to σ0

L(z). Fig. 12.12 represents the elastic energy density per unit
length on the cylindrical inclusion for the case of laterally coupled monolay-
ers with and without σ0

L(z). According to these results, the initial stress profile
noticeably alters the energetic penalty of the inclusion insertion.

12.3.5
Three-dimensional results

In all this Chapter, we addressed the case of two-dimensional membrane de-
formations, induced by two-dimensional inclusions. Here, we present some
preliminar computations which demonstrate that three-dimensional mem-
brane deformations generated by rodlike inclusions mimicking amphipathic
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Figure 12.11 The effective spontaneous curvature of inclusion as a function of the position
of the center of the inclusion in the case of coupled monolayers (a) without any lateral stress
profile and (b) with a lateral stress profile accounting for a monolayer spontaneous curvature in
the initial state J0

S = −0.1 nm−1.

Figure 12.12 The energy penalty of the inclusion insertion per inclusion unit length as a func-
tion of the position of the center of the inclusion in the case of coupled monolayers (a) without
any lateral stress profile and (b) with a lateral stress profile accounting for a monolayer sponta-
neous curvature in the initial state J0

S = −0.1 nm−1.

α-helices are characterized by curvatures very similar to those obtained in the
two-dimensional case. In Fig. 12.13, we present the qualitative geometric de-
scription of a finite rodlike particle inserting into a monolayer.

We computed the generated curvature upon insertion as a function of the
angle. As we show in Fig. 12.14a, the monolayer spontaneous curvature is
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Figure 12.13 Geometric sketch of a three-
dimensional rodlike inclusion inserting into
a monolayer. (a) A circular piece of a mono-
layer divided in four equal-sized parts and
the cylindrical inclusion (blue) outside the

monolayer. (b) Geometry used for the com-
putations, which do not need to include the
whole domain in (a), for symmetry reasons.
(c) Cartoon of the monolayer response to a
particle insertion.

almost angle-independent (up to numerical precision). In Fig. 12.14a,b, we
compare the calculated shape for the monolayer, with a catenoidal decay a
symmetric inclusion would induce. We see that after a certain characteristic
length in each direction, ξx, and ξy, the catenoidal fit is almost exact, meaning
that the monolayer loses any knowledge about the actual shape of the inser-
tion beginning from a certain distance. A spontaneous curvature per particle
can thus be defined.

Since a spontaneous curvature can be defined, we calculate it as a function
of the insertion depth for both laterally coupled and uncoupled monolayers.
We present such results in Fig. 12.15, where we compare them with the two-
dimensional results.

12.4
Discussion

We computed the membrane deformations generated by cylindrical inclu-
sions which model the amphipathic α-helices inserted into the membrane ma-
trix, and analyzed the dependence of the resulting membrane curvature on the
depth of the inclusion insertion and the area fraction occupied by the inclu-
sions on the membrane surface. We considered the effects of inclusions in two
cases. In the first case, perhaps most relevant for the intracellular processes of
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Figure 12.14 Monolayer spontaneous curvature as a function of the in-plane azimuthal angle,
φ, as referenced in the inset of (a). Resulting shape after insertion in two perpendicular in-
plane directions (b,c). Dots represent the actual calculated shape, while solid lines correspond
to catenoidal fits.

membrane bending, the membrane monolayers are laterally uncoupled. This
corresponds to a situation where the inclusions are inserted only into a small
fragment of a large membrane for example representing the site of a forming
endocytic vesicle on the plasma membrane. In the second case, which is likely
most relevant for in vitro experiments with lipid vesicles (or areas of intracellu-
lar membranes where lateral translocation of lipids is limited), the inclusions
are inserted along the whole membrane and the membrane monolayers are
laterally coupled.

12.4.1
Amphipathic helices are potent membrane curvature generators

According to Fig. 12.6, the dependence of the induced monolayer curvature,
Jm

S , on the inclusion surface fractions φ is practically linear as long as the in-
clusions do not occupy > 10% of the membrane surface (φ < 0.1) which cor-
responds to interinclusion separations that are > 10 nm. Under these condi-
tions, the effective spontaneous curvature of the inclusion, ζinc, determined
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Figure 12.15 Effective spontaneous curvature per inclusion. The three-dimensional case
is shown and compared with the two-dimensional case. The inclusion dimensions are r =
0.5 nm, and L = 2.5 nm. (a) The case of laterally uncoupled monolayers. (b) The case of
laterally coupled monolayers.

according to Eq. (12.26), is a convenient characteristic of the ability of the in-
clusion to bend lipid monolayers. A representative value of ζinc corresponds
to a typical penetration depth of the amphipathic helices, which constitutes
∼ 40% of the monolayer thickness (13) (zinc = 1.7 nm., in Fig. 12.7). Accord-
ing to Fig. 12.7, such a penetration depth provides the maximal possible value
of the inclusion spontaneous curvature which, in the case of laterally uncou-
pled monolayers, equals ζinc ≈ 0.75 nm−1. It is instructive to compare this
value with the spontaneous curvatures of phospholipids.
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While the inclusion spontaneous curvature is positive i.e. produces mem-
brane bulging towards the polar heads, most phospholipids have a negative
spontaneous curvature [263]. The exceptions are lysolipids which lack one
out of two hydrocarbon chains and phospholipids whose polar heads carry
an electric charge such as phosphatidylserine and phosphatidic acid under
neutral pH. The largest positive spontaneous curvature of physiologically rel-
evant lipids measured to date is that of lysophosphatidylcholine (LPC) and
equals ζLPC ≈ 0.26 nm−1 [96]. LPC belongs to the class of so-called nonbi-
layer lipids since they do not self-organize in bilayer structures in the absence
of canonical lipids necessary for bilayer integrity. Hence, according to our
computations, the inclusion spontaneous curvature ζinc is considerably larger
than the spontaneous curvatures measured for any of the positively curved
non-bilayer lipids. This means that amphipathic α-helices are more powerful
than phospholipids in generating positive membrane curvature.

12.4.2
Repartitioning of nonbilayer lipids does not impede membrane bending by in-
clusions

It may be argued that bending of cell membranes containing lipids of different
kinds by amphipathic inclusions will be much weaker than that predicted by
the present study which assumes a homogeneous lipid composition. Indeed
cell membranes include a small fraction of non-bilayer lipids such as diacyl-
glycerol (DAG) which are characterized by strongly conical effective molecu-
lar shapes or a large negative spontaneous curvature [157]. Redistribution of
such lipid molecules into the direct proximity of the inclusions may consider-
ably reduce the stresses generated by the inclusions, and hence, weaken the
membrane tendency to bend. Estimations based on our results show however,
that this effect is unlikely to be significant. Indeed, a maximal elastic energy,
which can be released by one conically shaped lipid molecule approaching the
helical inclusion, can be estimated as µrelax = −llip fel, where llip is the lipid
dimension in the membrane plane and fel is the accumulated elastic energy
per unit length of the inclusion. Based on Fig. 12.9, for the typical insertion
depth of the amphipathic α-helices (zinc ≈ 1.7 nm.) the value of fel in the bio-
logically relevant case of laterally uncoupled monolayers is fel ≈ 1.2 kBT nm,
meaning that µrelax ≈ −1 kBT. At the same time, the entropic penalty for the
lipid redistribution can be estimated as µent = −kBT ln clip per lipid molecule,
where clip is the molar fraction of the strongly conically shaped lipid in the
membrane and kBT ≈ 0.6 kcal/mol is the product of the Boltzmann constant
and the absolute temperature. Taking into account that the molar fraction of
molecules such as diacylglycerol in cell membranes is small and can be esti-
mated as clip ≤ 0.001, the entropic penalty is µent ≥ 7 kBT, which exceeds the
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energy gain by an order of magnitude, |µent| À |µrelax|. Hence, the redistribu-
tion effects must be minor.

12.4.3
Sensitivity of results to the model’s assumptions and parameters

The major assumption of our model is a steplike profile of distribution
through the lipid monolayer matrix of the local elastic moduli (Eq. (12.15)). To
test the sensitivity of the model predictions to this assumption, we repeated
the calculations for a completely different transmonolayer distribution of the
elastic moduli, which also satisfies the experimental data. We assumed a ho-
mogeneous distribution of the elastic moduli λST and λxxzz throughout the
whole monolayer thickness except for the plane z = 2/3h, where the elastic
moduli were larger than elsewhere (a δ-functionlike profile). The results were
similar to those presented above meaning that the predictions are insensitive
to the details of the unknown distribution of the intramembrane elasticity.

Another issue concerns the specific parameter values we used and which
are not known accurately. The major parameter is the transverse shear mod-
ulus λxzxz. We explored the sensitivity of the computed membrane curvature
induced by the inclusions and the energy penalty of the inclusion insertion to
the value of the monolayer transverse shear modulus which is not known with
a good accuracy and of the lipid bilayer thickness which varies for different
cell membranes.

Fig. 12.16 shows that the inclusion spontaneous curvature is practically in-
dependent of the specific value of as long as the latter remains within a rea-
sonable range.

Figs. 12.17 and 12.18 illustrate the sensitivity of the results obtained for the
case of coupled monolayers to the monolayer thickness h and the transverse
shear modulus λxzxz. Dependence of ζinc of the parameters is similar to that
obtained for the uncoupled monolayers. The energy penalty is weakly sensi-
tive to the values of but varies considerably with λxzxz.

Fig. 12.19 shows the dependence of the effective spontaneous curvature of
the inclusion on the inclusion radius for both laterally uncoupled (Fig. 12.19a)
and coupled (Fig. 12.19b) monolayers. The sensitivity of these results to the
inclusion radius is weak for a reasonable range of the inclusion size.

While the elastic energy of the inclusion insertion does exhibit a noticeable
dependence on the parameter values, it remains of the same order of magni-
tude so that the qualitative conclusions based on this energy do not change.

We presented the results for inclusions having a shape of a cylindrical rod
with a radius corresponding to the size of a typical α-helix with side chains.
Probing computation for a squarelike cross section of the inclusions provided
very similar values of the inclusion effective spontaneous curvature showing
that the major predictions of the model are insensitive to the details of the
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Figure 12.16 Sensitivity of the effective spontaneous curvature of the inclusion, ζinc, to the
specific value of the transverse shear modulus λxzxz.

Figure 12.17 Sensitivity of the effective spontaneous curvature to (a) the monolayer thickness
and (b) the transverse shear modulus for the case of coupled monolayers.

inclusion shapes. The dependence of the results on the size of the inclusion
cross section is presented above (Fig. 12.19). While the effective spontaneous
curvature of the inclusion does change with the radius of the inclusion cross
section, qualitatively, these changes are not significant.

12.5
Conclusions

Insertion of small hydrophobic inclusions into the upper part of membrane
monolayers is a potent method for proteins to induce membrane curvatures
in vivo. Notably, there are differences in the physics of bending by inclusions
for the cases of laterally coupled and uncoupled membrane monolayers. In
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Figure 12.18 Sensitivity of the energy penalty of the inclusion insertion per inclusion unit
length in the case of coupled monolayers to (a) the monolayer thickness hand (b) the trans-
verse shear modulus λxzxz.

Figure 12.19 Sensitivity of the effective spontaneous curvature to the inclusion radius for the
cases of (a) uncoupled monolayers, and (b) coupled monolayers.

the biologically relevant case of laterally uncoupled monolayers the shallow-
ness of the inclusion insertion is crucial for the membrane bending. The shal-
low membrane inclusions penetrating ∼ 40% of monolayer thickness [98] are
predicted to be extremely effective in membrane shaping and their ability to
produce positive curvatures considerably exceeds that of nonbilayer lipids.
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13
Curvature sensing by amphipathic helices

13.1
Introduction

In this Chapter, we explain, from a quantitative point of view, the concept of
curvature sensing that frequently appears in biological literature but is loosely
defined. We base our analyses on the results found in Ch. 12. Generally speak-
ing, we could define curvature sensing as the ability of some membrane pro-
teins to bind liposomes preferentially depending on their curvature. Thus, in-
cubating α-helical motifs with liposomes of different radii, it is experimentally
observed that the amount of membrane-bound proteins strongly depends on
the liposome radius [22, 71, 175].

We start by analyzing the thermodynamics of protein binding to mem-
branes, and see how we can quantify experimentally accessible quantities in
terms of the elastic bending energy. Next, we calculate this elastic energy for
already curved membranes, and find a mathematic expression for the amount
of protein bound to liposomes. We compare our results with experimental
data, showing that we can fit our theory in a good agreement with that data.

13.2
Thermodynamic approach

We study the binding of bulk particles to surfaces. The chemical potentials in
the bulk and in the surface are, respectively,

µB = µ0
B + kBT log (cB) ,

µS = µ0
S + kBT log (cS) , (13.1)

where cB, cS are the molar fraction of particles in the bulk and on the surface,
respectively; kBT ≈ 0.6 kcal/mol is the product of the Boltzmann constant and
the absolute temperature; and µ0

B, µ0
S are the bare chemical potentials in the

bulk and on the surface, respectively. Thermodynamic equilibrium implies
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equality of the chemical potentials,

µB = µS, (13.2)

which leads to

cS = cB exp

(
µ0

B − µ0
S

kBT

)
. (13.3)

The bare chemical potential on the surface can be separated as

µ0
S = µ̃0

S + Eel(J), (13.4)

with this last term being the elastic energy penalty of the inclusion, which in
our case depends on the membrane curvature, J. Therefore, Eq. (13.3) can be
rewritten as

cS(J) = cB(J) k exp
(
−Eel(J)

kBT

)
, (13.5)

with

k = exp

(
µ0

B
kBT

)
exp

(
− µ̃0

S
kBT

)
. (13.6)

On the other hand, we shall relate the molar fraction in the bulk to the molar
fraction on the surface. We consider that our system contains a fixed number
of lipids (l), water molecules (w), and anchoring protein groups (p). The total
number of these proteins is divided between the bulk and the surface as

p = pB + pS. (13.7)

We define the amount of protein which is bound to the liposome surfaces, B,
that is an experimentally accessible quantity, as

B =
pS
p

=
pS

pB + pS
. (13.8)

The protein mole fractions in the bulk and on the surface are

cS =
pS

pS + l
, (13.9)

cB =
pB

pB + w
, (13.10)

assuming that the concentration of lipids in solution is small. Therefore, we
can relate the protein molar fractions as

cB(cS) =
1

1 + w
p− lcS

1−cS

. (13.11)
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The quotient between the molar fraction of proteins on the surface and in the
bulk is defined as

F(cS) =
cS
cB

, (13.12)

and in terms of the amount of bound proteins can be written as

F(B) =
B

(
1− B + w

p

)
(

B + l
p

)
(1− B)

' w
l

B
1− B

, (13.13)

where we assumed in the last step that w/p, l/p À 1. Therefore, we can
compare the amount of binding for two different liposome curvatures J1 and
J2,

B1
1−B1

B2
1−B2

= exp
(
−Eel(J1)− Eel(J2)

kBT

)
, (13.14)

where Bi = B(Ji).

