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Abstract

The phase diagram of superfluid 3He is predicted to be modified when confined

to a regular geometry of size comparable to the superfluid coherence length. This

thesis addresses the problem of the effect of such a small geometry on the order

parameter of the superfluid. The samples are probed by two methods: Nuclear

Magnetic Resonance and a Torsional Oscillator.

Nuclear Magnetic Resonance provides information about the spin dynamics of

the system. This information can be used to identify the superfluid phases. The

damping and frequency change of the torsion pendulum determine the hydrodynamic

response of the fluid and they can be used to identify superfluidity and measure the

superfluid density. The bulk anisotropy of the superfluid density could potentially

help to identify the A-phase, although information sufficient to unambiguously de-

termine the particular superfluid phase from the torsional oscillator is probably not

possible in our experiment.

The NMR experiment involved the construction of a high sensitivity SQUID

spectrometer which allowed the observation of samples of the order of 1 × 1017

spins. We observed superfluidity in a variety of samples. The superfluid phases were

identified as A- and B-phases in small droplets distributed over the experimental

cell. These droplets were formed due to imperfect annealing of the samples. For a 3

µm thick slab we observed a strongly supercooled A-phase at temperatures as low as
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0.38 mK. This A-phase suddenly underwent a transition into B-phase after a period

of ∼20 hours independently of the temperature to which it had been supercooled.

With the torsional oscillator we could see superfluidity in a film of nominal

thickness of 143 nm. The dependence of the superfluid density on temperature

agreed with most of the previous work, theoretical and experimental alike. It also

showed remarkable similarities with other disordered systems like superfluid 3He in

aerogel, although these similarities were not quantitative.
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Prelude

Motivations for this experiment

Physics is like sex: sure, it may give some

practical results, but that’s not why we do it.

Richard P. Feynman

Following the formulation of the BCS theory by Bardeen, Cooper and Schrieffer

[1] in 1957, it was first suggested by Lev Pitaevski [2] that a BCS-like pairing into

an ordered state could take place in liquid 3He in the same way it happened in

superconductors. The predicted temperature at which the transition should take

place was of the order of 100 mK. Nothing was observed once that temperature

was reached. From then on, theoreticians kept discovering new reasons by which

the transition should be found at lower temperatures and the experimentalists kept

seeing “nothing” when going that cold. Of course, the main benefit low temperature

16



Prelude 17

physics got out of this race was a dramatic improvement in the cooling techniques

of the time.

Then, in 1964, Vasily Peshkov [3] observed an anomaly in the heat capacity of

3He at 5 mK and claimed to have seen the so yearned-for superfluid transition. It

was at the Eighth International Low Temperature Physics Symposium in Columbus,

Ohio, where Peshkov presented the previously announced “discovery”. Following

his presentation, John Wheatley stood up and pointed out several fatal flaws in

the experiment. He had good reasons to disbelieve Peshkov’s results: he had done

experiments down to lower temperatures, he was sure of his temperature scale and

he knew he had not seen superfluidity in 3He at those temperatures. Although

Wheatley was right about Peshkov’s mistakes, he failed to identify the superfluid

signature while making measurements below the actual transition temperature.

Finally, early in 1972, Osheroff, Richardson and Lee [4] discovered the transition

while doing compressional adiabatic cooling in a Pomeranchuk cell at Cornell. That

discovery constituted a major milestone in the theoretical and experimental devel-

opment of low temperature physics. It opened a plethora of hitherto unexpected

possibilities and incentives to deeply explore the new system. Nearly all branches

of physics were dramatically affected by the discovery. Suddenly, numerous labora-

tories around the world turned their attention and efforts towards the new system.

The phase diagram of superfluid 3He was rapidly mapped out and soon physicists

were looking for new properties of superfluid 3He.

As it usually happens in low temperature physics, theories were ahead of experi-

ments and there were theoretical studies about superfluid 3He in confined geometries

already in the mid seventies [5]. The study of vortices in 3He or, more recently, the

effect of disordered environments like aerogel on superfluidity also attracted the

attention of the scientific community towards the light isotope of helium.
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What is superfluid 3He good for? A very embarrassing question. Because the

answer is, at least in first order approximation, “Nothing”. This only means that

3He is not good for anything directly, but it is extremely good for many things

indirectly. Apart from being an impressively remarkable system itself, 3He is the

most sophisticated physical system of which we can claim detailed quantitative un-

derstanding (i.e. textures, orientational dynamics, topological singularities...). It is

useful in the study of turbulence, it has interesting analogies with particle physics

and cosmology and, probably most important, it offers the possibility of displaying

parity violation for the first time in a macroscopic state.

Regarding 3He in confined geometries, size effects give rise to very interesting

questions. The relevant length for superfluid 3He is its coherence length (or, roughly

speaking, the smallest distance over which the superfluid wave function is allowed

to vary). We can regard the (pressure dependent) size of a Cooper pair (see Chapter

2) as the zero temperature value of the coherence length. This size (72 nm at zero

temperature and zero pressure) is extremely large compared with the coherence

length of superfluid 4He (1 Å). This makes any 4He sample of these dimensions

essentially bulk-like1 , whereas there is the potential of experimentally reaching

these length scales in 3He.

A sufficiently confined 3He sample could provide a model for two dimensional su-

perfluidity with an unconventional p-wave symmetry. Amongst the potential physics

suggested for such systems we could highlight the possibility of a 2-D Kosterlitz-

Thouless transition [6], the relationship with d-wave superconductors [7], [8] and

3He in aerogel [9].

Recently, the question has arisen about the role that superfluid 3He films could

1Although a monolayer of 4He could exhibit superfluidity in a transition described by the
Kosterlitz-Thouless theory [6]
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have in understanding charged rotating black holes [10], event horizons for relativis-

tic fermionic quasiparticles and Hawking radiation [11] and black hole formation

models [12].



Chapter 1

Introduction

Discovery consists of seeing what everybody has

seen and thinking what nobody has thought.

Albert von Szent-Györgyi.

3He is, undoubtedly, one of the richest systems with which to do experimental

physics. Not only is it the most complex material we can approach with the support

of a successful theory, but also it has connections with almost any branch of mod-

ern theoretical physics. 3He combines the complexities of liquid-crystal anisotropy

and superfluid behaviour and it is also the first magnetic superfluid known to sci-

ence. As shown in Figure 1.1, 3He in bulk can exhibit superfluidity below 3 mK.

The complex structure of the order parameter makes the superfluid phase diagram

extremely rich, with two main superfluid states at zero magnetic field in bulk and

several other phases which are stable in non-zero magnetic field or under conditions

of confinement.

At low pressures and low temperatures, superfluid 3He is found in the Balian-

20
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a) b)

Figure 1.1: The phase diagram of bulk 3He in absence of a magnetic field. Figures
from the Low Temperature Group at Helsinki University of Technology.

Werthamer (BW) state [13] and is called 3He-B. At high enough pressures or in

the presence of a magnetic field, a different superfluid state can be stabilized over

a narrow region of the phase diagram through strong coupling effects. This state

corresponds to the Anderson, Brinkman and Morel state (ABM) [14], [15] and is

called 3He-A.

Although the bulk phase diagram of 3He has been known for a number of years

[16], [17] there is still a great deal of knowledge to be acquired about the effects of

confinement and low dimensionality in this system.

The purpose of this thesis is to provide new insights into the understanding of the

physics of confined anisotropic superfluids in general and of confined superfluid 3He

in particular by using two powerful and technically demanding experimental tech-
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niques: Nuclear Magnetic Resonance, which explores the magnetic properties of the

superfluid and the Torsional Oscillator, which probes its hydrodynamic properties.

The work is organized as follows:

Chapter 2 discusses the physics of superfluid 3He from the point of view of

both the BCS and the Ginzburg-Landau theories and gives an account of previous

experiments and theories on superfluid 3He in restricted geometries.

Chapter 3 introduces the principles of Nuclear Magnetic Resonance and DC

SQUIDs. This is followed by a description of the experimental setup and method of

operation and a review of the design, construction and assembly of the experimental

cell. Finally, we present our results and compare them with previous experiments

and theoretical predictions.

Chapter 4 is devoted to the Torsional Oscillator experiment. The design of the

oscillator is presented, followed by details of the experimental cell. We show results

from the normal liquid which help to understand the path that finally led to the

design of our current cell. Then we present the superfluid results, again contrasting

them with other flow experiments in similar systems and previous theories.

Chapter 5 summarizes the work and provides possible directions for future ex-

periments on confined superfluid 3He.

The cryogenic apparatus is described in Appendix A, along with the thermome-

try. Appendix B provides a brief guide to the data analysis techniques used in these

experiments.
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Confined superfluid 3He

Your theory is crazy, but it’s not crazy enough to be true.