13.3
Elastic binding energy

The energy of the membrane when no insertion is anchored on it, as a function
of its curvature is

Eout =
κ

2
J2 A. (13.15)

We computed numerically the energy penalty of an inclusion for a tubular
vesicle of a given curvature J. The results are presented in Fig. 13.1.

It turns out that we can analytically explain the dependence of this energy as
a function of the vesicle curvature. It is so because of the fact that the stresses
induced by the inclusion insertion are localized in the surroundings of the in-
sertion. We calculated this energy penalty for a flat membrane in our previous
study on the curvature generation by amphipathic helices. We name this en-
ergy as E0

inc which does not depend on the pre-existent membrane curvature,
but only on the parameters such as the geometry of the inclusion or the depth
of embedding. We used the parameters of typical amphipathic helices like
those found in endophilin or amphiphysin. Therefore, we can assume that the
energy of the curved membrane is

Eel(J) = Ein − Eout (13.16)

Where the bilayer spontaneous curvature can be worked out from the al-
ready calculated effective spontaneous curvature for such an inclusion as
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Figure 13.1 Energy penalty per inclusion length as a function of the curvature of the lipo-
some, Jves, to which they bind. We show the case where there is no inclusion (red circles),
and where the inclusion is inserted at a certain depth corresponding with zinc = 1.7 nm (black
squares). Lines show the analytic estimation.

Js = ζincφ, φ = r/L being the area fraction occupied by the inclusions, and
A = ∆yL. We define the elastic binding energy as the energy difference be-
tween a bilayer with an embedded inclusion and a bare bilayer, both given a
fixed curvature:

Eel(J) = Ein − Eout. (13.17)

From Eq. (13.14) and Eq. (13.17), we can write
B1

1−B1
B2

1−B2

= exp
[

κ

kBT
ζincr∆y (J1 − J2)

]
. (13.18)

Therefore, we can calculate the amount of binding as a function of the vesi-
cle curvature provided that we know the amount of binding for one given
curvature. In other words, defining a fitting parameter,

α(B2, J2) =
B2

1− B2
exp

[
− κ

kBT
ζincr∆yJ2

]
, (13.19)

and a length scale,

ξ =
κ

kBT
ζincr∆y, (13.20)
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the amount of binding as a function of the curvature takes the form of a
sigmoid-like function

B(J) =
α

α + e−Jξ
. (13.21)

In order to understand the expression in Eq. (13.21) for the amount of pro-
tein bound to the membrane, we should ask how the parameter α depends on
physical parameters as the non-elastic part of the chemical potential. For the
pair J2, B2 we have that

1
cl

B2

1− B2
= k exp

[
−Eel(J2)

kBT

]
, (13.22)

Where cl = l/w is the lipid concentration. We can therefore write

B2

1− B2
= kcl exp (ξJ2). (13.23)

Using the definitions of α and k above, we reach to

α = cl exp

(
− µ̃0

s − µ0
B

kBT

)
. (13.24)

13.4
Results and discussion

In order to proceed to compare our model for the amount of bound protein
as a function of the liposome curvature, we can proceed in two easy. The
expression gives the amount of bound protein given the elastic an geometric
parameters (included in ξ), but requires the knowledge of a reference point
(the pair B2, J2 contained in α). Therefore, we can either assume these pair
from the experimental knowledge, and from there the function B(J), or we
can treat α as a fitting parameter.

In Ref. [71], curvature sensitivity for ALPS1, a membrane-binding amphi-
pathic α-helix identified in the Golgi-associated protein ArfGAP1 was studied.
In order to compare with those results, we choose the following geometric pa-
rameters:

r = 0.5 nm,

∆y = 6 nm,

zinc = 1.7 nm,

h = 2 nm,

ζinc = 0.45− 0.5 nm−1,

κ = 136 kBT. (13.25)
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The value for the effective spontaneous curvature of the inclusion corresponds
to that found in Ch. 12. The bending rigidity for a bilayer consisting in two
coupled monolayers is also found according to the profiles for the elastic mod-
uli of the monolayers. The curvature in that case was found for tubular vesi-
cles. Here, we assume that the induced curvature in the spherical liposomes
by the insertions is the same, meaning that J = 1/R, R being the liposome
radius. With all these considerations, we can assume a value for the length
scale close to ξ = 200 nm. Besides, one can also perform a two-parameter
fit of the data, and see that the outcoming length scale ξ is comparable to the
experimental guess (see Fig. 13.2).

Figure 13.2 Binding amount, B, (normalized to 1) of ALPS1 (red) and ALPS2 (blue) as a
function of the liposome radius. Circles correspond to experimental points from Ref. [71], and
linesto the two-parameter fit of the data, according a sigmoid-like function as in Eq. (13.21).
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14
General conclusions

Understanding how membrane-bound biological entities –like liposomes, cell
organelles, or even cells– are shaped according to their surface elastic prop-
erties has been the common thread on which we conducted this thesis. We
studied, from a theoretical point of view, various membrane shapes found
in different situations, and we compared them with experimental data in or-
der to better understand some biophysical phenomena appearing in biological
membranes.

A biological membrane is a complex formed by several kinds of biochemical
molecules. The basic structure is that of a lipid bilayer, which can, however,
consist of dozens of different kinds of lipid molecules. In addition, such a
purely lipidic membrane can have phase separated domains, some of them
being fluid, some of them being in a more gelly phase, and some others being
solidlike. Biological membranes are believed to present such a richness, albeit
a fluidlike state is known to be the predominant phase. Moreover, biomem-
branes include, as we reviewed in Ch. 2, different kinds of associated proteins.
These proteins are not only functional in order to communicate with other
cells or cell organelles, but they are also involved in membrane shaping.

In the first Part of the thesis, we studied a simple model membrane, consist-
ing of monocomponent fluid lipid bilayers, closed to form vesicles. These are,
perhaps, the most simple models for biological membranes. Obviously, they
can not include all the complexity of actual membranes, but they indeed grasp
some essence of their behavior. Such lipid bilayers are mathematically de-
scribed as two-dimensional surfaces embedded in a three-dimensional space.
From a purely geometric description, they can be characterized by giving, at
each point, the value of the radii of curvature in two perpendicular directions.
From there, and using symmetry considerations, it is possible to describe the
bilayer energy in terms of those curvatures, in the so-called Canham-Helfrich
model [44, 109] (explained in Ch. 3).

The Canham-Helfrich theory states that the energy of a lipid bilayer can be
described by means of its curvature. This energy is given by nothing else than
the bending elasticity of a piece of surface. Among our aims in this thesis,
we wanted to study the dynamics of membrane shapes in different circum-



166 14 General conclusions

stances. For that purpose we chose to work with a class of dynamic models
for interfaces, the phase-field models, whose basics were presented in Ch. 4.
The bending energy of a two-dimensional bilayer is mapped into a free energy
functional which takes real values in the whole three-dimensional domain (i.e.
in the membrane, but also in the outer and inner media). In this sense, in
Ch. 5 we derived a mathematical model of the phase-field kind to deal with
the Canham-Helfrich bending energy. A dynamic equation is worked out,
dictating the time evolution of the phase-field, which, in turn, contains the
information of the membrane location.

In Ch. 6 we numerically solved the dynamic equation in order to find the
stationary shapes of fluid vesicles for different topologies, as well as the dy-
namic relaxation towards them. For the simplest bending model, the so-called
minimal model, and for a given topology, there is only one free parameter on
which the stationary vesicle shapes depend [224]. This is the so-called reduced
volume, a dimensionless normalized area to volume ratio. For different values
of the reduced volume, we found the three different shapes for axisymmetric
vesicles of spherical topology: oblates, prolates, and stomatocytes. Thus, it
is possible to build a shape diagram saying which shape a vesicle has as a
function of its reduced volume. Such a shape diagram found by means of our
phase-field model quantitatively agrees with previous results found by other
techniques.

Afterwards, in Chs. 7 and 8, we applied our phase-field model to study
systems with a further degree of complexity. In addition to considering a
symmetric lipid bilayer, we also took into account the presence of anchor
molecules on the membrane (such as amphiphilic polymers, mimicking small
membrane proteins). The effect these polymer molecules have is of inducing
a local curvature to the bilayer, thus breaking the symmetry between the two
leaflets. This effect was introduced through a spontaneous curvature coupled
to the presence of anchored molecules in the membrane.

We first analyzed, in Ch. 7, the dynamics of the curvature-induced pearling
instability in tubular vesicles with anchored polymers, as experimentally re-
ported in Ref. [251]. We found that the pearling instability can be explained
by means of a homogeneous distribution of polymer molecules on the mem-
brane. After a global application of polymer molecules on the membrane, the
initial tubelike vesicle destabilizes beginning from its tip, by forming a pearl.
Subsequent pearls are then formed one by one from that first one. In addition,
when the polymer concentration on the membrane is high enough, equally
sized pearls are not the minimum energy solution. Instead, pearls following a
size gradient appear.

In Ch. 8, we studied a similar system, also consisting of monocomponent
fluid lipid bilayers and amphiphilic molecules. In that case, we wanted to un-
derstand how membrane tubes can be extruded from oblate vesicles in such
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a system, as experimentally observed in Ref. [250]. When a polymer source
is present at a certain position in the space outside a lipid vesicle, the con-
centration of these molecules follows a non-homogeneous profile. Therefore,
the concentration of anchoring molecules is higher close to the source than
away from it. We studied how such a polymer gradient induces a tubula-
tion phenomenon in vesicles. Depending on the characteristics of this gra-
dient, different structures may be formed. Long tubes and short buds are
among them. We analyzed this system both analytically and numerically (us-
ing our phase-field model). Our results are in agreement with the experimen-
tally reported observations previously mentioned, and open the possibility for
transport phenomena in cells not due to directed forces (like molecular motors
pulling membrane tubes), but due to the presence of concentration gradients
of curvature generating proteins in the intracellular medium.

Thus, in the first Part of the thesis we presented our results regarding dy-
namic shape instabilities in membranes due to the anchorage of molecules. We
may conclude that the phase-field model we derived is valid for studying such
instabilities. They can be understood in the framework of the Helfrich model
where anchored polymers induce a local spontaneous curvature to the mem-
brane. In addition, hydrodynamic effects are not important in what shaping
membrane concerns, although it would be interesting in the future to cou-
ple our model with the proper hydrodynamics of both the membrane and the
aqueous media surrounding it. Summing up the main conclusions to this first
Part of the thesis, we should say that

• we derived a dynamic model of the phase-field kind to deal with curva-
ture energies, and not with surface tension as usual phase-field models.

• The stationary shapes of fluid vesicles were recovered by means of nu-
merically solving the bending phase-field model.

• Three-dimensional non-axisymmetric shapes are included in the model
formalism.

• Dynamic relaxation towards these stationary shapes can be studied.

• The pearling instability which appears in membrane tubes when am-
phiphilic polymer molecules anchor the bilayer is curvature-induced.

• Phase-field integrations showed that the dynamics of the instability con-
sists on a subsequent pearl formation, and not through a set of Delau-
nay shapes, even when the polymer molecules are globally applied to
the membrane.

• High homogeneous polymer concentrations explain the breaking of
symmetry in the size of the pearls.
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• A polymer concentration gradient can explain the tubulation phe-
nomenon observed in vesicles.

• The size of the tubes is finite, and depends on the characteristics of the
polymer concentration profile.

• There is no force acting directly on the membrane in this polymer-
induced tubulation mechanism.

Just as in the first Part we introduced anchoring molecules in our model
membranes, in the second Part the complexity arose by studying multicom-
ponent systems. As we explained in Ch. 2, membranes consisting of a mix-
ture of lipid molecules can present phase separation. In Ch. 9 we studied a
ternary membrane system composed by a sphingolipid, a phosphoglyceride,
and cholesterol. For certain compositions, a cholesterol-enriched phase forms
a separate liquid ordered phase, in contrast to the other liquid disordered
phase. In vitro experiments [14] show that, at certain composition ratios, un-
dulated tubular lipid vesicles are formed, displaying a periodic disposition of
these two phases. Using a variational treatment for the Canham-Helfrich en-
ergy of biphasic axisymmetric vesicles, we found both analytically (in a linear
approximation) and numerically the tube shapes, in a very good agreement
with the experimental microscopy images. Further, wavelength selection for
such periodic tubes is performed by energy minimization. In addition, a shape
diagram is built showing at which area fractions between the two phases pe-
riodic tubes of a certain wavelength are favorable rather than a complete two
domain separation.

Besides, in Ch. 10, we studied multicomponent lipid monolayers in a flat
substrate. This system is very simple, but very inspiring as well, in the sense
that it allows for the possibility of studying the shapes of two-dimensional
domains. A competition between two opposing forces defines those shapes.
First, a line tension avoiding separation between lipid phases tends to form
circular domains. Second, a polarization term tends to elongate the domains.
This model can be mapped, in a first approximation, to a two-dimensional
beding model à la Canham-Helfrich, where the bending rigidity depends on
the domain length, as well as the effective line tension, which can either be
positive or negative [125]. We used our bending phase-field model derived in
the first Part, to study such shapes, and how circular shapes become unstable
against the formation of elliptic shapes or harmonically distorted shapes as
starfish shapes. We compared our results with experimental images reported
by H. M. McConnell’s group [131, 152].