Niels Bohr.

Liquid 3He above 1 K can be described nearly in terms of a dense classical gas,

with significant corrections to the ideal gas behaviour arising from the quantum

virial coefficients. Between about 100 mK and 3 mK, however, it behaves very like

a weakly interacting degenerate Fermi gas (specific heat proportional to T , spin

susceptibility temperature independent and viscosity proportional to T−2, for in-

stance). This is at first sight rather puzzling, since one would expect the atoms to

be strongly interacting due to the large hard-core radius, comparable to the mean

interatomic spacing. Landau’s Fermi liquid theory [18] takes this into account, de-

scribing the system in terms of weakly interacting quasiparticles, and also reproduces

the experimental observations. Below about 3 mK, and depending on pressure, 3He

exhibits superfluidity. The superfluid phases of 3He are usually described in terms

of the microscopic “weak coupling” BCS theory [1] applied to anisotropic supercon-

23
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ductors and the Ginzburg-Landau phenomenological theory of second order phase

transitions [19]. In this Chapter, we give a brief account of both approaches. An

extensive study of these theories and their application to 3He can be found elsewhere

[20]. The second part of the Chapter deals with 3He in confined planar geometries.

We discuss the most important theoretical studies on the subject and present the

experiments that have been done in the system up to this date.

2.1 The microscopic BCS theory applied to su-

perfluid 3He

2.1.1 Spin singlet pairing

The core of the BCS theory of superconductivity states that two identical Fermi

particles with momentum h̄k and h̄k′ near the Fermi surface and in the presence of

a filled Fermi sea can interact through some potential in such a way that the total

energy of the final state for these two particles would be less than twice the Fermi

energy. The bound state formed by the two particles as a result of that interaction is

called a Cooper pair. The potential used by Bardeen et al. to describe the formation

of Cooper pairs is the following:

Vkk′ =





−V for kF −∆k ≤ k, k′ ≤ kF + ∆k,

0 otherwise

(2.1)

where ∆k ¿ kF is assumed. Only particles within a narrow shell near the Fermi

surface would be affected by this interaction, since particles well inside the Fermi

sphere would not have, within a small range of energies, empty levels available
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to scatter into. The other fundamental ingredient in the BCS theory, apart from

Equation 2.1, is the assumption that the Fermi surface is spherical in shape.

Now, one could construct the system wave function not by referring to pair of

particles, but to pairs of single-particle states (k ↑,−k ↓) corresponding to spin

singlet pairing. At zero temperature each state (k ↑,−k ↓) is either full or empty.

We will use |0, 0 > to refer to an unoccupied pair and |1, 1 > to refer to an occupied

one. The system wave function can be written as

Φ =
∏

k

Ψk (2.2)

where

Ψk = u∗k|0, 0 > +vk|1, 1 > (2.3)

|uk|2 is the probability that the pair (k ↑,−k ↓)is unoccupied and |vk|2 is the prob-

ability that it is occupied. At T = 0 all the energy level below the Fermi surface are

occupied and, therefore,

uk = 0 and vk = 1 for |k| < kF

uk = 1 and vk = 0 for |k| > kF

Plus, normalization requires

|uk|2 + |vk|2 = 1

The solutions of this system can be obtained by using a variational method. It is

necessary, first, to write an expression for the Hamiltonian. For the kinetic energy

we simply have

< Φ|K − µN |Φ >=
∑

k

2εk|vk|2 (2.4)
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where K is the kinetic energy operator, N is the number of particles, µ is the

chemical potential and εk is the energy of one particle (hence the factor 2). The

term µN is a constraint introduced due to the fact that we are not working under a

constant number of particles. A superposition of states containing different numbers

of particles might seem unrealistic, but one needs to bear in mind that the number of

particles and the phase of the wave function are conjugate variables and, therefore,

there exists an uncertainty relationship.

Now we account for the potential energy part of the Hamiltonian. The required

expression is:

< Φ|V |Φ >=
∑

k,k′
Vk,k′ukv

∗
k′u

∗
k′vk (2.5)

because when the pair (k ↑,−k ↓) scatters into (k′ ↑,−k′ ↓), not only the state

(k ↑,−k ↓) has to be initially full (amplitude vk) but also the state (k′ ↑,−k′ ↓) has

to be empty (amplitude u∗k′).

The next step is to minimize the complete expectation value with respect to

variations in the occupation probabilities. Defining

∆k =
∑

k′
Vk,k′uk′vk′ (2.6)

we obtain after some algebra the well-known expression for the ground state BCS

energy gap:

∆k = −
∑

k′
Vk,k′

∆k′

2Ek′
(2.7)

where E2
k = ε2

k + |∆k|2.
If we want to extend the present treatment to finite temperatures, we must allow

some other states into the wave function, namely, the ”broken pair” states |1, 0 >

and |0, 1 > (which account for (k ↑) occupied and (−k ↓) unoccupied, etc.). We
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obtain then the final general expression for the BCS gap equation:

∆k = −
∑

k′
Vk,k′

∆k′

2Ek′
tanh

Ek′

2kBT
(2.8)

One should note here that the gap equation defines only an extremum of the free

energy. In the case of superconductors this is not a problem since there is only one

extremum which is also a minimum. But for l 6= 0 the gap equation provides several

solutions, some of them not even an extremum but a saddle point. The energy Ek

can be shown to be the energy of an elementary excitation [20].

2.1.2 Spin triplet pairing

The effective interaction in liquid 3He is rather complicated due to the range of

the hard-core repulsion potential, which is comparable to the interatomic distance.

The s-wave pairing that takes place in superconductors, with the electrons forming

pairs with relative angular momentum zero, is not possible in 3He due to the strong

hard-core repulsion. The spatial wave function of a Cooper pair in 3He has the

structure of a p-orbital, with total angular momentum L = 1, and it is, consequently,

antisymmetric under the interchange of the atoms. Due to the fermionic nature of

the 3He quasiparticles, the total wave function needs to be antisymmetric, which

implies a symmetric spin part of the total wave function. Thus, 3He shows spin

triplet (S = 1) pairing in the superfluid phases, the spin subspaces being | ↑↑>,

| ↓↓> and | ↑↓ + ↓↑>. Whereas for the L = 0 case we had a wave function of the

form

Ψ(k) = Ψ↑↓(k)(| ↑↓ − ↓↑>) (2.9)
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we have to write now

Ψ(k) = Ψ↑↑(k)| ↑↑> +Ψ↓↓(k)| ↓↓> +Ψ↑↓(k)(| ↑↓ + ↓↑>) (2.10)

Note that these wave functions have not been normalized. The BCS gap could now

have different values for different spin subspaces. We have to define

∆(k) =




Ψ↑↑(k) Ψ↑↓(k)

Ψ↓↑(k) Ψ↓↓(k)


 (2.11)

Each of the above matrix elements follows the gap Equation 2.8. This is not, how-

ever, the most convenient way to express the pairing. We can introduce [13] a vector

representation with Leggett’s notation

d(k) =
1

2
i
∑

αβ

(σyσ)αβΨαβ(k) (2.12)

where σ’s are the Pauli matrices and the subindexes run over the spin states ↑ and

↓. We can invert the above expression and obtain

∆(k) =



−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)


 (2.13)

It is possible to obtain further insight into the physical interpretation of the d vector

by calculating the value of the square of the gap ∆∆+.

∆∆+ = (d · d∗)I + iσ · (d× d∗) (2.14)
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Let us define a unitary state as one for which ∆∆+ is proportional to the unit

matrix. It follows that, for a unitary state, d × d∗ = 0 or, in other words, d is a

real vector and the excitation energy Ek is a number rather than a matrix. It can

also be shown [21] that d ·S = 0, so the modulus of d tells us the magnitude of the

gap for an unitary state and its direction is the direction of zero spin projection.

We will define yet another quantity. If we express the d vector as a function of

the k vector,

di(k) =
∑

ρ

Aiρkρ (2.15)

we obtain a 3×3 complex matrix Aiρ and whereas in the case of superconductors we

had only two degrees of freedom (the amplitude and the phase of the wave function),

we have now 18. Fortunately, they are not all independent in the stable phases, so

we will not need to deal with intractable systems. The A matrix generates the d

vector from k, the position on the Fermi surface, and, therefore, can be used to

describe the pairing in superfluid 3He.