As a summing-up of this Part, we might assert that,

• periodic lipidic biphasic membrane tubes can be explained theoretically
by means of a competition between curvature energy and line tension.
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• Different elastic moduli between the two phases is the responsible for
the undulated form of the periodic tubes.

• Periodic tubes are energetically favorable to a complete two-phase sep-
aration when the chemical composition does not favor too much one
phase.

• The Iwamoto approximation to the domain energy composed by a line
tension term and a polarization term is studied within the bending
phase-field model framework.

• Starfish shapes can be found for negative effective line tensions.

In those two Parts of the thesis, we used the curvature Canham-Helfrich
model to describe the membrane energy. This model is very powerful but has
its limitations. Mainly, it loses its validity when relatively large membrane
curvatures are involved, since it only takes into account small deformations.
It does not consider either any internal structure of the bilayer, since it deals
with it as a two-dimensional surface. In the third Part of the thesis, we de-
rived an elastic model for the membrane as a thick elastic medium, where the
internal strains and stresses are taken into account according to the system
symmetries. We did so because our aim there was to study how the inclu-
sion of small hydrophobic groups in the membrane, like α-helices, generates
curvature (as it is presented in Ch. 12). Those groups are present in many dif-
ferent membrane proteins, like epsins, amphiphysins, or endophilins. There
is experimental evidence that such domains insert up to more or less one third
of the outer leaflet of the bilayer. This is the reason why we needed to use a
description for the intramembrane deformations. Our findings showed that
such small shallow inclusions are powerful curvature generators, more than
nonbilayer lipids. In addition, reasonable concentrations of N-BAR domain
containing proteins on the membrane can explain, by solely the hydrophobic
insertion mechanism, the formation of narrow membrane tubes [98, 195] (dif-
ferent mechanisms of membrane curvature generation are briefly discussed
in Ch. 11). Also, we analyzed a three-dimensional system, showing that the
main conclusions for two-dimensional deformations also hold for the three-
dimensional case.

Next, in Ch. 13, we analyzed the mechanism by which some proteins prefer-
entially bind to strongly curved vesicles. Such a curvature dependent binding
can be explained in terms of the elastic energies, and the concept of curvature
sensing is discussed.

This third Part can be recapitulated by the following assertions:

• We developed an elastic model of a lipid monolayer by considering
it as a three-dimensional layer with a finite thickness and bulk elastic
properties.
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• We calculated the only four non-vanishing independent transmono-
layer elastic profiles according to the experimentally known overall
moduli.

• The equations of equilibrium for the internal monolayer strains are ob-
tained from our elastic model.

• A small inclusion inserted into a bilayer generates an effective spon-
taneous curvature to the membrane, which in turn is concentration-
independent for small concentration of insertions.

• We calculated the spontaneous curvature of an inclusion as a function of
different parameters for both laterally coupled and laterally uncoupled
monolayers.

• The hydrophobic insertion mechanism is sufficient for N-BAR do-
mains to tubulate membranes, as experimentally reported.

• Three-dimensional inclusions (finite rods) generate similar isotropic
curvatures to two-dimensional ones (infinite rods).

• Amphipathic helices are more powerful positive curvature generators
than lipids.

• Repartitioning of nonbilayer lipids does not impede membrane bend-
ing by inclusions.

• Our elastic model can explain by energetic considerations the fact that
some proteins bind preferentially to highly curved vesicles.

In this thesis, we presented results on how membranes are shaped, ac-
cording to different shaping elements, like hydrophobic domain inclusions or
lipid composition. Although the biological solution to curve membranes dif-
fer from case to case, there is a common underlying physical mechanism, for
the generation and stabilization of membrane curvature which is intimately
related to the elasticity of the lipid bilayer.
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15
Future perspectives

The great mathematician Évariste Galois wrote, a few hours before his prema-
ture death, the following sentence:

La science est l’œuvre de l’esprit humain, qui est plutôt destiné à
étudier qu’à connaître, à chercher qu’à trouver la vérité1.

Thus, when a scientist starts to study a problem, and to search for an answer,
he comes across new questions, new problems to study. It’s like the ancient
explorers going upriver and finding other rivers flowing into the first one, and
more rivers flowing into those tributaries, and so on and so forth. This is how
science grows: answer one question to get at most one answer and at least
ten new questions. This thesis is not an exception to this rule. In this Chapter
we briefly discuss some of the open questions for further research we have
encountered, and give some ideas on how to start studying them.

15.1
Coupled dynamic model

In Chs. 7 and 8 we used the dynamic equation for the phase-field model as-
suming a certain given polymer concentration. There, we considered situa-
tions where the polymer concentration was fixed, either to be homogeneous
along the membrane, or to follow a given profile. One possibility to extend
that analysis is to soften the condition for the polymer concentration profile
and let the polymer molecules diffuse according to their own dynamics.

15.1.1
Fokker-Planck equation

We first assume that polymer molecules in the bulk, far from the membrane,
freely diffuse. Then, the concentration, ρ(x, t), at position x and time t de-

1) Science is the work of the human spirit, which is rather intended
to study than to know, to search than to find the truth. Cited at the
speech made by M. Émile Picard for the fifty anniversary of the
Société mathématique de France [197]
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scribes the distribution of these Brownian moving polymers. This concentra-
tion can be formally written as

ρ(x, t) = 〈δ(x− x(t)〉 . (15.1)

Under no other forces than the stochastic thermal forces, the evolution equa-
tion for the polymer concentration profile is governed by a diffusion equation,

∂

∂t
ρ(x, t) = ∇ · (D∇ρ(x, t)) , (15.2)

where D is the diffusion coefficient, which in turn satisfies Einstein’s relation
D = kBT/η, kBT being the thermal energy, and η the viscosity.

On the other hand, the deterministic dynamics of the Newton’s second law
with an external potential, V(x(t)), in the overdamped regime, is given by

ηẋ(t) = −∇V(x(t)). (15.3)

According to a Liouville equation [145], the probability density (in our case,
the concentration field) evolves as

∂

∂t
ρ(x, t) = ∇ ·

(∇V(x)
η

ρ(x, t)
)

. (15.4)

Since the concentration field appears linearly in both Eqs. (15.2) and (15.4), a
Fokker-Planck equation [212] can be written down as a linear combination of
these two effects

∂

∂t
ρ(x, t) = ∇ ·

(
D
∇V(x)

kBT
ρ(x, t)

)
+∇ · (D∇ρ(x, t)) , (15.5)

where we used again Einstein’s relation. The first term on the right-hand side
of the equation is a drift term, and the second one is a purely diffusive term.
This dynamic equation gives the evolution of random particles subject to an
energy potential.

15.1.2
Anchorage Potential on the Membrane

In order to model the anchorage of amphiphilic polymers on the membrane
after bulk diffusion [251], and its eventual diffusion along the membrane, we
choose to assign a phenomenological elastic potential for this anchoring pro-
cess. It is chosen in such a way that it ensures free diffusion in the bulk outside
the vesicle, and free diffusion on the membrane once a certain amount of poly-
mer concentration has reached it. Such a potential can be written as

V(x) = α
(

φ2(x)− 1
)

, (15.6)
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where α > 0 is the strength of the attractive potential, and φ(x) is the phase-
field, which equals to 0 in the membrane, +1 inside the vesicle, and −1 out-
side. Therefore, this potential vanishes far enough from the membrane, and
it is attractive in the membrane, letting the polymer diffuse within the mem-
brane (see Fig. 15.1).
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x/(a.u.)

-1

-0,5

0
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1

f (x)
V (x)

Figure 15.1 Plot of a one-dimensional tanh-like profile for the phase-field, and its related con-
fining potential V(x). The model parameters have been arbitrarily chosen to show the confine-
ment in the area of radius ε around to the level-set φ = 0.

This equation assumes equal polymer diffusion coefficients in the bulk and
in the membrane. Due to the nature of phase-field models, it is also possible
to use different diffusion coefficients for the aqueous media and for the mem-
brane, by changing the diffusion coefficient into a function of the phase-field,
as

D(x) = Dbφ2(x) + Dm

(
1− φ2(x)

)
, (15.7)

where now Db is the bulk diffusion coefficient, and Dm is the membrane diffu-
sion coefficient. Thus, we might write the evolution equation for the polymer
concentration for our problem as

∂

∂t
ρ(x, t) =

2α

kBT
∇ ·

(
1

D(x)
φ(x)∇φ(x)ρ(x, t)

)
+∇ · (D(x)∇ρ(x, t)) . (15.8)
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15.1.3
Preliminary results

To get a preliminary feeling, we have numerically solved Eq. (15.8) in the case
where the diffusion coefficient is homogeneous. Then, the diffusion coefficient
has no dependence on the position, and Eq. (15.8) reads as

∂

∂t
ρ(x, t) = ᾱ∇ · (φ(x)∇φ(x)ρ(x, t)) + D∇2ρ(x, t), (15.9)

where we defined ᾱ = 2α
D kBT . Also, in this very preliminary study, we have

chosen to fix the phase-field, only to see how the polymer gets concentrated
in the membrane. These results are shown in Fig. 15.2.

Another possibility would be to analyze the effects of taking into account
two different diffusion coefficients in the bulk and in the membrane (Db and
Dm, respectively).

15.1.4
Further work

Once this dynamic model for the polymer concentration is assumed, we can
couple it with the dynamic equation for the phase-field (e.g. Eq. (5.46). Then,
we could study the dynamic effects polymer diffusion has on pearling and
tubulation phenomena studied in Chs. 7 and 8.

In addition, we could also not assume a dynamic equation for the polymer,
but find the stationary profile which optimizes a total free energy for the whole
membrane-polymer system.

15.2
Gaussian curvature

In Ch. 5, we presented the expression for the Gaussian curvature as a function
of the phase-field. However, we didn’t use this curvature in the treatment
of the subsequent Chapters of the first Part of the thesis, since no topological
changes were taken into account in the dynamics.

Two questions arise here. First, which is the role of a Gaussian curvature
term in the dynamics of monocomponent lipid vesicles when no topologi-
cal change occurs? And second, can we say something about fusion/fission
events if we are able to include a Gaussian curvature term in our dynamic
model?

To answer the first question, we should derive the dynamic equation for a
bending energy including the Gaussian curvature term. Such a dynamic equa-
tion can be straightforwardly worked out, although it is mathematical expres-
sion is quite complex, even in the case of axisymmetric geometries. Therefore,
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(a) 600 ∆t (b) 1800 ∆t (c) 3000 ∆t

(d) 5000 ∆t (e) 8600 ∆t (f) 16200 ∆t

Figure 15.2 Polymer diffusion from a lo-
calized small region outside the vesicle (a),
anchorage of some amount of polymer to
the membrane (b-c), and diffusion along the
membrane (d-e). Stationary state with all
the concentration of polymer anchored in
the membrane (f). Periodic boundary condi-
tions are assumed. The following arbitrary

set of parameters is used in this integra-
tion: ∆t = 0.01, D = 1, ᾱ = 0.05. Colour-
scale represents the polymer density (black-
ish means high concentration, and greenish
means low concentration, scale not shown).
Integration performed in a 50 × 50 square
lattice.

to numerically deal with that expression increases significantly the compu-
tational cost of the integrations. However, since we discretize the dynamic
equations using a second-order finite differences scheme, the expression for
the Gaussian curvature part of the discretized dynamic equation should be
tractable [43].

About the second question, one has to be very cautious. Topological
changes in membranes correspond to very large curvatures, a limit on which
the classical Canham-Helfrich model is not valid, and microscopic models for
the membrane have to be used (see Ch. 12). However, fission proteins localize
in membrane necks (narrow catenoidal or tube-like membrane patches con-
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necting two vesicles before an eventual fission), and in turn might generate
spontaneous curvature to the membrane. The existence of a protein-coated
neck domain is associated with a change in certain elastic parameters, as the
Gaussian curvature modulus. Thus, this situation is analogous as the system
studied in Ch. 9, where different phases were characterized by different elas-
tic moduli. In this sense, within our phase-field model, we could be able to
describe such a system with a inhomogeneous Gaussian curvature modulus.

15.3
Shape of lipid domains in monolayers and bilayers

In Ch. 10 we studied two-dimensional monolayer domain shapes. Such a
model can be studied in a more systematic way, in order to get the full shape
diagram corresponding to the competition between line tension and dipole-
dipole interaction. In addition, the effect of adding surfactant proteins to the
lipid mixture of the monolayers is a matter of further research both theoret-
ically and experimentally [54]. Raising the constraint of two-dimensionality,
and moving into the study of bilayer vesicles in the space is a key point in
understanding the role curvature has on shaping membrane domains.

15.4
Curvature sensing by proteins

The results presented in Ch. 13 are only preliminary results, and more insight
is needed for a deep understanding of this problem. In this direction, fur-
ther computations on the three-dimensional results on curvature generation
presented in Sec. 12.3.5 are needed.

15.5
Prokaryotic cell division

When a cell divides, a cascade of biochemical reactions help in finding the
cell’s midplane. Also, the genetic information has to be duplicated and sep-
arated in the two parts of the cell. By some means, the cell membrane has to
squeeze the cell midplane in order to finish the division process. This fission
process involves the action of a force. Protein ring-like filaments, like FtsZ, are
believed to generate such a force in bacterial divisions [164], since they wrap
on the bacterial membrane midplane. Studying the competition between the
protein generated force [118] and the membrane elastic restoring force can
lead to get some insights on prokaryotic cell division mechanisms.
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16
Introducció

Les formes a les cèl·lules. Aquest és el títol d’aquesta tesi doctoral. Després
el segueix un subtítol més específic sobre la recerca feta, però, ja que som
en una introducció, deixeu-nos explicar què volem dir quan parlem de les
formes a les cèl·lules. Per una banda, la forma és, segons el Diccionari de
l’Institut d’Estudis Catalans, "[l’]aparença externa d’una cosa, conjunt de línies
i superfícies que en determinen el contorn". Per l’altra, tenim les cèl·lules, les
entitats fonamentals de la vida. Així doncs, en aquesta tesi estudiem quines
són les aparences, les propietats geomètriques i morfològiques, que trobem
en les unitats essencials de què estan formats els éssers vius. És important
remarcar el fet que estudiem no només les formes de les cèl·lules, sinó també
les dels diversos orgànuls i regions que es troben al seu interior.