2.1.3 The B-phase

The B-phase is described by the p-wave pairing state originally proposed by Balian

and Werthamer [13]. They showed that the B-phase is the most stable superfluid

phase in the weak coupling limit. All three triplet spin configurations are present in

this phase: | ↑↑>, | ↓↓> and | ↑↓ + ↓↑>. The B-phase has an isotropic energy gap,

but intrinsically, it is not isotropic at all. In fact, 3He is an anisotropic superfluid

in all its phases. The Balian-Werthamer state is anisotropic in the following sense:

in the most general state, the d vector, which points radially away from the centre

of the Fermi sphere, is rotated about an arbitrary axis, which we will call N̂ , by an

angle θ. Thus, the magnetic dipolar energy varies all over the Fermi surface as it
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depends on the angle θ. The description of the B-phase is usually given in terms of

N̂ , rather than d. The order parameter for the B-phase is

AB = ∆eiφ




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




(2.16)

where ∆ is the magnitude of the energy gap. The d vector can be obtained by a

rotation of angle θ about an arbitrary axis (defined by N̂). The magnetic suscepti-

bility is reduced with respect to the normal Fermi fluid due to the | ↑↓ + ↓↑> part

of the pairing.

2.1.4 The A-phase

The A-phase is only stable at pressures higher than the pressure of the polycritical

point (the point at which superfluid 3He-A, superfluid 3He-B and normal 3He coexist

in the phase diagram), which is 21.5 bars in zero magnetic field. It can also be

more favorable energetically than the B-phase in a magnetic field or in a state of

confinement. The stabilization mechanism for the A-phase pairing is called spin

fluctuation feedback and it is due to the very formation of the condensate. In the

case of 3He there is no lattice with which the quasiparticles can interact and the

onset of superfluidity changes the pairing interaction. The idea of spin fluctuation

feedback was first introduced by Anderson and Brinkman [14]. The pairing states

in the A-phase are only Equal Spin Pairing (EPS) states, i.e. | ↑↑> and | ↓↓>, and

therefore its magnetic susceptibility is the same as for the normal Fermi liquid. The

d vector for the A-phase has the form of the Anderson-Brinkman-Morel [15] state,
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which is

|d(k)| =
√

3/2∆(k1 + ik2) =
√

3/2∆|k| sin θeiφ (2.17)

and thus

d · d∗ = |(d(k))|2 = 3/2∆2 sin2 θ (2.18)

The energy gap has two point nodes in the kz direction of the k space and the vector

d points in the same direction in spin space for all points on the Fermi sphere. The

order parameter for the ABM state can be written as:

AA = ∆




1 i 0

0 0 0

0 0 0




(2.19)

Let us remark that in an applied magnetic field, the A-phase is no longer an unitary

state, since the components Ψ↑↑ and Ψ↓↓ are not equal in this case and this implies

that ∆∆+ is not an unitary matrix. This leads to a different phase, called A1 in

which only one spin population is present.

Interestingly, a suppression of the z-component of the order parameter would

not affect the A-phase, since its z-component is zero. That makes the A-phase

a candidate for the stable phases of superfluid 3He confined to a submicron slab

geometry.

2.1.5 The planar phase

If we consider the B-phase order parameter and suppress its z-component, the re-

sulting order parameter is also a solution of the BCS gap equation [22]. Assuming,

without lost of generality, that the sample lies in the x-y plane, then suppressing
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the z-component of the d vector leads to the following A matrix:

Aplanar = ∆




1 0 0

0 1 0

0 0 0




(2.20)

This matrix represents the order parameter of the planar phase. Although it re-

sembles the order parameter of the B-phase, the suppressed part of the superfluid

wave function is the term Ψ↑↓(k). This has as a consequence an A-like character

for the planar phase and it has, in fact, two nodes along the kz axis. The difference

with the A-phase is that the remaining spin states have opposite angular momentum

eigenvalues, so there is not a net orbital angular momentum for the planar phase.

2.1.6 Other phases

As well as the described superfluid phases, other forms of the order parameter for

the superfluid state can be stabilized under certain conditions. For example, the

mentioned A1 phase is stable under an external magnetic field. This magnetic field

forces the pairing to be in only one of the EPS states with the spins aligned along

the field. The order parameter for the A1 phase is:

AA1 = ∆




1 i 0

i −1 0

0 0 0




(2.21)

Finally, the equivalent of the planar phase for one dimension is called the polar
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phase [22]. Its order parameter has the following form:

Apolar = ∆




1 0 0

0 0 0

0 0 0




(2.22)

In order to observe the polar phase the system should be confined to a length

comparable to the coherence length in two of the three dimensions.

These two phases are not compatible with our experimental conditions and are

mentioned here for completeness only.

2.2 The Ginzburg-Landau approach

The Landau theory of continuous phase transitions applies to changes in a system

from a disordered state to an ordered one. A good example of this is the transition

between paramagnetism and ferromagnetism at the Curie point in magnetic materi-

als, Bose-Einstein condensation and, of course, the superfluid and superconducting

transitions. Continuous phase transitions, also known as Second Order phase tran-

sitions, have no associated latent heat. They rather imply a change in the symmetry

of the system. The word continuous refers to the fact that the free energy changes

continuously. The symmetries are broken by the phase transition. The Ginzburg-

Landau theory states that we can describe a continuous transition by an “order

parameter”, that is, some quantity which is zero above the transition and rises as

we go into the ordered phase. In the previous examples, we could use the magneti-

zation in the ferromagnetic transition, the condensate density in the Bose-Einstein

condensation and the A matrix described above in the superfluid transition. After

defining an order parameter, the next step is to express the free energy as a function
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of that order parameter and minimize it. To a low order approximation, we can

write down the free energy as a function of the order parameter as follows:

F = −α|A|2 + β|A|4 + K|∇A|2 (2.23)

where the last term accounts for spacial changes on the order parameter. Only even

powers of the order parameter appear in the above expression due to symmetry

reasons (an easy, although not too rigorous argument would be that the free energy

is a scalar quantity whereas the order parameter is a tensor in its more general

form). Let us momentarily forget about the spatial variations of the order parameter.

If we minimize the free energy with respect to the order parameter we find that

A =
√

α/2β and α ∼ (T − Tc) since it has to be zero at the transition point. If we

now regard the order parameter as a 3× 3 complex matrix (case of superfluid 3He)

we can express the free energy in the following way:

F = −α(T )A∗
iµAiµ + β1A

∗
iµA

∗
iµAjνAjν + β2A

∗
iµAiµA

∗
jνAjν + β3AiµA

∗
jνA

∗
iνAjµ+

+β4AiµA
∗
iνAjνA

∗
jµ + β5AiµA

∗
jνAiνA

∗
jµ

or

F = −α(T )TrAA+ + β1|TrAAT|2 + β2(TrAA+)2 + β3Tr(AAT)(AAT)∗+

+β4TrAA+AA+ + β5Tr(AA+)(AA+)∗ (2.24)

where A+ is the hermitian conjugate and AT is the transpose matrix. The free

energy, being a scalar, has to be invariant under symmetry transformations. The

Gauge symmetry implies a change in phase, so each term must have as many A’s
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as A∗’s. Invariance under rotation in the real space (greek letters in the tensor

notation) requires contracting the µ and ν indexes and similarly with the first index

(latin letters). In the weak coupling limit (the limit in which the B phase is stable),

the BCS theory predicts:

αBCS(T ) =
N(0)

3

(
1− T

Tc

)
(2.25)

βBCS
1 = −N(0)

( 1

πkBTc

)2 1

30

7

8
ζ(3) (2.26)

and

−βBCS
5 = βBCS

4 = βBCS
3 = βBCS

2 = −2βBCS
1 (2.27)

where N(0) = k3
F/(2π2vFpF) is the single spin quasiparticle density of states at the

Fermi surface and ζ(x) is the Riemann zeta function. In the strong coupling limit,

where the A phase is stable, the βi’s take different values from the BCS prediction.

Now we are ready to take into account spatial variations of the order parameter. In

the simpler case of superconductors we could define a new variable f = A/
√

α/2β

and reformulate Equation 2.23:

K

α

d2f

dx2
+ f − f 3 = 0 (2.28)

We now define a characteristic length ξs =
√

K/α =
√

K/α0(1 − T/Tc)
−1/2 where

the subindex s stands for s-wave pairing in the BCS theory. α0 is a temperature

independent constant. ξs becomes infinite at Tc and can be regarded as the minimum

length over which the wave function of the Cooper pair is allowed to vary, that is,
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the coherence length. In the case of superfluid 3He we could write [5]:

Fgrad =
∑

p

{KL|∇ · Api|2 + KT|∇ × Api|2} (2.29)

for the gradient contribution to the free energy. From the above expression we can

define a transversal and longitudinal correlation lengths:

ξ2
L =

√
KL

α
=

9

5

ξ2
s

1− T/Tc

(2.30)

ξ2
T =

√
KT

α
=

3

5

ξ2
s

1− T/Tc

(2.31)

The temperature dependent coherence length in superfluid 3He is usually referred

as the shortest one [23], that is, the transverse component

ξ2(T ) =
3

5

ξ2
s

1− T/Tc

This length is also called the coherence length and is pressure dependent. Its value at

zero pressure and zero temperature is 72 nm and it decreases with a pressure increase.