Fets aquests aclariments preliminars, ja podem enunciar la segona part del
títol d’aquesta tesi: inestabilitats dinàmiques, morfologia i curvatura en mem-
branes biològiques. Al llarg d’aquest resum, anirem desgranant un per un
aquests temes i veurem quina ha estat la nostra contribució a cadascun d’ells.

16.1
Motivació

La forma que tenen els objectes de la natura, formats per purs processos na-
turals sense la intervenció de l’ésser humà, no és pas arbitrària. De fet, són el
resultat de processos ja sigui evolutius, com pot ser sovint el cas en organis-
mes vius, o deguts a mecanismes físics, com els que expliquen la morfologia
dels cossos celestes. Aquests dos exemples són també il·lustratius perquè do-
nen dues escales de complexitat completament oposades. La primera, la d’un
organisme pluricel·lular com pot ser qualsevol animal superior, amb els conei-
xements científics actuals no es pot tractar amb el mateix nivell de detall que
la segona, un cos celeste com pot ser una estrella de neutrons. Aquesta és una
de les característiques que poden diferenciar els mètodes emprats en biologia
i en física.

Ara bé, com en qualsevol classificació creada artificialment, hi ha fronteres
difuses. Així, és en aquestes regions de, diguem-ne, complexitat mitjana, on
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la metodologia de la física pot ser útil per entendre certs processos i sistemes
biològics. I quin millor que el que es refereix a la unitat mínima de la vida?

En aquesta tesi, doncs, estudiem, amb un enfocament teòric i utilitzant la
metodologia i la maquinària de la física, quins són els mecanismes que porten
a la formació de certes estructures cel·lulars.

16.2
Membranes biològiques

Les cèl·lules, així com la major part dels seus orgànuls, estan definides i se-
parades de les seves veïnes mitjançant una mena de paret que les embolcalla.
Aquesta paret s’anomena membrana. Les membranes biològiques estan bà-
sicament formades per lípids i proteïnes. Els lípids (vegeu Fig. 16.1a,b) són
molècules que tenen un cap hidrofílic –és a dir, que té afinitat amb els me-
dis polars, com l’aigua– i, generalment, dues cues hidrofòbiques –amb afinitat
pels medis apolars, com l’oli. Aquesta naturalesa amfífila fa que en solució
aquosa els lípids s’autoassemblin de forma que l’energia d’interacció amb el
medi sigui mínima. Els lípids que formen les membranes cel·lulars tenen una
geometria aproximadament cilíndrica (vegeu Fig. 16.1b). En aquestes condici-
ons, els lípids s’associen geomètricament en forma de bicapa, de manera que
les cues hidrofòbiques resten en contacte mutu, evitant el medi polar per la
presència dels caps hidrofílics [123] (vegeu Fig. 16.1c).

Figura 16.1 Lípids de membrana. (a) Esquema d’un lípid de membrana, un fosfoglicèrid, con-
cretament, amb les parts hidrofíliques i hidrofòbiques detallades. (b) Model molecular de boles
del mateix lípid que a (a). (c) En presència d’un medi polar, aquests lípids s’autoassemblen en
forma de bicapa.
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Les membranes biològiques són extremadament fines en comparació amb
la mida cel·lular mitjana. Així, el gruix d’una bicapa lipídica és de l’ordre
dels quatre o cinc nanòmetres, mentre que el diàmetre cel·lular està en l’ordre
de les micres, és a dir, tres ordres de magnitud més. Cal dir, però, que en el
cas d’orgànuls intracel·lulars, com les vesícules de transport, aquestes mides
poden arribar a ser del mateix ordre i, per tant, el gruix de la membrana és
comparable a la mida de la vesícula que forma. Aquesta última situació la
tractarem més endavant, quan parlarem de mecanismes de generació de cur-
vatura per proteïnes. Així doncs, en el cas més comú, les membranes poden
ser considerades com superfícies bidimensionals en un espai tridimensional.

Per altra banda, hem de tenir en compte certes propietats de les membranes.
Per la funció d’encapsulació del medi intracel·lular, la membrana ha de ser
suficientment rígida per no trencar-se fàcilment per la dinàmica cel·lular, però
prou flonja per respondre ràpidament i elàstica a canvis sobtats de la seva
geometria (com pot ser el cas dels glòbuls vermells en passar per capil·lars
fins). A més, la membrana és permeable a l’aigua, però no a ions grans, que
creuen d’una banda a l’altra de la membrana per mitjà de canals i bombes
iòniques.

Els lípids dins la bicapa tenen generalment una difusió ràpida i no estan
ordenats de manera cristal·lina. Diem, doncs, que la bicapa es troba en un
estat fluid o, més precisament, en un estat fluid desordenat. Depenent de
certs factors, com ara la temperatura o la composició, les membranes poden
presentar dominis de diverses fases, no només de la fase líquida desordenada
[160].

Ja hem avançat que les membranes no són només la bicapa lipídica, sinó
que hi ha altres molècules que les doten de certes funcionalitats específiques.
Són les proteïnes de membrana, com poden ser els canals i bombes iòniques
entre moltes d’altres [3].

Podem, per tant, definir com és una membrana model dient que és una
bicapa fluïda de lípids amb proteïnes ancorades en el seu si que la doten de
certa funcionalitat.

16.3
Models elàstics per a bicapes lipídiques

Considerem la membrana com una superfície bidimensional elàstica. Podem
descriure geomètricament aquesta superfície, suposant que és suficientment
ben comportada, donant les dues curvatures a cada punt. Cada una d’aques-
tes dues curvatures és l’invers d’un dels dos radis de curvatura que es poden
definir localment en una superfície (vegeu Fig. 16.2).

A aquesta superfície li associarem una certa energia deguda a la curvatu-
ra. Per tal de construir una teoria invariant sota canvis de coordenades, em-
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Figura 16.2 Radis de curvatura d’una superfície bidimensional. Localment, a un punt P d’una
superfície podem definir-hi dos vectors tangents, t1 i t2, i un vector normal, n̂. Els dos radis de
curvatura (els inversos de les dues curvatures principals) venen descrits geomètricament com
mostra la figura.

prarem, en lloc de les curvatures principals de la superfície, els dos invari-
ants de curvatura. Un és la curvatura total, J, que no és més que la suma
de les dues curvatures principals; l’altre, la curvatura Gaussiana, K, que n’és
el producte. Fent una expansió fins a segon ordre en curvatures, i utilitzant
criteris de simetria, podem escriure l’anomenada energia elàstica de Canham-
Helfrich [44, 109] com,

F =
∫

S

[κ

2
(J− c0)

2 + κ̄K
]

ds, (16.1)

on κ i κ̄ són respectivament els mòduls de rigidesa flectora i Gaussiana; S és la
superfície de membrana que estem considerant; i c0 és l’anomenada curvatura
espontània, que s’esdevé a causa de possibles asimetries entre les dues capes
de la bicapa o a la pròpia geometria dels lípids en si. Si la curvatura espontània
és zero, la membrana és simètrica i, per tant, l’estat de mínima energia és el
que correspon a una membrana plana.

De totes maneres, l’existència de membranes obertes no és sovint factible, a
causa del cost energètic que això tindria ja que el nucli hidrofòbic dels lípids
als extrems estaria en contacte amb el medi aquós. Per tant, si considerem
membranes tancades, és a dir, vesícules o liposomes, encara que la solució lo-
cal de mínima energia fóra la d’una membrana plana, aquesta no és abastable
globalment. A part d’això, cal afegir dos lligams sobre les condicions geomè-
triques de les vesícules. El primer és que el volum intern es manté constant
pel control osmòtic que efectua la membrana. El segon, que l’àrea també es
manté constant, pel fet que la membrana és un fluid incompressible, en molt
bona aproximació, i que el nombre de lípids no varia.
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La minimització de l’energia de curvatura Eq. (16.1) subjecta a aquests dos
lligams dóna lloc a la cerca de formes estacionàries. De fet, en aquest cas el ter-
me de curvatura Gaussiana es pot menystenir, perquè l’anomenat teorema de
Gauss-Bonnet diu que la integral sobre una superfície tancada de la curvatura
Gaussiana és un invariant topològic. Per a una topologia esfèrica i en el cas
que no hi hagi curvatura espontània, les formes estacionàries depenen d’un
sol paràmetre, el volum reduït, que és una mesura de la raó entre el volum i
l’àrea de la vesícula.
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17
Resultats

17.1
Model dinàmic i formes estacionàries de vesícules lipídiques

En la primera Part de la tesi, hem formulat un model de camp de fase per trac-
tar de manera dinàmica l’energia de curvatura de Canham-Helfrich, Eq. (16.1).
Els models de camp de fase són un tipus de models matemàtics que s’han uti-
litzat en múltiples camps per tractar problemes d’interfícies físiques. Es basen
en l’existència d’un camp matemàtic, φ(x), en cada punt de l’espai, que des-
criu en quina fase es troba el sistema en aquell punt. Així, en un sistema
bifàsic, el camp de fase tindrà dos replans, corresponents a cadascuna de les
dues fases (en general es prenen els valors φ = ±1 per a aquests replans). La
interfície no és bidimensional, sinó que té un cert gruix, proporcional a un cert
paràmetre ε. El valor del camp de fase interpola contínuament però abrupta
entre els valors al volum de cada fase. Podem localitzar la interfície mitjançant
la corba de nivell {x : φ(x) = 0}. A més a més, aquests models són dinà-
mics, en el sentit que a partir d’aquest camp de fase és possible construir una
energia lliure que descrigui el sistema, i a partir de la qual se’n pugui derivar
una equació dinàmica. En el límit d’interfície abrupta, quan ε → 0, el model
macroscòpic i el model de camp de fase han de ser equivalents.

El model de camp de fase que derivem en el Cap. 5 de la tesi ve descrit per
la següent energia lliure,

FSC[φ] =
κ̄

2

∫

Ω
(Φ SC[φ])2 dx, (17.1)

on κ̄ = 3
√

2
4ε3 κ,

Φ SC[φ] = −φ + φ3 − ε2∇2φ− ε C0

(
1− φ2

)
, (17.2)

i C0 ≡ c0/
√

2.
D’aquesta energia lliure, Eq. (17.1), n’hem calculat una equació dinàmica

que mantingui els lligams geomètrics durant tota l’evolució temporal. Aques-
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ta equació dinàmica és,

∂φ

∂t
= κ̄∇2

{ (
3φ2 − 1− 2εC0(x) φ

)
Φsc[φ]− ε2∇2Φsc[φ]

+ ε2σ̄(x)∇2φ
}

, (17.3)

on σ̄ és un multiplicador de Lagrange que ens assegura la conservació de l’à-
rea.

En el Cap. 6 de la tesi, hem resolt numèricament l’equació dinàmica
Eq. (17.3), quan la curvatura espontània és zero per diverses topologies. En
el cas de topologia esfèrica, trobem les formes estacionàries de les vesícules,
d’acord amb els resultats trobats anteriorment per mitjà d’altres tècniques. En
la Fig. 17.1, presentem el diagrama de formes per a aquest cas, on es mostren
els tres tipus de vesícules que tenen lloc: l’estomatòcit (stomatocyte, en anglès),
el discòcit (oblate o discocyte) i els esferoides prolats (prolate).

Figura 17.1 Diagrama de formes pel model
de Canham-Helfrich sense curvatura es-
pontània i amb topologia esfèrica. Les línies
corresponen a la minimització de l’energia de
Canham-Helfrich Eq. (16.1) (C-H) [224], i els

símbols als nostres resultats amb el model
de camp de fase Eq. (17.1) (P-F). Mostrem
també els tres tipus de formes obtinguts, els
estomatòcits, discòcits i esferoides prolats,
respectivament d’esquerra a dreta.

A diferència dels mètodes anteriors per trobar formes estacionàries [224], el
nostre model ens permet fer una minimització dinàmica i tractar de manera
natural diferents topologies i formes no axisimètriques.
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17.2
Inestabilitats dinàmiques: perlatge i tubulació

Tenir un model dinàmic de camp de fase per tractar l’energia de curvatura
que caracteritza les membranes és el primer pas per poder entendre proble-
mes més complexos. En l’apartat anterior hem explicat com el nostre model
dinàmic és capaç de recuperar les formes d’equilibri per a vesícules formades
per una única classe de lípids. En aquest apartat veurem com el model es
pot fer extensible per estudiar inestabilitats dinàmiques o morfològiques en
membranes.

La nostra anàlisi teòrica ha estat motivada pels resultats experimentals del
grup de Joel Stavans a l’Institut Weizmann [250, 251]. En aquests s’estudiava
la dinàmica de membranes monocomponents quan una certa concentració de
polímers amfífils eren introduïts al sistema. Aquests polímers consten de parts
hidrofòbiques que s’ancoren dins la bicapa per reduir-ne l’energia d’interacció
amb el medi polar. Tal ancoratge produeix un efecte purament geomètric a la
membrana, ja que els grups hidrofòbics actuen com una falca induint una cer-
ta curvatura de forma local a la membrana. Nosaltres hem modelitzat aquest
efecte dient que tal ancoratge crea localment una curvatura espontània efecti-
va. Així doncs, cal acoblar la concentració de polímers en la membrana amb
la curvatura espontània de la mateixa.

En el Cap. 7 estudiem la situació on aquests polímers són aplicats als vol-
tants de membranes tubulars, i una inestabilitat de perlatge –on la geometria
cilíndrica es transforma a una geometria formada per un conjunt d’esferes uni-
des entre si– té lloc. Així, resolent numèricament el nostre model de camp de
fase Eq. (17.3), per diferents concentracions homogènies de polímer en mem-
branes tubulars, obtenim la mateixa dinàmica per a la inestabilitat de perlatge
deguda a curvatura que s’observa experimentalment [39, 251]. L’aparició de
la inestabilitat es mostra a la Fig. 17.2.

La inestabilitat de perlatge que hem estudiat és deguda a curvatura, és a dir,
a la creació de curvatura espontània per part dels polímers. Aquest mecanis-
me és completament diferent a altres inestabilitats amb la mateixa morfologia,
com pot ser la inestabilitat de Rayleigh-Plateau [46], que és deguda a tensió
superficial, i és la responsable de la formació de gotes d’aigua en un raig fluint
d’una aixeta.

Per a concentracions més grans de polímer, s’observa que posteriorment a la
formació d’una primera esfera o perla, se’n van formant més subsegüentment,
una a una, a partir del cap del tub. Cal esmentar que aquesta dinàmica de
formació de perles no passa per l’ondulació global del tub i el pas continu
d’un cilindre a un conjunt d’esferes mitjançant formes de Delaunay.

Aquestes perles que es formen són totes de la mateixa mida i estan connec-
tades les unes a les altres per uns colls estrets. Si incrementem encara més la
concentració de polímers, veiem com aquesta homogeneïtat en el radi de les
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(a) Resultat experimental (de la Ref. [251])

(b) Resultat numèric del camp de fase

Figura 17.2 Aparició de la inestabilitat de
perlatge. Comparativa entre el resultat expe-
rimental de la Ref. [251] (a), i el resultat nu-
mèric de la integració del model de camp de
fase (b). Cal dir que en la integració numèrica
no s’ha emprat cap paràmetre d’ajust, sinó

que tan sols hem deixat evolucionar dinà-
micament el sistema des d’una configuració
tubular inicial, amb una curvatura espontània
induïda relativament petita, C0 = 0.48, per
sota del límit d’inestabilitat de perlatge.

perles es trenca i afavoreix una situació on la perla de la punta és la més gran
i les subsegüents van disminuint progressivament el seu radi. En el marc del
model analític de Canham-Helfrich, Eq. (16.1), hem comparat l’energia d’u-
na configuració homogènia de perles amb la d’una composada per una esfera
gran i la resta de més petites. Veiem que a partir d’una certa concentració crí-
tica de polímer, la segona configuració és energèticament favorable envers la
primera.

A més de la inestabilitat de perlatge, en el Cap. 8 hem estudiat un fenomen
físic que apareix en un sistema molt semblant al primer. En aquest cas, quan
s’incuben vesícules oblongues i el mateix tipus de polímers amfífils són afe-
gits mitjançant una micropipeta al medi extravesicular, s’observa la formació
de tubs de membrana de la vesícula mare [250]. Aquest canvi morfològic, ano-
menat digitació o tubulació, apareix per mitjà de diversos mecanismes físics.
En general es requereix una força externa que, aplicada sobre un zona de la
membrana, ajuda a extreure tubs de membrana. Pinces òptiques, motors mo-
leculars o purs efectes hidrodinàmics són alguns dels agents que l’apliquen, ja
sigui en experiments in vitro com in vivo.

Tanmateix, nosaltres proposem un mecanisme d’extracció de tubs de mem-
brana que no s’efectua mitjançant una força dirigida. La nostra hipòtesi és que
un gradient de concentració de polímers amfífils en el medi extravesicular pot
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crear un perfil d’energia lliure que afavoreixi la tubulació. Així doncs, estudi-
em aquesta hipòtesi en el marc del model de curvatura de Canham-Helfrich,
Eq. (16.1), i, primerament, per a una geometria simplificada que ens permeti
un tractament analític. En aquestes condicions trobem que, depenent de la
longitud inicial del pretub i d’un cert paràmetre que depèn de la concentració
de polímer (assumida lineal, en aquesta aproximació) i de la posició de la font,
es poden formar tubs estables de longitud finita.

Esperonats pels resultats analítics, estudiem el cas més complet on no fem
cap suposició sobre la geometria dels tubs durant la dinàmica, i assumim una
forma més general per la concentració de polímer (un decaïment Gaussià, con-
cretament). En aquest cas, el tractament analític és impossible a causa de les no
linealitats de les equacions, així que emprem el nostre model de camp de fase
per assolir tals objectius. Depenent d’aquestes condicions, trobem dos tipus
de tubs, uns de més llargs i uns altres més curts, amb forma de gemma (vegeu
Fig. 17.3). Aquests resultats es poden comparar molt bé de manera qualitati-
va amb els experiments, per mostrar que el mecanisme de generació de tubs
de membrana degut a l’existència de gradients de concentració de molècules
amfífiles és plausible.

(c) (d)

Figura 17.3 Tubs extrets d’una vesícula mit-
jançant una concentració no homogènia de
polímers en el medi extravesicular. Compa-
rativa entre els resultats experimentals de la
Ref. [250] (a,b) i els resultats numèrics del
model de camp de fase (c,d). A temps curts,

obtenim tubs llargs (a,c), mentre que a temps
llargs apareixen formes gemmades (b,d).
També mostrem el perfil de curvatura espon-
tània emprat en les integracions del camp de
fase.
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Aquests sistemes on s’estudien transicions morfològiques degudes a la in-
serció de polímers en membranes monocomponents són models simples per
poder copsar els mecanismes físics subjacents en certs processos més comple-
xos que succeeixen a la cèl·lula. Així, mecanismes de transport intracel·lular
en el reticle endoplasmàtic i en l’aparell de Golgi són deguts a la generació de
curvatura per part de proteïnes ancorades en les seves membranes. Amb el
nostre estudi hem pretès entendre una mica millor aquests mecanismes, des
d’un punt de vista físic i agafant els elements mínims essencials.

17.3
Tubs de membrana bifàsics periòdics

Anteriorment hem explicat com un sistema integrat per vesícules lípidiques
fluïdes monocomponents i per polímers amfífils presenta una dinàmica mor-
fològica molt rica. El fet d’introduir a les bicapes lípidiques un nou grau de
complexitat, en aquell cas els polímers ancorats a la membrana, ha permès
anar un grau més enllà en la direcció de la complexitat cel·lular.

En el Cap. 9, no tenim en compte la presència de possibles molècules gene-
radores de curvatura, però enriquim la membrana fent-la pluricomponent.
La presència de diversos tipus de lípids (recordem que en les membranes
cel·lulars es compten per desenes) fa que el tractament físic de la membra-
na s’hagi de generalitzar. Per exemple, en mescles lipídiques composades per
un fosfolípid insaturat (és a dir, amb algun doble enllaç entre els àtoms de
carboni de les cues hidrofòbiques), un esfingolípid (un cert tipus de lípid de
membrana) i colesterol, podem apreciar que es formen dominis de fases di-
ferents. Concretament, s’observen dominis en la fase líquida desordenada (la
fase fluïda que hem tractat anteriorment), però també en la fase líquida orde-
nada, en la qual la mobilitat dels lípids es redueix sense que aquests arribin
a gelificar. En aquest sentit, s’ha discutit àmpliament en la literatura biològi-
ca l’existència dels anomenats rais lipídics, dominis funcionals que podrien
existir in vivo. L’existència de dominis està clarament acceptada en mescles in
vitro, una de les quals hem estudiat en aquesta tesi.

En concret ens hem basat en els estudis experimentals del grup de W. W.
Webb [14], on observen per microscòpia confocal com es formen vesícules amb
geometries diverses degudes a la separació de fases en el pla de la membrana.
Més en concret encara, ens centrarem en l’existència de tubs periòdics bifàsics,
en els quals s’alternen les dues fases amb una certa periodicitat, donada per
una longitud d’ona (vegeu Fig. 17.4).

Físicament podem descriure les dues fases mitjançant diferents constants
elàstiques. De fet, usant el formalisme de Canham-Helfrich, en aquesta si-
tuació tant el mòdul de rigidesa flectora, com el de rigidesa Gaussiana són
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Figura 17.4 Tubs periòdics bifàsics. (a) Representació tridimensional del tub calculat numèri-
cament, amb la longitud d’ona seleccionada energèticament. La fase blava (clara) correspon
a la fase líquida ordenada, mentre que la vermella (fosca) ho fa a la líquida desordenada. (b)
Imatge experimental d’un tub periòdic, extreta de la Ref. [14]. Escala: 5 µm.

diferents en una fase que en l’altra. Per tant, no podrem menystenir el terme
de curvatura Gaussiana. L’energia del tub consisteix en l’energia de curvatu-
ra, Eq. (16.1), de cada fase i, a més, d’un terme de tensió de línia. La tensió
de línia, anàloga bidimensional a la tensió superficial, existeix a causa del cost
energètic que té la creació d’interfícies entre ambdues fases. A partir d’aquesta
energia total, derivem les equacions d’Euler-Lagrange assumint simetria axial
en la geometria del tub de membrana. A més, assumim que els tubs creats són
prou llargs com per poder considerar-los infinits.

Tenint en compte certes consideracions tècniques sobre la derivació de les
equacions d’Euler-Lagrange, obtenim l’anomenada equació de forma. Aques-
ta és una equació diferencial ordinària no-lineal de tercer ordre. Resolent
aquesta equació, conjuntament amb unes certes condicions de contorn a la
interfície, obtenim la forma d’energia mínima.

En aquesta tesi, hem resolt inicialment la versió lineal de l’equació de forma.
Això ho podem fer analíticament. Després, per comparar els resultats, hem
solucionat numèricament el problema, utilitzant el mètode de tir a un punt de
fita [204]. Cal destacar el fet que, tant en una solució com en l’altra, en el règim
de validesa de l’aproximació lineal, obtenim formes anàlogues pels tubs.

Sobre la longitud d’ona de la periodicitat cal dir que és, a priori, un paràme-
tre d’entrada a l’hora de resoldre les equacions. De totes maneres, veiem com
la selecció d’aquesta longitud d’ona es fa energèticament a posteriori, ja que el
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perfil d’energia en funció de la longitud d’ona té en certs casos un mínim per
a una periodicitat finita. En la Fig. 17.4a mostrem la solució de longitud d’ona
seleccionada emprant els paràmetres elàstics citats en els experiments de [14],
i veiem com la coincidència amb aquests experiments és tant qualitativament
com quantitativa remarcable.

Variant la composició de la membrana, és a dir, variant la fracció d’àrea en-
tre la fase líquida ordenada i líquida desordenada, podem estudiar si existeix
alguna longitud d’ona finita que sigui energèticament afavorida. Els nostres
resultats mostren que en un gran rang de composicions, i per uns certs parà-
metres elàstics, els tubs periòdics són favorables a una solució amb separació
completa de fases.

17.4
Formes no circulars en dominis lipídics en monocapes

L’estudi de monocapes de lípids és una vessant molt important de la biofísica
de membranes, ja que permet comprendre amb més profunditat les interacci-
ons intermoleculars entre lípids i proteïnes. Les interaccions dipolars entre els
lípids de membrana i la tensió de línia entre diferents dominis es troben entre
aquestes interaccions, la competició de les quals crea dominis amb formes ben
diverses, com les de les estrelles de mar, formes amb quatre braços o el·lipses,
per citar-ne algunes.

Així, en el Cap. 10 estudiem aquestes formes que es creen en monocapes
purament lipídiques a causa d’aquestes dues interaccions. Per tractar el pro-
blema de la forma, assumim que aquesta es pot descriure per mitjà de la in-
teracció dipolar –repulsiva i de llarg abast– i per un terme que penalitza la
separació de fases.

L’energia lliure de la monocapa que d’això en resulta pot ser desenvolupa-
da en sèrie, de manera que una aproximació a segon ordre, deguda a Iwamo-
to i Zhong-can [125], pot escriure’s com un anàleg bidimensional a l’energia
de curvatura de Canham-Helfrich, Eq. (16.1), amb un terme de tensió de lí-
nia. Aquest desenvolupament renormalitza les constants elàstiques, de mane-
ra que la tensió de línia ara té un terme que depèn de la polarització i de la
longitud de la interfície. Això implica que aquesta tensió efectiva pot tant ser
positiva com ser negativa, donant lloc a estructures no circulars i ramificades.

El nostre model dinàmic de camp de fase que ens havia servit, en la prime-
ra Part de la tesi, per estudiar les formes de les vesícules, ens és útil en aquest
punt per a estudiar les formes dels dominis. Així doncs, depenent dels valors
de la polarització i de la tensió de línia, trobem diverses formes, i les compa-
rem amb resultats experimentals, com mostrem en un exemple a la Fig. 17.5.
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(a) Figures experimentals, de la Ref. [152]

(b) condició inicial (c) 3.6× 104∆t (d) 7.2× 104∆t

Figura 17.5 Dominis en forma d’estrella
de mar. (a) Figures experimentals de la
Ref. [152], que mostren la transició morfo-
lògica entre un domini circular inicial (no es
mostra) a una forma d’estrella de mar (dre-
ta), mitjançant una forma intermèdia quasi-
hexagonal (esquerre), en una monocapa

composada per una mescla binària de DMPC
i dihydrocolesterol. (b-d) Tres imatges de la
integració numèrica de l’equació dinàmica pel
camp de fase, on un domini circular inicial-
ment inestable evoluciona cap a una forma
d’estrella de mar. ∆t = 10−3.

17.5
Mecanismes de generació de curvatura per proteïnes

Abans, quan hem parlat d’inestabilitats dinàmiques com ara el perlatge o la
tubulació, hem assumit que la inserció de grups hidrofòbics en el si de la bica-
pa generava curvatura espontània. Ara ens fixem per mitjà de quins mecanis-
mes microscòpic certes proteïnes poden generar aquesta curvatura.
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Moltes de les membranes que troben a les cèl·lules contenen regions molt
corbades, en les quals l’aproximació de Canham-Helfrich –vàlida per a radis
de curvatura relativament petits en comparació amb el gruix de la bicapa– no
es pot aplicar. El fet que les membranes es resisteixin en general a la curva-
tura fa que aquesta s’hi hagi de produir activament. Hi ha diversos meca-
nismes pels quals es pot generar curvatura [171, 263], ja sigui mitjançant la
pròpia composició lipídica de la bicapa, per l’activitat del citoesquelet o per
proteïnes de forma cònica que travessen d’una banda a l’altra la membrana. A
més, algunes proteïnes tenen dominis amb una certa curvatura intrínseca, que
s’associen amb la membrana adjuntant-s’hi com una bastida. Els anomenats
dominis BAR, tenen una forma de mitja lluna i estan involucrats en fenòmens
de vesiculació i tubulació intracel·lulars. Es creu que generen curvatura per
mitjà del mecanisme de bastida.