Figure 2.1 shows the temperature dependence of the zero pressure coherence length.

This is going to be the most important characteristic length in this work and we

expect size effects to take place in samples confined to this length scale.

2.3 3He, a magnetic superfluid

The magnetic properties of the superfluid phases of 3He were first worked out by

Leggett shortly after the experimental discovery by Osheroff, Richardson and Lee.

It is because of these magnetic properties that experimental tools such as Nuclear
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Figure 2.1: The temperature dependence of the zero pressure coherence length. It
shows a divergence at the transition temperature and decreases rapidly down to 72
nm at absolute zero.

Magnetic Resonance have proven very useful in the study and recognition of the

different superfluid phases.

In the presence of a magnetic field, new terms arise in the expression of the

free energy given by Equation 2.24. If we write the anisotropic terms (dipolar and

magnetic) of that functional we find that [20]

FABM =
1

2
αχ(d ·H)2 − 3

5
gD(T )(d · l)2 + FABM

grad

FBW =
4

5
gD(T )(cos θ + 2 cos2 θ +

3

4
) + FBW

grad (2.32)

where H is the applied magnetic field, gD is a measure of the contribution of the

Cooper pairs to the dipole energy, χ is the bulk magnetic susceptibility and α is a
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Figure 2.2: Free precession of the spin and d vectors after a small tipping pulse for
the superfluid A-phase (from D. M. Lee [24])

measure of the susceptibility anisotropy. The angle θ in the B-phase refers to the

arbitrary angle between the d vector and the N̂ axis. Note that the free energy term

for the B-phase is purely dipolar, since for the BW state χ is isotropic whatever the

orientation of the external field and there is, therefore, no orientating effect in the d

vector (although there is in the vector N̂ , which orients along the external magnetic

field). This energy term is minimized for an angle θ = cos−1(−1/4) = 104o. For the

ABW state the l and d vectors tend to be parallel to minimize the dipolar energy,

whereas the d vector will try to lay perpendicular to the magnetic field in order to

minimize the Zeeman or magnetic term of the free energy.

For the superfluid A-phase, following a small tipping pulse, the spin vector would

precess about the total magnetic field, describing an ellipse, as shown in Figure 2.2.

Meanwhile, the d vector would still try to align along the direction of the l vector in
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order to minimize the dipole energy (forming what is called “dipole-locked” texture

as opposed to the “dipole-unlocked” texture resultant from a l⊥d configuration).

As a result, the spin vector of the Cooper pair would “feel” an additional field due

to the dipolar interaction. This additional field gives rise to a dipolar torque

RD =
6

5
gD(T )(d× l)(d · l)

The d vector would describe a figure eight about the l vector.

For the B-phase there should not be any transverse frequency shift as long as

the tipping angle is kept smaller than the critical angle 104o. The reason for this

is that the dipole energy for the B-phase is changed by a small rotation around the

z axis, but not by small rotations around the x or y axes. In fact, a rotation of d

around the x or y axis is equivalent to a reorientation of the precessing axis without

a change in the angle θ.

2.4 3He on a regular slab geometry

We will give here a brief review of some of the theoretical and experimental work

done in the past regarding superfluid 3He on a confined planar geometry.

2.4.1 Past work: Theory

Although the exact phase diagram of 3He films as a function of temperature and

pressure is not experimentally known in this case, there have been several theoretical

studies which we will briefly comment here.

One of the first calculations of the effects of the walls on an anisotropic superfluid

was done by Ambegaokar et al. in 1974 using Green’s function methods [5]. They
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Figure 2.3: The transverse and longitudinal components of the order parameter of
3He near a specularly reflecting wall after Ambegaokar et al. [5]. The longitudinal
component decays to zero over a length scale of ξL(T ) near the wall whereas the
transverse components remain unaffected.

proved that the boundary conditions at the walls strongly affect the longitudinal and

transverse components of the order parameter over a length scale given by ξL(T ) and

ξT(T ), respectively. For a specular wall, the longitudinal component of the order

parameter is zero at the walls and recovers to its bulk value over a length scale of

ξL(T ). The transverse components, on the other hand, remain unaffected. For a

diffuse wall, all components are zero at the walls and recover to their bulk values

over length scales of ξL(T ) (the longitudinal component) and ξT(T ) (the transverse

components). The results for a specular wall are shown in Figure 2.3.

Based on the work of Ambegaokar et al, Kjäldman et al. calculated the transition

temperature as a function of film thickness for an infinite slab enclosed between two
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Figure 2.4: Transition temperature as a function of the thickness D in a slab between
diffusely scattering planes after Kjäldman et al [25]. The asymptotic results in the
Ginzburg-Landau range and near the critical thickness are given as a dashed line
and a dotted line, the full numerical result as a solid line.

diffusive walls [25]. They found that, in the Ginzburg-Landau limit, the dependence

of the transition temperature on the slab thickness (D) had the form

T film
c = T bulk

c exp(−3

5
ξ2
s π

2/D2)

Below about 0.9 Tc, numerical calculations showed that the Ginzburg-Landau pre-

diction was underestimating the film transition temperature (see Figure 2.4), the

highest discrepancy taking place at D ∼ 3ξo, where the underestimation reached

∼ 10% T bulk
c .

Fetter and Ullah [26] included the influence of strong coupling corrections to the

Ginzburg-Landau formalism and obtained phases diagrams for specular and diffuse
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Figure 2.5: Transition temperature versus film thickness for superfluid 3He at zero
pressure. Both diffuse scattering (a) and specular scattering (b) are shown. After
Fetter and Ullah [26].

scattering at zero pressure which included both A- and B-phases. Interestingly,

specular scattering did not suppress the superfluid transition temperature, but it

did stabilize the A-phase down to zero temperature for thicknesses smaller than

about 5 coherence lengths. These phase diagrams are shown in Figure 2.5. Note

that the boundary between the A- and B-phases depends only weakly on the surface

scattering conditions.

Li and Ho [27] took into account the pressure and produced several phase di-

agrams (see Figure 2.6), for both diffuse and specular scattering, over a range of

thicknesses from 200 nm to 500 nm. They found that the A-phase was favored by

the boundaries in very narrow slabs. In particular, for diffuse scattering, it was

stable for thicknesses D ≤ 7.5 ξ(T, P ), in good agreement with Fetter and Ullah.
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Figure 2.6: Phase diagram for a 250 nm thick superfluid 3He slab with both specular
and diffuse surfaces. After Li and Ho [27].

At low temperatures and high pressures, the A-phase, whose order parameter was

purely transverse, was unstable against what they called a “deformed” B-phase,

or B-planar, which had both, longitudinal and transverse components of the order

parameter. Since the effect of the pressure is to diminish the size of the coherence

length, the high pressure part of the phase diagrams from Li and Ho would be sim-

ilar in nature to a thicker film at zero pressure, where the B-phase was found stable

by Fetter and Ullah.

One theoretical treatment of a film confined between a diffuse and a specular

boundary is that of Vorontsov and Sauls [28]. They used quasiclassical transport

equations to obtain the phase diagram shown in Figure 2.7. To compare this diagram

with Figure 2.4 and Figure 2.5 the x-axis should be multiplied by two to account
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Figure 2.7: Phase diagram for superfluid 3He films with one diffuse and one specular
boundary. The inset shows an enlarged portion of the AB-phase boundary. After
Vorontsov and Sauls [28].

for the specular boundary of the free surface. In this case, the smaller thickness

for which the B-phase can be stabilized is of 10 coherence lengths at zero tempera-

ture. This shows a clear disagreement with Fetter and Ullah, who give 7 coherence

lengths as the minimum thickness for which the B-phase could exist between two

diffuse walls. The origin of this discrepancy is two-fold. On one hand, each of these

two works use a different definition of the coherence length: Fetter and Ullah use 50

nm for the zero pressure, zero temperature coherence length whereas Vorontsov and

Sauls use 72 nm. On the other hand, there is the problem of the effect of the bound-

aries. In fact, whereas the A-phase has an order parameter somehow insensitive to

specular reflections, that is not the case for the B-phase. The scattering with the

surface breaks the rotational symmetry of the Cooper pair. For the B-phase, with



Chapter 2. Confined superfluid 3He 45

an isotropic energy gap, this translates into sub-gap excitations (which are, actually,

Andreev bound states) which eliminate the isotropy of the order parameter in mo-

mentum space. In other words, the specular scattering suppresses the component of

the order parameter perpendicular to the wall. The A-phase, on the other hand, has

an order parameter with only longitudinal components. The rotational symmetry

is already broken by the equal spin pairing. This is why we can consider a film

with one diffuse and one specular boundary equivalent to a film with two diffuse

boundaries and double thickness for the A-phase, but not for the B-phase.

A remarkable feature in this phase diagram is the re-entrance A −→ B −→ A

which takes place on cooling a film at a constant thicknesses of the order of 10 ξo. The

actual candidate for the thin films regime is the A-like planar phase described above,

also with only longitudinal components of the order parameter. The transition from

A (planar) to B and then to A again is the cause of a broken translational symmetry

along the plane of the film. This is a rather striking effect because the system

seems to have a perfect planar symmetry if we consider an infinite slab. However,

as we cross vertically the phase diagram over the re-entrance area, the transverse

component of the order parameter appears (B-phase) and disappears (A-phase).

That, coupled with the scattering at the walls, produces a broken symmetry in the

plane of the film.

That broken symmetry might suggest a novel inhomogeneous phase of the su-

perfluid with an off-diagonal term in the order parameter.

AInhomog =




∆ 0 0

0 ∆ 0

∆x 0 ∆z




(2.33)
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Figure 2.8: Phase diagram for superfluid 3He showing the hypothetical stabilization
of an inhomogeneous phase (striped phase) next to the re-entrance of the A-phase.
From Vorontsov and Sauls [28]. See text for explanation.

where now ∆x and ∆z are the magnitudes of the energy gap along the x and z

axes, respectively. Note that the x axis is on the plane of the slab and the z axis

is normal to it. In Figure 2.8 we can see an hypothetical phase diagram showing

the inhomogeneous phase between the A- and the B-phases. Here, Qx is the wave

vector in the x direction. For each value of the temperature and Qx we can obtain

a critical Qc
z or, in other words, a critical thickness Dc = π/Qc

z. The Figure shows

the transition lines (critical thicknesses) for different values of Qx. The physical

transition occurs for the Qx-mode with the lowest Dc. As we can see, for large

thicknesses the transition occurs for a value of Qx=0.15, whereas at lower thicknesses

it happens at Qx=0.30. The black line, enclosing the modes of minimum critical

thickness, represents the physical transition and the red line the mode for which
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Qx=0 or, in other words, the transition to the B-phase. Finally, the inset shows a

blow-up of the re-entrant region.

Another work that studied the size effects on a slab with one diffuse and one

specular surface is that of Yamamoto et al. [29]. They used the quasi-classical

Green’s function method to obtain the superfluid density as a function of temper-

ature for various film thicknesses. They found reasonable agreement with previous

experimental work [30] for films thinner than 174 nm, whereas their calculations for

thicker films deviated from the experimental observations.

Although not relevant to this work in particular, there have been other theoret-

ical studies regarding much thinner films. A firm candidate in this very thin regime

is a Kosterlitz-Thouless phase transition [6]. Another possible 2-D transition was

suggested by Stein and Cross [31]. They proposed a two-dimensional Ising-like phase

transition in the 3He order parameter in which “islands of reversed l” spontaneously

nucleated as a consequence of the Z2 symmetry of the order parameter. This Z2

symmetry coexisted with the U(1) gauge symmetry associated with the standard

Kosterlitz-Thouless transition. This work was later complemented by Kawamura

[32], who considered the additional internal symmetry SO(2) associated with the

nuclear spin degree of freedom. He predicted, for films of thicknesses of 100 nm

or less with specular boundaries, two successive transitions with an intermediate

non-superfluid phase. The upper transition could be identified by a logarithmically

divergent anomaly in the heat capacity whereas the lower transition was character-

ized by the onset of standard superfluidity and could be detected by usual torsional

oscillator techniques. The intermediate phase, although did not exhibit real super-

fluidity, was a low-dissipation state. Such a low-dissipation state has already been

observed experimentally [33], [34].

The possibility of a gapless superfluid, i. e. a superfluid with zero energy gap,
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taking place in 3He for film thicknesses smaller than the coherence length and com-

parable to the interparticle separation k−1
F was pointed out by Tešanović and Valls

[35], [36], [37]. Although very demanding technically, the experimental confirmation

of these theories regarding films of thicknesses of the order of hundreds of angstroms

is expected to happen in some near future.

2.4.2 Past work: Experiments

Research concerning stable samples of confined superfluid 3He is technically very

demanding. This is the reason for which the theoretical treatments anticipated

the experimental work on such systems. We discuss below the most significant

experimental studies on superfluid 3He slabs.

Although there had been previous works concerning superfluid 3He in a confined

geometry (supercurrent through a nucleopore, in particular [34]), the first observa-

tion of film flow on 3He was made at Queen’s University in 1985 [38]. They used

a copper beaker open at the bottom to a main 3He reservoir. The chamber out-

side the beaker contained a capacitive level detector. They filled the main reservoir

with 3He until the level inside the beaker was at the rim and the level outside the

beaker was about 10 mm below the rim. In this state, a meniscus formed inside the

beaker with 3He slowly flowing over the rim of the beaker. They converted the film

flow into critical current and measured the superfluid transition. Their reported Tc

for film thicknesses comparable to the coherence length was of the order of 3 mK,

higher than the bulk transition temperature at saturated vapour pressure (0.94 mK)

and in disagreement with the theoretical predictions. These disagreements were at-

tributed to a thermal gradient in the cell which caused the film flow through the

thermomechanical effect (see Section 3.4). A later work by the same group [40] used
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Figure 2.9: Superfluid transition temperatures as a function of film thicknesses as
measured by Steel et al. [39]. A 4He monolayer changed the boundary conditions
and no suppression on Tc was observed.

an improved cell which eliminated the thermal gradient to measure the superfluid

transition in films of nominal thicknesses of 90, 100, 110 and 120 nm. They observed

a suppression of Tc for all their samples, but it was not in agreement with the the-

oretical predictions [25], [26]. The reason, as they later realized, was that the sharp

corners of the beaker rim led to ambiguities in the interpretation of the results. The

details of the profile of the rim were critical, since a sharp edge of the rim would

cause the 3He film to thin as it passed over that edge. Also, small scratches across

the rim were observed in scanning electron micrographs of the beaker. That formed

parallel flow paths with dimensions independent of the film thickness.

To overcome these difficulties they designed a round rim beaker with which they

had a well defined curvature of the film passing over the rim [39]. This time they
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observed an agreement with the Ginzburg-Landau predictions (2Dc/ξ(T ) = π with

the factor of two accounting for the free surface). Their results are displayed in

Figure 2.9. By coating the chamber with monolayers of 4He, they did not observe

a suppression of the superfluid transition at all. Their flow rate, which scaled as

(1−T/T film
c )3/2, was one order of magnitude lower than expected. Interestingly, they

found an sudden flow rate transition as they thinned their film. This was attributed

to a transition from a B-like phase to an A-like phase.

Almost at the same time as this later experiment, another film flow experiment

was carried out at Berkeley [41]. They used a copper cylinder partially immersed

in a bath of liquid 3He. The flat top surface of the cylinder protruded a distance

h above the bath. Slightly above this top surface, forming a capacitive gap, was

located a flat metal disk. The application of a dc voltage drove the liquid into the

capacitor gap. Using this technique, they also observed a suppression of Tc as the

thickness of the film decreased. The observed temperature dependence of the critical

current in the Ginzburg-Landau regime was j ∼ (1−T/T film
c )3/2, as shown in Figure

2.10. However, they did not have an accurate measure of their film thicknesses.

In 1990, Freeman and coworkers performed measurements on 300 nm thick films

of 3He confined between closely spaced 1.5 µm thick Mylar sheets [42]. Figure 2.11

shows one of the results of this experiment. Their experimental cell combined the

Nuclear Magnetic Resonance and Torsional Oscillator techniques. They observed

transition temperatures, superfluid densities and Nuclear Magnetic Resonance fre-

quency shifts in good agreement with the theory. Pressure was applied ranging from

1.5 to 22.6 bars. Nuclear Magnetic Resonance allowed them to positively identify

the superfluid phase as A-like. This phase was stable down to 0.3 mK, a region

of the phase diagram where the theory would predict a B-like phase as the stable

one. However, a transition into the B-phase was never observed in this experiment,
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Figure 2.10: Critical currents for different values of T film
C as a function of (1−T/T film

C )
after Davis et al. [41].

probably due to a supercooling effect on the A-phase. Another major advance in

this work was in changing the boundary conditions from diffuse to specular by pre-

plating the substrate with 4He. Under specular boundary conditions, the transition

temperature remained the same as for bulk samples (see Figure 2.11).

Also in 1990, researchers at Purdue University [43] used a torsion pendulum

to perform measurements on a broad range of film thicknesses. They developed

a technique which allowed them to grow metastable unsaturated 3He films on the

surface of an oscillating copper plate. It consisted of heating a small 3He reservoir

at the base of their cell and allowing the 3He atoms transferred through the vapour

to condense at the bottom surface of the copper plate.