Un altre mecanisme de generació de curvatura per part de proteïnes és el
d’inserció hidrofòbica. Aquest mecanisme és el que hem assumit en la prime-
ra Part de la tesi que utilitzen certs polímers amb grups hidrofòbics per induir
curvatura a la membrana. La inserció poc profunda de dominis amfífils, com
ara les hèlices-α, creen una asimetria dins la monocapa exterior de la mem-
brana. L’efecte falca que fan separa lleugerament els caps polars dels lípids,
mentre que les cues romanen més o menys properes i es genera així una certa
curvatura.

Moltes proteïnes generen curvatura gràcies a més d’un d’aquests mecanis-
mes. Per exemple, les proteïnes que contenen els anomenats dominis N-BAR,
com l’endofilina o l’amfifisina. Aquests dominis consten d’un domini BAR
amb un cert nombre d’hèlices-α, així que a priori poden generar curvatura mit-
jançant tant el mecanisme de bastida com el d’inserció hidrofòbica. Aquestes
hèlices, segons se’n desprèn dels resultats experimentals, s’insereixen a la bi-
capa de manera que el seu centre queda alineat amb el grup fosfat dels lípids
de la monocapa externa. Aquesta inserció és essencial per a la formació de
tubs de membrana d’uns 35− 50 nm. de diàmetre, que es transformen en ve-
sícules del mateix diàmetre quan s’incrementa la concentració de proteïna a la
membrana [98, 195].

En el Cap. 12 estudiem de manera quantitativa el mecanisme d’inserció hi-
drofòbica. Per tal d’assolir aquest objectiu, necessitem anar més enllà del mo-
del elàstic de Canham-Helfrich Eq. (16.1). A més, hem de tenir en compte
l’estructura interna de la bicapa, ja que la inserció del grup hidrofòbic a la
membrana és tant sols parcial.

De totes maneres, podem intuir com han d’anar els trets de manera qua-
litativa. Primer de tot, però, hem de diferenciar dos tipus de membranes
segons com s’acoblen lateralment. En la major part de les situacions biolò-
gicament rellevants, la inserció d’aquests dominis es fa únicament de forma
local en algun fragment petit d’una membrana més àmplia. Les dues mono-
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capes d’aquest fragment de membrana on s’han ancorat les proteïnes poden
intercanviar independentment lípids amb la resta de la membrana, que actua
com un reservori de lípids. Això fa que no hi hagi cap acoblament en el pla
entre les dues monocapes. Direm, doncs, que les monocapes estan lateralment
desacoblades. Aquest acoblament juga un paper quan les proteïnes s’inserei-
xen al llarg de tota l’àrea d’una membrana tancada, com en els experiments
in vitro que hem esmentat abans [98, 195]. Com que no hi ha cap reservori de
lípids, en aquest cas l’expansió d’una monocapa no es pot dur a terme inde-
pendentment de l’altra. Direm que les monocapes estan lateralment acoblades.
En la Fig. 17.6 mostrem diagrames qualitatius de com es corba la membrana
depenent de la profunditat d’inserció de la partícula.

Com dèiem abans, per tal d’estudiar de manera quantitativa aquest feno-
men, necessitem un model elàstic per descriure la monocapa. Nosaltres hem
considerat la monocapa com una capa tridimensional amb gruix finit i propie-
tats elàstics de volum. Fent servir la teoria clàssica d’elasticitat [146], utilitzant
criteris de simetria i el fet que la membrana no resisteix l’esforç de cisallament
lateral, podem escriure la densitat d’energia elàstica com

f =
1
2

λxxxx
(
uxx + uyy

)2 +
1
2

λzzzzu2
zz + λxxzz(uxx + uyy)uzz

+ 2λxzxz

(
u2

xz + u2
yz

)
, (17.4)

on uik són les components del tensor de deformacions [146], i els quatre únics
mòduls elàstics independents són λxxxx, λzzzz, λxxzz i λxzxz. A més, hem fet
estimacions d’aquests mòduls elàstics basant-nos en les mesures experimen-
tals que hi ha a la literatura. La solució de mínima energia, de nou, ens dóna
la configuració de les deformacions a la membrana.

Utilitzant COMSOL Multiphysics, un programari de resolució de proble-
mes fisicomatemàtics mitjançant el mètode dels elements finits, hem resolt el
problema en diverses situacions i consideracions. En la Fig. 17.7 mostrem la
solució de mínima energia de bicapes tant acoblades com desacoblades late-
ralment, quan una certa concentració de partícules s’hi insereix.

D’aquests resultats veiem que els esforços i deformacions interns de les mo-
nocapes són màxims prop de les inclusions i que decauen amb una escala de
longitud característica. Podem doncs definir una curvatura espontània induï-
da per aquestes inclusions. Fent càlculs per a diverses profunditats d’inserció
podem traçar una gràfica de la curvatura espontània efectiva per partícula en
funció de la profunditat d’inserció. Tant en el cas de monocapes lateralment
acoblades con en el de desacoblades, la màxima curvatura generada corres-
pon aproximadament a la profunditat d’inserció de les hèlices-α, del voltant
del 40 % del gruix de la monocapa. En el primer cas aquesta val 0.50 nm−1,
mentre que en el segon és de 0.75 nm−1. A part, també podem calcular el
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Figura 17.6 Essència qualitativa del meca-
nisme de generació de curvatura per petites
partícules cilíndriques. El cas de monocapes
lateralment acoblades. (a) Una inserció poc
profunda expandeix la monocapa superior de
la membrana (esquerra). La relaxació parcial
dels esforços generats dóna com a resultat
una curvatura positiva (J > 0) (dreta). (b)
Insercions més profundes produeixen una
expansió de la monocapa superior (esquer-
ra), que degut a l’acoblament lateral genera

esforços a la monocapa inferior, conduint a
curvatura positiva (dreta). (c) Quan la inser-
ció s’alinea amb el pla mig de la membrana,
els esforços generats estan distribuïts simè-
tricament, causant una expansió global de
la membrana, però sense generar curvatu-
ra (J = 0). (d) Si la inserció es troba en la
monocapa inferior, aquesta expandeix la part
inferior de la membrana, generant-se així
curvatura negativa (J < 0).
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Figura 17.7 Conformació típica d’una mem-
brana amb inclusions cilíndriques (blau marí).
(a) El cas de monocapes lateralment desa-
coblades (on no es considera que la segona
monocapa influenciï la capacitat de corbar-
se de la primera). La forma de la membrana
es correspon amb la forma preferida de la
monocapa superior que conté les inclusions,
com si la monocapa inferior (en gris) no re-
sistís curvatura i senzillament encaixés amb

l’altra. (b) El cas de monocapes lateralment
desacoblades. La forma de la membrana ve
determinada per la interacció entre la ten-
dència de la monocapa superior a adoptar la
conformació presentada a (a) i la resistència
de la monocapa inferior a corbar-se. (c) El
cas de monocapes lateralment acoblades.
L’esforç de cisallament (adimensional) en les
monocapes està representat per una escala
de colors logarítmica.

cost energètic que té la inserció d’aquestes partícules, sent aquest de l’ordre
de 1− 2 kBT/nm.

Aquests resultats mostren que pel que fa als possibles mecanismes de gene-
ració de curvatura de proteïnes amb dominis N-BAR, el d’inserció hidrofòbica
és capaç ell sol de crear els intermediaris de transport observats experimen-
talment [98, 195], tant en el cas de l’endofilina com en el de l’amfifisina. A
més, veiem que aquest mecanisme és més potent que els lípids en si a l’hora
de generar curvatura a la membrana.
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Posteriorment, en el Cap. 13, presentem nous resultats per sistemes tridi-
mensionals, veient que també es pot definir una curvatura espontània per
partícula. A més, encara que la geometria de la partícula no tingui simetria
axial, a partir d’una certa longitud característica, la curvatura generada pas-
sa a tenir aquesta simetria. També estudiem els efectes energètics que té el
fet d’inserir partícules en membranes amb una certa curvatura. Amb això
pretenem entendre el concepte de determinació de curvatura. Experimental-
ment es veu que certes proteïnes tenen una afinitat més gran en associar-se
en vesícules molt corbades que en vesícules poc corbades [71]. En el marc del
nostre model microscòpic per la membrana, i amb la comprensió quantitativa
del mecanisme d’inserció hidrofòbica, podem entendre aquest fet. Comparant
amb els experiments veiem un bon acord d’aquests amb les nostres previsions
teòriques.
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18
Conclusions

El fil conductor d’aquesta tesi ha estat el fet d’intentar comprendre quins me-
canismes físics donen forma a les entitats biològiques recobertes per una mem-
brana, com poden ser els orgànuls cel·lulars o els liposomes. Així doncs, hem
estudiat teòricament diverses formes que adquireixen les membranes en situ-
acions variades.

Una membrana biològica és un complex format per molts tipus diferents de
molècules bioquímiques. L’estructura bàsica de les membranes és una bicapa
lipídica, que pot estar formada per desenes de lípids diferents. A més, les
bicapes lipídiques poden contenir dominis de fases diferents, ja siguin líquids,
tipus gel, o fins i tot, sòlids. A més a més, les membranes biològiques també
contenen un gran nombre de proteïnes. Aquestes proteïnes no només doten
d’una certa funcionalitat les membranes, també poden veure’s involucrades a
mantenir, generar o estabilitzar la pròpia geometria de la membrana.

Per aquests motius, en aquesta tesi hem estudiat sistemes senzills però amb
afegitons diferents que enriqueixen la complexitat del sistema en qüestió. Ja
sigui l’efecte dinàmic en la forma de vesícules oblongues o tubulars, a causa
de l’ancoratge de polímers amfífils; ja sigui la forma de tubs bifàsics periò-
dics formats a causa de la competició entre l’energia interficial entre dominis
i l’energia de curvatura; o ja sigui l’estudi microscòpic dels mecanismes de
generació i determinació de curvatura per part de la inserció de petites hèli-
ces en el si de la membrana, tots aquests sistemes ens han permès entendre
una mica més certs fenomens de morfologia intracel·lular, sense deixar-nos de
meravellar per la gran riquesa de les formes a les cèl·lules.
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A
Differential geometry of surfaces

A two-dimensional well-behaved surface embedded in Euclidean three-
dimensional space, R3, is mathematically defined univocally by a vector field
R

R : Σ ⊂ R2 −→ R3

σ = (σ1, σ2) ∈ R2 7−→ R(σ) ∈ R3, (A.1)

which maps a two-dimensional coordinate system, σ = (σ1, σ2) ∈ Σ, onto
a surface embedded in the three-dimensional space. This way of defining a
surface is called the parametric form, since one needs a two-dimensional co-
ordinate system to parametrize the surface. A surface can also be described by
the so-called implicit form, i.e., by all the points in R3 that satisfy the surface
equation F(x, y, z) = 0 [24].

A.1
Parametric form

Assume a surface defined in the parametric form. At each point P of this
surface, a tangent plane is defined by two tangent vectors (see Fig. A.1) as

ti = ∂iR(σ) =
∂R
∂σi , i = 1, 2. (A.2)

The scalar product of these tangent vectors defines the covariant metric tensor,

gik(σ) = ti · tk = ∂iR · ∂kR. (A.3)

The contravariant metric tensor is defined as

gik = (g−1)ik, (A.4)

which implies that

gikgkl = δi
l , (A.5)
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where δ is the Kronecker delta, and the Einstein summation convention, cixi ≡
∑i cixi, is used. From the metric tensor, the Euclidean distance between two
infinitesimally close points on the surface, ds, can be calculated as

ds2 = [R(σ + dσ)− R(σ)]2 = gik(σ)dσidσk. (A.6)

Also, the infinitesimal area element can be found

dS =
∣∣∣t1dσ1 × t2dσ2

∣∣∣ =
√

det (gik)dσ1dσ2. (A.7)

At any point P on the surface, a unit normal vector perpendicular to the tan-
gent plane can be defined (Fig. A.1). Due to the properties of the cross product,
it is given by

n̂ =
t1 × t2

|t1 × t2|
, (A.8)

where the sign is arbitrarily chosen, so is the election of which coordinate is
named σ1 and which σ2. The unit normal vector has remarkable properties in
our context, since its changes along the surface define the so-called curvature
tensor, K,

∂in̂ = Kiktk = Kikgkltl = Kk
i tk. (A.9)

The sign of the curvature tensor is, again, arbitrary. In this thesis, we choose
it in such a way that sphere-like curvatures are positive, as it is a normal con-
vention in physics. In mathematical literature the sign is most often taken in
the opposite way.

The curvature tensor is symmetric and diagonalizable. The two eigenvalues
are the so-called principal curvatures, c1 = 1/R1, and c2 = 1/R2 (see Fig. A.1).
These curvatures correspond to the inverse of the two principal radii of cur-
vature of the surface at the given point. The two invariants of the curvature
tensor, K, are its trace, J, and its determinant, K. The trace is called total cur-
vature of the surface, J, and is represented by

J ≡ tr Kk
i = c1 + c2 =

1
R1

+
1

R2
. (A.10)

Usually, the so-called mean curvature, H is also used to refer to this invariant,
and is defined as the arithmetic mean of the principal curvatures, correspond-
ing to half the total curvature,

H =
1
2

(c1 + c2) =
1
2

(
1

R1
+

1
R2

)
. (A.11)

The other invariant, the determinant, is called Gaussian curvature of the sur-
face, K, and is given by the product of the principal curvatures,

K = det Kk
i = c1 c2 =

1
R1 R2

. (A.12)



A.1 Parametric form 203

Figure A.1 Differential geometry of a surface. In the point P, two tangent vectors, t1 and t2,
are defined. From them, a unit normal vector n̂ is constructed, pointing outwards. Also, two
radii of curvature, R1 and R2, are geometrically traced at each point.