The thicknesses of the films varied between 83 and 172 nm and they found that
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a) b)

Figure 2.11: The NMR shift (a) and normal fluid density (b) for different boundary
conditions after Freeman et al. [42]. The boundary conditions correspond to 0-,
32- and 90-µmole/m2 4He coverages. The 3He pressure is 8.5 bars. The transition
temperature is suppressed as the scattering changes from specular to diffuse.

the films slowly thinned if held well below the superfluid transition temperature,

the typical rate being 100 Å per day. We can see their results in Figure 2.12. The

transition temperature decreased with film thickness in good agreement with the

theory of Kjäldman et al. Also, the superfluid density was suppressed as the films

got thinner. In particular, they found that the superfluid density as a function of the

reduced thickness w = d/ξ(T ) fell onto two different curves depending on whether

the films were thicker or thinner than 137 nm (see Figure 2.13). Since the B to A

phase transition was expected to occur at higher thicknesses, they attributed this

behaviour to a transition into a new phase.

Using a third sound technique, Schechter et al. [30], [44] measured in 1998 the
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a) b)

Figure 2.12: Reduced transition temperature (a) and superfluid density (b) for
several effective film thicknesses after Xu and Crooker [43]. The inset on (a) shows
the experimental cell.

superfluid density as a function of temperature for films of thicknesses ranging from

92 to 281 nm. In this experiment, a thick horizontal copper disk was positioned in

a container of superfluid 3He and its polished top surface formed the substrate for

the superfluid film. The third sound waves were excited and detected capacitively

and their speed gave a measure of the superfluid density. Their results agreed with

the Ginzburg-Landau predictions for their thickest films, but for films thinner than

∼ 200 nm the slope of their observed data near Tc was smaller than the theory

would have it (see Figure 2.14). They also studied the effect of 4He coating of the

substrate. For a given temperature and film thickness they found the superfluid

density was dramatically increased with adding 4He. The transition temperature,

also, was found to be closer to the bulk transition temperature. A side-effect of
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Figure 2.13: Superfluid film densities normalized to the bulk superfluid density as a
function of the reduced film thickness after Xu and Crooker [43].

the 4He coating was an increase in the base temperature to which 3He could be

cooled due to the increased Kapitza resistance between the heat exchangers and the

experimental 3He. This minimum temperature went from 0.38 Tc for pure 3He to

0.68 Tc for 2.5 layers of 4He coating the copper substrate.

Finally, in more recent times, a group in Osaka has performed continuous wave

longitudinal Nuclear Magnetic Resonance on 3He films with fixed thicknesses of 0.8

and 1.1 µm [45], [46], [47]. By varying the pressure, they could change the reduced

slab thickness d/ξ(T ). They observed the A-B phase transition for a number of

pressures ranging from 10 to 27 bar, the transition temperatures being suppressed

by about 15 % from those of the bulk liquid. They also found that below a certain

pressure-dependent value of the reduced thickness only the A-phase was stable.
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Figure 2.14: Average superfluid densities obtained from the speed of third sound as
a function of reduced temperature after Schechter et al. [30]. The lines represent
the Ginzburg-Landau predictions for a 3He-B film enclosed between two diffusively
scattering walls.

Reliable measurements of these features at saturated vapour pressure were, however,

not reported in their work.

Although there have been a number of experiments on systems similar in nature

to the one which is the object of this work, the phase diagram of confined superfluid

3He is far from been mapped out. We have seen that most of the previous research

observed a suppression of the transition temperature. The qualitative behavior of

the superfluid, however, was not always in agreement with the existing theories,

especially for very thin films. It is in that regime where the most exciting (and most

technically challenging) research remains and novel physics is expected to arise from

the study of these systems.
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The NMR experiment

In these days, a man who says a thing cannot be done

is quite apt to be interrupted by some idiot doing it.

Elbert G. Hubbard.

Rationale

Nuclear Magnetic Resonance (NMR) was the tool originally used to explore the

mysteries of the new observed phases of 3He, back in 1972. It was crucial in clarifying

that the new features actually came from the liquid [4] and not from a magnetic

ordering in the solid, as was at first believed. Since then, NMR has been used in

countless experiments regarding 3He. One of the beauties of doing NMR on 3He is

that it not only provides a clear signature of the superfluid transition, but it also

shows, in the words of Leggett, the “fingerprints” of each phase.

The applications of NMR, not only in physics, but in many scientific subjects,

56
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are numerous. They include chemical structural analysis and chemical dynamics,

atomic motion in fluids and solids, 3D imaging or molecular design.

In this experiment we use pulsed NMR to study films of 3He of thicknesses

comparable to the superfluid coherence length. Due to the extremely small size

of the required samples it is needed to design a spectrometer involving a SQUID

(Superconducting QUantum Interferometer Device) to achieve the required signal

sensitivity. This Chapter describes the basics of NMR and SQUIDs along with the

design and characteristics of the spectrometer used. The NMR cell is also described

in detail before presenting the experimental results and discussing them.

3.1 The Physics behind NMR

3.1.1 The basics

There exists an extensive literature concerning NMR [48], [49], [50] and therefore

we will only give here a brief description of the underlying physics.

NMR is a phenomenon which arises from the interaction between matter and

electromagnetic radiation. It is well known that if we apply a magnetic field H

to a non-ferromagnetic material it develops a magnetisation M according to the

relationship

M = χH (3.1)

A word of caution here: the magnetic susceptibility χ is a tensor. That means that

the magnetisation does not necessarily need to be aligned with the applied magnetic

field. In fact, that only happens for linear isotropic materials. In an isotropic

material the magnetic susceptibility tensor is a diagonal matrix. If, in addition, the

material is linear, then the magnetisation is proportional to the external field. From
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this point onwards we will only refer to linear and isotropic systems 1 and will treat

the (now diagonal) tensor χ as a scalar.

Let us consider now a nuclear magnetic moment µ. When placed in a magnetic

field B it will experience a torque. The rate of change of the angular momentum is

proportional to this torque (in the same way as it happens with a precessing top in

a gravitational field according to Newton’s Second Law)

µ×B = h̄L̇

Since the magnetic moment is related to the angular momentum itself by µ = γh̄L

we can write

µ̇ = γµ×B

where γ is called the gyromagnetic ratio.

We can apply the above analysis to an assembly of magnetic moments by defining

the magnetic moment per unit volume, or magnetisation M. We have, then,

Ṁ = γM×B (3.2)

The solution of this equation of motion is a precession of the vector M around the

magnetic field with an angular velocity ω = γB. This angular velocity is called the

Larmor frequency. In a real material, however, not all the spins see exactly the same

static field due to field inhomogeneities and the magnetic moments of the neighbour

spins. As a result, the Larmor frequency varies over the sample.

1It might seem at first sight that superfluid 3He has an anisotropic magnetic susceptibility tensor
for all its phases, even for ESP states. What actually happens is that the tensor is anisotropic for a
constant d vector. Under the influence of a magnetic field the d vector will tend to accommodate
perpendicular to it in order to minimize the Zeeman energy of the pairs, making the system
effectively isotropic



Chapter 3. The NMR experiment 59

One needs to be careful and apply rigorously the relation between the fields B

and H

B = µo(H + M)

where µo is the magnetic permeability of the free space. Therefore equation 3.1

becomes

M =
χ

(1 + χ)

B

µo

Usually, for paramagnetic materials, χ << 1 and we can approximate equation 3.1

by

M =
χ

µo

B

It is necessary to clarify the conditions for linearity in an isotropic paramagnetic

material. It can be shown from basic statistical mechanics that a sample consisting

of n particles per unit volume with spin 1/2 in a magnetic field B has a magnetisation

given by

Mo = nµ tanh

(
h̄γBo

2kBT

)

where µ is the magnetic moment of a single spin. For small fields and/or high

temperatures (low polarization) we can approximate the hyperbolic tangent in first

order and obtain

Mo =
nh̄2γ2

4kBT
Bo (3.3)

where the relation µ = γh̄/2 has been used. Equation 3.3 is known as Curie’s Law :

for a paramagnetic material the magnetisation is proportional to the external field

and inversely proportional to the temperature. The magnetic susceptibility in the

linear region becomes then

χo =
µonh̄2γ2

4kBT
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3.1.2 Relaxation

We have said that in the ultimate equilibrium state of a linear isotropic paramagnetic

system under the influence of a magnetic field the magnetisation is parallel and

proportional to the field and the components perpendicular to the field are zero.

That equilibrium state is reached through a process called relaxation. The process

by which the magnetisation becomes proportional to the magnetic field is called

spin-lattice relaxation and involves a change of the magnetic energy density −M ·B
due to interactions between the spins and the lattice. The characteristic time of the

spin-lattice relaxation is called T1. The vanishing of the transversal components of

the magnetisation has to do with the slightly different field seen by each of the spins

due to the presence of the neighbours and/or any possible field inhomogeneities.

This process is called spin-spin relaxation and its characteristic time is called T2.

The relaxation process was first described from a pure phenomenological ap-

proach by Felix Bloch in 1956 through the following equations:

Ṁz = γ|M×B|z +
Mo −Mz

T1

Ṁx = γ|M×B|x − Mx

T2

Ṁy = γ|M×B|y − My

T2

According to Bloch equations, the components of the magnetization evolve as

Mx,y(t) = Mx,y(0) cos(ωot)exp(−t/T2)

Mz(t) = Mo − [Mo −M(0)]exp(−t/T1)

T2 is related to differences in the local magnetic fields experienced by the spins.
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Experimentally, however, the external magnetic field usually presents inhomogeneities

which also affect T2. T ∗
2 is the spin-spin relaxation time taking into account any po-

tential inhomogeneity in the external field. The relationship between these is

1

T ∗
2

= γ∆B +
1

T2

where ∆B represents the inhomogeneity in the field.

Nuclear Magnetic Resonance can also be described in quantum mechanical terms.

A static magnetic field would split the energy levels of the system according to

the Zeeman effect. The splitting would have a spacing proportional to the field

∆E = h̄γB. If we now use electromagnetic radiation of frequency f = γB/2π we

can induce transitions (resonance) between the levels.

3.1.3 CW and Pulsed NMR

There is not a single method for investigating nuclear resonance. We could, for

example, study what happens to our system under the influence of a continuous pe-

riodic disturbance. Or, on the other hand, we could apply a temporary disturbance

and observe the subsequent evolution of the system. The first method is called con-

tinuous wave (CW) NMR and the second Pulsed NMR. The NMR pulses are usually

applied perpendicular to the static magnetic field and this method is called trans-

verse pulsed NMR. Longitudinal pulsed NMR is a special case of performing the

technique. Superfluid 3He, for example, exhibits a longitudinal resonance, whereas

normal 3He does not. Historically, CW was almost the only method used to perform

NMR for the first decade of the technique (1946-1956), but more recently Pulsed

NMR has become the dominant method due to its versatility.

CW and the NMR following a single pulse are completely equivalent but the
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convenience of one or the other methods highly depends upon the sort of experiment

we are dealing with. CW NMR is easier from the analytical point of view, since

the output does not need specialised Fourier analysis. In fact, one method is the

Fourier transform of the other. In CW NMR the sample is placed inside a coil and

a small RF magnetic field is continuously applied. The frequency of the RF field

is slowly swept through resonance and the resonant power absorption is measured

from the RF voltage induced across the coil. But not all the specimens are suitable

for CW NMR. Firstly, very small systems would benefit from a better signal to noise

ratio. And secondly, signals with very long T ∗
2 would have their spin-spin relaxation

masked by field inhomogeneities. T1 and T ∗
2 are much easier to measure using pulsed

techniques by just Fourier transforming the time domain decay of the response to

the short pulse and measuring the width of the resulting curve. Pulsed NMR also

allows to repeatedly average the time domain response to a series of N pulses, thus

increasing the signal to noise ratio by a factor
√

N .

It is for the above reasons that we choose to use Pulsed NMR in order to study

our 3He films.

3.2 The SQUID NMR spectrometer

The SQUID NMR spectrometer described in Section 3.3 is based in the previous

work of Dyball in this same group [51]. We will start by giving a brief account of

the physics and operation of DC SQUIDs in this Section before going into further

details concerning the spectrometer.
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3.2.1 The DC SQUID

SQUIDs are amongst the most sensitive existent devices. Any physical quantity that

can be converted into a magnetic flux is susceptible to be measured by a SQUID,

hence the wide spectrum of applications of these devices in science: from detecting

varying magnetic fields coming from the human brain to the search of gravitational

waves. A SQUID consists of a superconducting ring containing one (rf SQUIDs)

or two identical (DC SQUIDs) Josephson junctions. The DC SQUID is operated

with a steady current bias and the RF SQUID with a radiofrequency flux bias. Two

physical phenomena constitute the basics of SQUIDs: flux quantization inside a

superconducting loop and Josephson tunnelling. The difference in the phase of the

electrical current across the Josephson junctions produces an output voltage across

the SQUID which is periodic in magnetic flux. It is not uncommon to be able to

detect changes in the magnetic flux of less than a flux quantum. We will concentrate

on the physics of the DC SQUID, since that is the kind of SQUID used in these

experiments.

The two Josephson junctions are shunted with an external resistance to remove

any hysteretic behaviour in the I-V characteristic. Each junction has a critical

current above which it becomes resistive. The SQUID is biased with a current which

is greater than twice the critical current. If we now apply a magnetic flux through

the loop the SQUID will generate a current to counteract the applied flux. The

system shows a different I-V characteristic curve for each different flux threading

the loop, as shown in Figure 3.1a. For a constant current we can plot the V-φ

characteristic (Figure 3.1b) which is periodical in flux, the period being one flux

quantum (φo = h/2e) and whose amplitude has the value of the voltage swing

between both I-V characteristics (red line in Figure 3.1a). The maximum critical
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Figure 3.1: Typical SQUID I-V (a) and V-φ (b) characteristics. The SQUID is
biased with a current greater than 2Ic with Ic the critical current of each Josephson
junction. The dot marks the working point of the SQUID, which is desirable to be
kept within the linear region of the V-φ characteristic.

current corresponds to an integer number of flux quanta threading the loop and

the minimum critical current corresponds to a half-integer number of flux quanta.

Any small change in flux would then be measured as a change in voltage across the

SQUID. The flux bias can be used to set the working point in the linear region of

the V − φ characteristic. In order to remain within the linear region the coupled

flux signals should not surpass values of about φo/10.

3.2.2 SQUID system overview

The SQUID system consists of three main parts, namely, the pick-up circuit, the

SQUID itself and the feedback electronics (see Figure 3.2). In this experiment we use

a tuned pick-up circuit. This circuit resonates at a certain frequency and provides

amplification over a narrow frequency band.

Tuned and Untuned Input circuits

A tuned pick-up or input circuit is a series resonant circuit which connects the NMR

receiver coil with the input coil of the SQUID. It also contains a capacitor and a

resistive element, both in series. In an untuned input circuit, on the other hand,
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there is no capacitor and the receiver coil is directly connected to the input coil.

The circuit is entirely superconducting and the conservation of flux implies that the

SQUID measures the flux through the receiver coil. In such a case, since the input

circuit is simply a flux transformer and not a resonant circuit, the spectrometer is

called “broadband spectrometer”. In a tuned input circuit, the voltage across the

input coil depends upon the frequency as ω2, whereas in a broadband spectrometer it

is simply proportional to ω. The flux coupled to the SQUID has the same frequency

dependence. On the other hand, the noise signal per unit bandwidth in the input

circuit, arising from the small Johnson noise voltage across the resistor, obeys

< i2N >=
4kBT

Ri

where Ri is the dissipative element in the input circuit and T is the temperature. Ri

can arise from a resistive component or from dissipation in the capacitor. The noise

signal is due to thermally induced Brownian motion of the electrons in the metal.

On resonance, we can write

< i2N >=
4kBQipT

ωoLT

(3.4)

where Qip is the quality factor of the input circuit and LT the total inductance. The

flux noise coupled to the SQUID will therefore be proportional to ω−1/2 and the SNR

(Signal to Noise Ratio) will vary with the frequency as ω3/2. The signal current in

the input circuit is proportional to the resonant frequency, as shown in Equation

3.17. In a broadband input circuit there is no resistor and, therefore, no Johnson

white noise voltage across it. It follows that, since the SNR is linear for a broadband

circuit and depends upon the frequency as ω3/2 for a tuned circuit, there will exist

a frequency, ωc, above which the SNR will be higher for a tuned spectrometer than
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for an untuned one. This cut-off frequency depends on the lineshape of the sample

and on the temperature of the input circuit. It also depends on the SQUID noise.

For samples of T ∗
2 = 1 ms at 4.2 K it has been found that fc = ωc/2π ∼ 1 MHz

and as the temperature of the input circuit is lowered ωc decreases [52]. Since we

will be working at relatively high fields (the Larmor frequency being about 1 MHz)

the decision was to use a tuned input circuit to improve our sensitivity. Additional

advantages of using a tuned input circuit are the de-emphasizing of white noise,

the extra amplification factor
√

Qip and the negligible response to low-frequency

motion in the static magnetic field. On the other hand, in pulsed NMR, a tuned

input circuit it is not the best choice for samples with very short T ∗
2 , since the ring

down after a transmitter pulse would completely mask the sample decay. In the

case of 3He, T ∗
2 is of the order of ms and the tuned circuit is a safe choice provided

the ring down time is of the order of µs. In our case, the ring down time constant

was about 33 µs.