For a discussion on the signs of the curvatures depending on the different
kinds of shapes, see Fig. A.2.

Figure A.2 Different kinds of surfaces classified by their curvatures. Depending on the sign
of the two principal curvatures, different kinds of surface have positive/zero/negative combina-
tions of the total and Gaussian curvatures, as written in the Figure.
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A.1.1
Monge parametrization

All the definitions in the previous Section are general for any surface defined
by a parametric form. A simple but useful example of a parametrization is one
where the σ coordinates are nothing else than the x, y Cartesian coordinates,
and the vector field describing the surface is

R(x, y) = (x, y, h(x, y)) , (A.13)

where the third Cartesian coordinate, the height, is z = h(x, y). This is called
the Monge parametrization, named after the French mathematician Gaspard
Monge. Under this parametrization, which is definitely valid for almost pla-
nar surfaces (the height function h(x, y) has to be univaluated), the tangent
vectors Eq. (A.2) are

t1(x, y) = ∂xR(x, y) =
(

1, 0,
∂h(x, y)

∂x

)
,

t2(x, y) = ∂yR(x, y) =
(

0, 1,
∂h(x, y)

∂y

)
, (A.14)

and the covariant metric tensor

gik =




1 +
(

∂h(x,y)
∂x

)2 ∂h(x,y)
∂x

∂h(x,y)
∂y

∂h(x,y)
∂x

∂h(x,y)
∂y 1 +

(
∂h(x,y)

∂y

)2


 , (A.15)

with determinant

det(gik) = 1 + [∇h(x, y)]2 . (A.16)

The normal vector Eq. (A.8) is

n̂ =

(
− ∂h(x,y)

∂x ,− ∂h(x,y)
∂y , 1

)
√

1 + (∇h)2
. (A.17)

Wherefrom the total and Gaussian curvatures can be calculated:

J = −
(
1 + h2

x
)

hyy +
(

1 + h2
y

)
hxx − 2hxhyhxy

(
1 + h2

x + h2
y

)3/2 , (A.18)

K =
hxx hyy − h2

xy(
1 + h2

x + h2
y

)2 . (A.19)
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In the limit of nearly flat surface, where hx ¿ 1, and hy ¿ 1, the curvature
invariants read

J ≈ − (
hxx + hyy

)
= −∇2h(x, y), (A.20)

and

K ≈ hxxhyy − h2
xy. (A.21)

A.1.2
Axisymmetric surfaces

Consider another kind of parametrization given by the polar cylindrical coor-
dinates of an axisymmetric surface, {σ1 = r, σ2 = θ}. Such surface is described
by a function f (r) along the axis of revolution (r = 0). The position vector for
such a surface is

R(r, θ) = (r, f (r) cos θ, f (r) sin θ) . (A.22)

The tangent vectors in this case are found by applying Eq. (A.2),

t1 = ∂rR =
(
1, f ′(r) cos θ, f ′(r) sin θ

)
,

t2 = ∂θ R = (0,− f (r) sin θ, f (r) cos θ) . (A.23)

The covariant metric tensor is given by the dot product of the tangent vectors
Eq. (A.3),

gik =

(
1 + [ f ′(r)]2 0

0 f 2(r)

)
, (A.24)

whose determinant is

det gik = f 2(r)
(

1 +
[

f ′(r)
]2

)
, (A.25)

from where the infinitesimal area element Eq. (A.7) can be calculated, as

dS = f (r)
√

1 + [ f ′(r)]2 drdθ. (A.26)

The contravariant metric tensor is the inverse of the covariant one, Eq. (A.24):

gik =

( 1
1+[ f ′(r)]2

0

0 1
f 2(r)

)
. (A.27)

On the other hand, the normal vector is given by the normalized cross product
of the tangent vectors, Eq. (A.8),

n̂ =
( f ′(r),− cos θ,− sin θ)√

1 + [ f ′(r)]2
. (A.28)
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The metric tensor can therefore be calculated, and, in its covariant form, reads

Kik =
1√

1 + [ f ′(r)]2

( − f ′′(r) 0
0 f (r)

)
. (A.29)

Rising one of the indexes by means of the metric tensor, the mixed curvature
tensor results from Eqs. (A.29), (A.4), in

Kk
i = Kil glk =



− f ′′(r)[

1+[ f ′(r)]2
]3/2 0

0 1

f (r)
√

1+[ f ′(r)]2


 . (A.30)

The total and Gaussian curvatures are then easily found as

J =
1− f (r) f ′′(r) + [ f ′(r)]2

f (r)
(

1 + [ f ′(r)]2
)3/2 , (A.31)

and

K = − f ′′(r)

f (r)
(

1 + [ f ′(r)]2
)2 . (A.32)

A.2
Implicit form

In the case where a two-dimensional surface is implicitly defined by a function
F such as

F(x, y, z) = 0, (A.33)

we can also find the curvature tensor and all the geometric properties of such a
surface. First, we have to note that, since the surface is defined by the level-set
of a function, this function is constant on the surface, therefore

dF(x, y, x) = dr ·∇F = 0, (A.34)

where dr is a vector which connects any two points in this surface, being tan-
gent to a certain direction in the surface. Because of this fact, from Eq. (A.34)
we infer that the vector ∇F is normal to the surface at the point (x, y, z). The
unit normal vector is found by normalizing it,

n̂ =
∇F
|∇F| . (A.35)
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Once the normal vector is known, the curvature tensor, Q, can be defined by
the changes of this vector along the tangent directions, namely

dn̂ = dr : Q (A.36)

where the colon symbolizes tensor contraction. By differentiating Eq. (A.35),
we can write the curvature tensor as a function of the derivatives of the im-
plicit function as

Qik =
1
Υ

[
Fik −

Fi Υk
Υ

]
, (A.37)

where Υ = |∇F|, and Fi = ∇F|i. Note that this curvature tensor Q differs
from the curvature tensor Kik (Eq. (A.9)) we used in the previous Section. The
former being represented by a 3× 3 matrix, and the latter by a 2× 2 matrix.
Here, the tensor has three invariants, although one of them is a trivial one (the
determinant of the tensor is zero [218]). The other two, the trace and the sum
of the principal minors, define the total and Gaussian curvatures, respectively.
They read as

J =
1

Υ3

[
Fii

(
F2

k + F2
l

)
− 2FiFkFik

]
ε̃ikl , (A.38)

where ε̃ikl is a modified Levi-Civita symbol, such as ε̃ikl = 1 for all even per-
mutations of the indices, and zero otherwise. The Gaussian curvature is, sim-
ilarly, given by

K =
1

Υ4

[
FiiFkkF2

l − F2
ikF2

l + 2Fil Fi (FkFkl − Fl Fkk)
]

ε̃ikl . (A.39)

The Monge representation can also be implemented by using an implicit
form of the surface, by defining the function

F(x, y, z) = z− h(x, y). (A.40)

A.3
Parallel surfaces

Consider a surface created by translating each point of an initial surface a
certain distance δ along the normal direction, i.e.

R′(σ1, σ2) = R(σ1, σ2) + δ n̂(σ1, σ2), (A.41)

where primes denote the translated surface. These two surfaces are called
parallel surfaces. It is useful in some cases to relate the geometric properties,
such as the area element or the curvatures, of these surface to each other. Let
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us work out the infinitesimal area element, dA′, of the parallel surface. We
will use here the Monge gauge. In this gauge, the position vector of the new
surface, R′(x, y), given by Eq. (A.41), is

R′(x, y) =
(

x− δ
hx√

N
, y− δ

hy√
N

, h +
δ√
N

)
, (A.42)

where we defined N ≡ 1 + (∇h)2, and the normal vector of the original sur-
face is given in the Monge parametrization by Eq. (A.17). The new tangent
vectors are

t′1 =

(
1− δ

(
hxx N − h2

x hxx

N3/2

)
,−δ

hxy
√

N − hxhy

N
, hx − δ

hxhxx

N3/2

)
, (A.43)

which, for small curvatures, hx, hy ¿ 1, simplify to

t′1 =
(

1− δ
hxx√

N
,−δ

hxy√
N

, 0
)

. (A.44)

Similarly, for the other tangent vector:

t′2 =
(
−δ

hxy√
N

, 1− δ
hyy√

N
, 0

)
. (A.45)

The infinitesimal area element of the parallel surface can be calculated accord-
ing to Eq. (A.7), is

dS′ =
∣∣t′1 × t′2

∣∣ dxdy, (A.46)

which, for small displacements, using that N ∼ 1, we get

dS′ =
(

1 + J δ + K δ2
)

dxdy, (A.47)

and, since in this limit, dS = dxdy, we find the expected result,

dS′ = dS
(

1 + J δ + K δ2
)

. (A.48)

Similar derivations [101] can be made for the total and Gaussian curvatures,
leading to the following results:

J′ =
J + 2K δ

1 + J δ + K δ2 , (A.49)

K′ =
K

1 + J δ + K δ2 . (A.50)
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B
Lagrange multipliers theory

In this Appendix, we briefly review Lagrange multipliers theory, including
some basics and fundamental definitions, as well as presenting algorithms
and numerical schemes. Further information and broader explanations, as
well as proofs of some of the theorem here presented, can be found in Ref. [19].

B.1
Introduction

We want to find a local minimum of a certain function, f ,

f : Rn −→ R

x 7−→ f (x), (B.1)

subject to some constraints hi(x) = 0, such that

hi : Rn −→ R

x 7−→ hi(x), (B.2)

for i = 1, . . . , m. Here, we only enunciate a part of a theorem on necessary con-
ditions of global minima of the above problem. To see a rigorous formulation
and a proof of this theorem, see Ref. [19].

Theorem B.1 (Lagrange multiplier theorem – necessary conditions) Let x∗ be
a local minimum of f subject to hi(x) = 0, and assume {∇hi(x∗)} is a linearly
independent set. Then ∃! λ∗ = (λ∗1, . . . , λ∗m) such that

∇ f (x∗) +
m

∑
i=1

λ∗i ∇hi(x∗) = 0. (B.3)

B.1.1
The penalty approach

This approach consists in approximating the constrained problem by an un-
constrained one. In order to do so, we introduce the so-called cost functions,
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Fk, for k = 1, 2, . . ., as

Fk(x) := f (x) +
k
2
‖h(x)‖2 +

α

2
‖x− x∗‖2, (B.4)

where the second term is a penalty temr which takes into account possible
violations of the constraints; and the last term is just included for technical
proof-related reasons [19].

The minimization of this function, F, is strictly equivalent to the constrained
problem in the limit k → ∞, where

xk → x∗

kh(xk) → λ∗ = − (∇h(x∗) · ∇h(x∗))−1 ∇h(x∗) · ∇ f (x∗). (B.5)

B.1.2
Lagrangian function

We define a function, L, as

L : Rn ×Rm −→ R

(x, λ) 7−→ L(x, λ), (B.6)

as

L(x, λ) := f (x) +
m

∑
i=1

λihi(x), (B.7)

which is called Lagrangian function. Then, the necessary conditions in Theo-
rem B.1 can be written as,

∇xL(x∗, λ∗) = 0,

∇λL(x∗, λ∗) = 0. (B.8)

B.2
Lagrange multiplier algorithms

B.2.1
Penalty and augmented Lagrangian methods

The augmented Lagrangian function, Lc,

Lc : Rn ×Rm −→ R

(x, λ) 7−→ Lc(x, λ), (B.9)
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is defined in the following way,

Lc(x, λ) := f (x) + λ · h(x) +
c
2
‖h(x)‖2 : c > 0. (B.10)

For feasible x, we have that Lc(x, λ) ≡ f (x). Then, we expect that for nearly
feasible x, we can approximate Lc(x, λ) ' f (x).

B.2.1.1 The quadratic penalty method

This method consists in solving a sequence of problems:

1. Minimize Lc(x, λ),

2. Do it subject to x ∈ X.

In the original version of this method, from the 1960s, they used

λk = 0 ∀k = 0, 1, . . . (B.11)

Another idea is to take a set, λk, which are good approximations to the actual
set, λ, and let them vary in the course of the algorithm.

Theorem B.2 For k = 0, 1, . . . let xk be a global minimum of the problem:

– minimize Lck (x, λ) : {λk} is bounded,

– subject to x ∈ X.

such that 0 < ck < ck+1, ∀k; ck → ∞. Then every limit point of the sequence {xk} is
a global minimum of the original problem.

Obviously, this algorithms do not reach the exact solution. The solution
precisionis given by

‖∇xLck (xk, λk)‖ ≤ εk : 0 ≤ εk, ∀k; εk → 0. (B.12)

Some limitation that might happen when using this algorithm are,

1. The method breaks down because none xk can be found.

2. {xk} has no limit points, or ∃x∗ : ∇h(x∗) has linearly independent
columns.

B.2.1.2 Multiplier methods-main ideas

Let us consider now some ways to update λk in order to reach the actual La-
grange multiplier for large k.

A first update formula for λk in the quadratic penalty method, given by,

λk+1 = λk + ckh(xk), (B.13)
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since,

{λk + ckh(xk)} → λ∗ if {xk} → x∗. (B.14)

The quadratic penalty method together with this updating procedure is
known as the method of multipliers.

Let us focus now on the choice of parameters, λ0, and {ck}. A useful scheme
is the following,

1. Choose a moderate c0 (if necessary, by preliminary inspection).

2. ck+1 = βck : β > 1 (for Newton–like methods, it is recommended to
take a value β ∈ [5, 10]).

Another scheme is,

ck+1 =
{

βck if‖h(xk)‖ > γ‖h(xk−1)‖,
ck otherwise,

(B.15)

where γ < 1 (γ ' 0.25 being recommended).
Different penalty parameters, ci, for each constraint can also be used.

B.2.2
Exact penalties

They are exact in the sense that they require only one unconstrained mini-
mization to obtain an optimal solution.

We define an exact penalty function, P, as

P(x, λ) := ‖∇xL(x, λ)‖2 + ‖h(x)‖2. (B.16)

Minimizing P(x, λ) over (x, λ) ∈ Rn+m → (x∗, λ∗) such that,

∇xL(xλ) = 0,

h(x) = 0. (B.17)

B.2.3
Lagrangian methods

Here, we consider the minimization problem as a system of (n + m) nonlinear
equations with (n + m) unknowns, (x, λ). Such a system is called a Lagrangian
system, and can be written down as,

∇ f (x) +∇h(x)λ = 0
h(x) = 0

}
, (B.18)

or, similarly, as,

∇L(x, λ) = 0. (B.19)
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B.2.3.1 First order methods

The algorithms to solve Lagrangian systems, i.e. Lagrangian methods, can be
formally written as:

xk+1 = G(xk, λk)
λk+1 = H(xk, λk)

}
, (B.20)

such that,

x∗ = G(x∗, λ∗),

λ∗ = H(x∗, λ∗). (B.21)

The simplest of these methods is the following,

xk+1 = xk − α∇xL(xk, λk)
λk+1 = λk + αh(xk)

}
, (B.22)

where α > 0 is the stepsize.
The direction

(
−∇xL(xk, λk), h(xk)

)
is a not ascent direction if the Hessian

of the Lagrangian, ∇2
xxL(xk, λk), is positive definite. This condition is quite

strong, actually stronger than the sufficient conditions for the existence of a
solution to the Lagrangian system.

B.2.3.2 Newton-like methods

Being a Lagrangian system given by,

∇L(x, λ) = 0, (B.23)

the Newton-like methods consist in iterating the system

xk+1 = xk + ∆xk,

λk+1 = λk + ∆λk, (B.24)

where,

∇2L(xk, λk)
(

∆xk

∆λk

)
= −∇L(xk, λk) . (B.25)

A manner to implement this method is the following. First, let us write the
Hessian matrix of the Lagrangian as

∇2L(xk, λk) =

(
Hk Nk

Nk′ 0

)
:

{
Hk = ∇2

xx L
Nk = ∇h(xk) ,

(B.26)
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∇L(xk, λk) =
( ∇xL(xk, λk)

h(xk)

)
(B.27)

Then, Eq. (B.24) leads to,
(

Hk Nk

Nk′ 0

) (
∆xk

∆λk

)
= −

( ∇xL(Xk, λk)
h(xk)

)
, (B.28)

or, in other words,

Hk∆xk + Nk∆λk = −∇xL

Nk′∆xk = −h(xk). (B.29)

Multiplying the first of these equations by Nk′ (Hk)−1, and using the informa-
tion in the second one, we arrive to,

Nk′
(

Hk
)−1

Nk∆λk = h(xk)− Nk′ (H)−1 ∇xL, (B.30)

and being Nk′ (Hk)−1Nk a non-singular matrix, we reach the solution for ∆λk,

∆λk =
[

Nk′
(

Hk
)−1

Nk
]−1 (

h(xk)− Nk′
(

Hk
)−1

∇xL
)

. (B.31)

Since,

∇xL = ∇ f (xk) + Nkλk = ∇xL
(

xk, λk+1
)
− Nk∆λk, (B.32)

with iterations evolving under the following rule,




λk+1 =
[

Nk′
(

Hk
)−1

Nk
]−1 (

h(xk)− Nk′
(

Hk
)−1

∇ f (xk)
)

xk+1 = xk −
(

Hk
)−1

∇xL
(

xk, λk+1
)

.
(B.33)
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C
Theory of elasticity

In this Appendix, we present the fundamental equations of linear theory of
elasticity. First, we introduce the basic concepts of strain and stress, in order
to be able, later, to write elastic free energies based on the symmetries of the
system under consideration. Then, equilibrium equations can be derived.

This Appendix is mainly based on the classic textbook on elasticity by Lan-
dau and Lifshitz [146]. A good and extensive introduction applied to the elas-
ticity of biomembranes can be found in Ref. [78].

C.1
The strain tensor

Let us consider a solid-like body which, by some external means, is deformed.
This deformation is described by the new position of all the points in the body,

x′i = xi + ui(xj), (C.1)

where xi are the components of the position vector of a given point in the
body before being deformed; x′i being the components of the position vector
of the same point after the deformation; and ui(xj) are the components of
the displacement vector, which in principle depends on all the coordinates of
the point before deformation, and accounts for the deformation itself. Thus,
known the displacement vector at each point of the body, the deformation is
completely determined.

Let us now calculate how the distance between two infinitesimally close
points in the body changes after deformation

dl′ 2 = dx′i dx′i. (C.2)

From Eq. (C.1) we can write

dl′ 2 = dl2 + 2
∂ui
∂xk

dxi dxk, (C.3)

using the fact that ∂ui
∂xk

<< 1, i.e. the relative displacements are small, and

that dl2 = dxi dxi is the infinitesimal distance between two points before the
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deformation. We rewrite this expression as

dl′ 2 = dl2 + 2uikdxi dxk, (C.4)

where uik is a second-rank tensor. Now, we see that we can define this tensor
in different ways, for instance:

uNS
ik =

∂ui
∂xk

, (C.5)

or

uS
ik =

1
2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (C.6)

Both of these definitions for the tensor give the correct expression for Eq. (C.3).
However, the first one is a non-symmetric tensor, while the second definition
is that of a symmetric tensor. We shall adopt the second definition for this
tensor, which will be called from here on the strain tensor, and denoted simply
by uik. Since it is symmetric, uik = uki, we have that only d(d + 1)/2 out of
its d2 components are independent a priori. Actually, the difference between
Eqs. (C.5) and (C.6), is an antisymmetric tensor, which accounts for rotations of
the solid body, which cause no deformations. Summarizing, the strain tensor
is defined as

uik =
1
2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (C.7)

C.1.1
Geometrical meaning of the strain tensor

In order to see the geometrical meaning of the different components of the
strain tensor, we are going to distinguish between the diagonal and non-
diagonal terms.

• Diagonal terms

Given a stretching deformation as that shown in Fig. C.1a, the diagonal
terms of the strain tensor clearly show the relative stretching (or com-
pression) in their direction. Namely,

uii =
dx′i − dxi

dxi
. (C.8)

• Non-diagonal terms
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dx u xxdx
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x

y

(a) Stretching deformation

dy

y

x

β

α

φ

dx

dl
dl’

(b) Shear deformation

Figure C.1 Geometrical meaning of the components of the strain tensor. (a) Diagonal terms
account for stretching deformations while (b) non-diagonal terms account for shear-like defor-
mations.

The displacement vector in the deformation of an infinitesimal piece of
surface due to a shear deformation is1 (see Fig. C.1b),

u = (αy, βx), (C.9)

then, the diagonal components of the strain tensor vanish, and the non-
diagonal component are

uxy = uyx =
1
2
(α + β). (C.10)

The diagonal of the parallelogram after the shear deformation is

dl′ 2 =
(

dx
cos β

)2
+

(
dy

cos α

)2
+ 2

dx dy
cos α cos β

cos φ, (C.11)

which, up to first order in deformations, is

dl′ 2 = dl2 + 2 cos φdx dy. (C.12)

From the definition of the strain tensor Eq. C.7, we get that

uxy =
1
2

cos φ ' 1
2

(π

2
− φ

)
=

1
2
(α + β), (C.13)

as we expected. Thus, the geometrical meaning of non-diagonal terms
of the strain tensor is related to the internal angle of the parallelogram
resulting after the deformation.

1) We restrict ourselves to a two-dimensional case, for the sake of sim-
plicity and clearness of the figures.
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Besides, we see that the non-diagonal components of the strain tensor are
responsible for shear deformations which do not change the volume. We can
see which is the volume change caused by a general deformation using the fact
that any symmetric tensor can be diagonalized. Thus, choosing the appropri-
ate axes (the so-called principal axes of the deformation), the strain tensor can
be written as

uik = u(i) δik, (C.14)

where u(i) are the tensor eigenvalues. In this case, dx′i = (1 + u(i)) xi, and thus
the infinitesimal volume element after deformation is

dV ′ = dV(1 + u(1) + u(2) + u(3)) = dV (1 + tr (uik)) , (C.15)

where tr (uik) = uii is the trace of the tensor, which is a tensor invariant. Thus,
the trace of the strain tensor gives the relative volume change caused by the
deformation,

uii =
dV ′ − dV

dV
. (C.16)

C.2
The stress tensor

When a body is undeformed and in equilibrium there is a force field inside it
which accomplishes the equilibrium conditions of a solid body. Once the body
is deformed, in order to restore an equilibrium configuration of the molecules
in the body, some extra forces appear inside the body. These are called the
internal stresses.

Let us consider a box of volume V inside the body. The total force inside
this piece of volume can be written as a surface integral, meaning that the
force field can be expressed as the divergence of a tensor, namely

∫

V
F dV =

∮

∂V
divσ : dS, (C.17)

or, in component notation,

Fi =
∂σik
∂xk

, (C.18)

where σik is a rank-2 tensor called the stress tensor. Actually, this tensor can be
shown to be symmetric if we require mechanical equilibrium for the momenta
[146], namely, σik = σki.
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C.2.1
Geometrical meaning of the stress tensor

Consider a small volume dV = dx dy dz inside the body. The component
σik nk of the stress tensor is the component i of the force per unit area per-
pendicular to the k-direction, where n is the outwards-direction unit vector
normal to the surface (see Fig. C.2).
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Figure C.2 Representation of the internal stresses in a two-dimensional system.

C.3
Thermodynamics of deformation

C.3.1
Work of deformation

From the definition of the stress tensor, we can calculate the work done by a
deformation characterized by a given strain tensor. We detail here two sim-
plified calculations, when the deformation is just a stretching in one direction,
and when it is a simple in-plane shear.

C.3.1.1 One-dimensional stretching

In this case, we consider a uniform stretching in the y-direction, given by a
non-vanishing uyy component of the strain tensor. As we learned in Sec. C.1.1,
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the relative displacement in that direction is given by

δy = uyydy,

which is the only non-vanishing component of the relative displacement vec-
tor. In order to work out the work done in such a deformation we need to
know which is the net force in the y-direction on the xz surface. By definition,
this force is (see Eq. (C.18))

Fy = σyydxdz.

Therefore, the work of deformation is

W = F · r = Fy δy = σyy uyydV. (C.19)

One can generalize this result in the case of a homogeneous stretching in all
the dimensions of the space, given by a diagonal strain tensor

Wstretching = Fi δxi = σii uiidV. (C.20)

C.3.1.2 Simple shear

Consider a simple shear in the yz plane, given by a non-vanishing uyz com-
ponent of the strain tensor. We know that the shear angle is related to this
component as uyz = (α + β)/2, where α and β are the angles related to the
yz-shear and to the zy-shear, respectively. Thus, the force on the y-direction
on the xz face is given by

Fy = σyz dx dy,

and the moment of this pair of forces is

Mx = Fy dz.

Since the relative angular displacement is given by the total shear angle α + β,
the work done in this deformation is

W = M · δΘ = Mx (α + β) = 2σyz uyzdV. (C.21)

This work accounts for both yz and zy shears, then one can generalize the
work done in a general shear deformation as

Wshear = σik uikdV : i 6= j, (C.22)

where double counting has been taken into account.
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C.3.1.3 Total work of deformation

Assembling these results, we can write the total work done in an arbitrary
deformation characterized by a strain tensor uik, as

W = σik uik. (C.23)

C.3.2
Free energy of deformation

If we consider an adiabatic process, the free energy of deformation is given by

δE = δQ + δW = δW = σikuik = F. (C.24)

We have then the following thermodynamical relations

∂F
∂uik = σik, (C.25)

∂F
∂σik

= uik. (C.26)

Note that these relations have only sense as a way to express the differential
relation dF = σikduik.

C.4
Hooke’s law of elasticity

In order to proceed in our understanding of the elasticity of solid bodies, and
also to apply the general thermodynamic relations found in the previous Sec-
tion, we need to specify which is the free energy, F, as a function of the strain
tensor. The way of doing that is by making a series expansion,

F(uik) = ∑
k

scalars of order k. (C.27)

From Eq. (C.25), we see that there should be no linear term in strains in the
free energy, because of the fact that when there is no deformation, there are
no internal stresses in the body. Therefore, the first non trivial order in the
expansion is the second order (the zeroth order is just a constant added to the
energy). Truncating the series to this first non-trivial order gives what is called
the Hooke’s law of elasticity,

F =
1
2

λiklm uik ulm, (C.28)

where the fourth-rank tensor λiklm is the so-called elastic modulus tensor.
Note that this is the most general scalar quantity of second order in defor-
mations.
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Therefore, the general formulation of the elastic free energy of a three-
dimensional anisotropic body, according the the Hooke’s law, is given by
Eq. (C.28). The symmetry of the strain tensor impose some symmetries in
the λ-tensor. Then, the number of independent components of this tensor is
21.

C.5
Equilibrium equations of an isotropic elastic body

There are (at least) two approaches for finding the equilibrium equations for
an elastic body, via the minimization of the elastic free energy and via the
condition of local force balance.

C.5.1
Minimization of the free energy

The free energy in Eq. (12.11) is a functional of the components of the strain
tensor, namely, of the spatial derivatives of the components of the displace-
ment field. The displacement field in the deformed body corresponds to a
extreme of this functional given the boundary conditions. To minimize this
functional, we work out its associated Euler-Lagrange equations, reading as

δui F = 0 ⇒ ∂

∂xk

(
∂F

∂ ∂ui

∂xk

)
= 0 ∀i. (C.29)

C.5.2
Local force balance

From the condition of local equilibrium (vanishing total force)

∂σik

∂xk = 0 ∀ i, (C.30)

and knowing that σik = λiklm ulm, we can, in principle, write one equation for
each spatial dimension.
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