Flux-Locked Loop operation

The flux coupled to the SQUID through the input coil can take the working point

out of the linear region if the flux signal is larger than φ0/10. Another issue is the

existence of shifts in the operating point arising, for example, from the transient

associated with the transmitter pulse. A Q-spoiler (see Section 3.3.1) can be used

to overcome this problem. In order to avoid saturation caused by large signals the

output is sent to a feedback coil via a series resistor Rf (see Figure 3.2). The feedback

coil produces a flux equal and of opposite sign to the flux coupled to the SQUID,

therefore keeping the working point unaltered. In this fashion the SQUID works as

a null detector of flux. This operating method is called Flux-Locked Loop (FLL)

and allows to measure changes in flux up to many flux quanta.
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Noise in DC SQUID systems

Along with the NMR signal, an undesired amount of noise is detected when per-

forming measurements. The noise in the DC SQUID comes from two sources: the

Johnson white noise coming from thermal excitations of the electrons in the shunt

resistors of the Josephson junctions and a frequency dependent noise which goes

as 1/f and is due to fluctuations in the critical current of the Josephson junctions

and to motion of the flux lines inside the SQUID ring. Generally the white noise

dominates above just a few kHz and therefore we will not be concerned about the

1/f noise in these experiments.

The noise produces a rounding of the I-V characteristic due to a suppression of

the critical current. That reduces the transfer coefficient Vφ (which is the slope of

the V − φ characteristic at the working point). This should not be a serious issue

unless the SQUID is subjected to a large external noise. The voltage noise spectral

density and the flux noise spectral density are related by

< φ2
N >=

< v2
N >

V 2
φ

where V 2
φ is the SQUID transfer coefficient. If we add the preamplifier to the above

equation we can get an expression for the total flux spectral noise density of the

SQUID system

< φ2
N >=< φ2

N,i > +
< V 2

N >

V 2
φ

(3.5)

where < φ2
N,i > is the intrinsic flux noise density of the SQUID and < V 2

N > is the

intrinsic voltage noise density of the preamplifier.
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Noise temperature

The noise level of the SQUID system would ideally be dominated by the intrinsic

noise of the SQUID. In practice, however, that only occurs below certain tempera-

ture, at which the Johnson noise of the resistor in the tuned input circuit becomes

equal to the intrinsic noise of the SQUID. That temperature is called the noise

temperature of the system. It is desired for the noise temperature to be as low as

possible in order to obtain the better SNR. Certain parameters can be chosen in the

input circuit to optimize the noise temperature.

In the input circuit of Figure 3.2 we can write for the current noise circulating

in the SQUID

φN = INLs

where Ls is the SQUID self-inductance. For the total flux in the SQUID we have

then

φT = φN + MiIi = φN + Mi

(Vi − jω0MiIN

Zi

)

where ω0 is the resonance frequency of the input coil, Mi is the mutual inductance

between the SQUID and the input coil, Vi and Ii are the voltage across the input

coil and the current through it, respectively, and Zi is the total impedance of the

input circuit. The input circuit resonance frequency is given by

ω0 =

(
1

Ci(Lp + Li)

)1/2

where Ci is the capacitance of the input circuit, Li is the self-inductance of the input

coil and Lp the self-inductance of the receiver coil. And the quality factor is defined
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by

Qip =
ω0(Lp + Li)

Ri

=
1

Ri

(
(Lp + Li)

Ci

)1/2

We can define now the quantities

α2 =
M2

i

LiLp

(3.6)

and

α2
eff =

M2
i

(Lp + Li)Ls

= α2
( Li

Lp + Li

)

where α is the coupling coefficient of the SQUID and input coil. Let us now separate

the total flux into the signal flux and the effective noise flux:

φs =
MiVi

Zi

and φN,eff = φN

(
1− jωoM

2
i

ZiLs

)

By comparing the effective noise flux with the noise at the resistor we can get an

estimate of the relative importance of both noises. A resistor Ri at temperature T

generates a noise current

< I2
N >=

4kBT

Ri

which gives a voltage noise power of (4kBT/Ri)M
2
i V 2

φ . On the other hand, the mean

square output noise voltage power on resonance per unit bandwidth can be obtained

from the effective flux noise

< V 2
N >= V 2

φ

(
1 +

ω2
oM

4
i

R2
i L

2
s

)
< φ2

N >

By applying the definition of noise temperature, we can now finally obtain an ex-
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pression for it:

TN =
( Ri

4kBM2
i

)(
1 +

ω2
0M

4
i

R2
i L

2
s

)
< φ2

N > (3.7)

if we minimize TN with respect to (ω0M
2
i )/(RiLs) = x, we find that the minimum

noise temperature corresponds to x = 1. In other words, the optimum resistance is

(Ri)opt =
ω0M

2
i

Ls

Or, in other terms,

Qip α2 Li

Li + Lp

= 1 (3.8)

The optimum noise temperature is, therefore,

TN =
< φ2

N > ωo(Li + Lp)

2kBM2
i Qip

The parameters of the input circuit can be chosen, therefore, to optimize the noise

temperature, making it as low as possible. In order to make an estimate of the

optimum noise temperature for our SQUID, we could use Equations 3.6 and 3.8 and

write

Li + Lp

M2
i Qip

=
1

Ls

which gives

TN =
< φ2

N > ωo

2kBLs

The intrinsic mean square flux noise per unit bandwidth for this SQUID is, at 1

kHz, < φ2
N >= 1.14µφ2

oHz−1 and the SQUID self-inductance Ls = 210 pH. Those

values give an optimum noise temperature of 6 mK at 1 MHz.

If we now consider the effect of the preamplifier, which has a voltage noise am-
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plitude of < V 2
N >1/2= 0.45nV/

√
Hz and a transfer coefficient of Vφ = 540.8µV/φo

and use Equation 3.5, we find an optimum noise temperature of 9.24 mK at 1 MHz.

Additional Positive Feedback

One major difficulty is the satisfactory matching of the SQUID to the room-temperature

read-out electronics. A matching transformer could be used to equal the SQUID

output impedance with the electronics input impedance, but this would significantly

reduce the bandwidth of the system. One way to avoid the impedance matching

circuit is to use a second SQUID as a preamplifier. This has the disadvantage of

the additional wiring needed between the cryogenic environment and room tempera-

ture. Alternative read-out schemes which do not require cooled impedance matching

circuits are a frequency modulated scheme and a directly coupled one [53].

Much simpler is to directly couple the output of the SQUID to the room temper-

ature preamplifier. This is called the Direct Offset Integration Technique (DOIT)

and it offers the possibility of achieving much higher bandwidths than matching

transformers. However, the electronics could significantly reduce the SNR of the

system if its noise is larger than the SQUID intrinsic noise. There are several solu-

tions for this [54]. For this experiment we used a SQUID with Additional Positive

Feedback (APF). The APF circuit consists of a resistor, Ra, and an inductance, La,

coupled to the SQUID (see Figure 3.2) in such a way that the slope of the V − φ

characteristic is increased at the working point with positive feedback. The net

effect of this is that the noise and the signal coming from the SQUID are amplified

by the same factor (the SNR from the SQUID is unchanged) and the noise from the

SQUID does match more closely the noise produced by the output amplifier. This

allows the SQUID output to be directly connected to a room temperature amplifier

without the use of a matching transformer which would degrade the bandwidth of
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Figure 3.2: Schematics of the SQUID NMR spectrometer

the system.

For our spectrometer, the APF SQUID has an intrinsic white noise (at 1 kHz) of

< φ2
N,i >1/2= 1.14 µφo/

√
Hz and a transfer coefficient at the working point of Vφ =

540.8 µφo/
√

Hz (see Table 3.3.2) and our room temperature output amplifier has

an intrinsic voltage noise density of < V 2
N >1/2= 0.45 nV/

√
Hz. Using Equation 3.5

we find that the amplifier has an intrinsic flux noise density of 6.92 ×10−13 φ2
o/Hz

whereas the SQUID intrinsic flux noise is 1.3 ×10−12 φ2
o/Hz. Therefore, the amplifier

does not significantly degrade the SNR.

3.3 Experimental setup

Figure 3.2 shows a setup of the SQUID NMR system used for this experiment. The

SQUID, APF circuit and the feedback coil are integrated in a SQUID chip. The

static field is provided by a superconducting NMR magnet located in the helium bath

(see Appendix A), not shown in the Figure. The transmitter coil and the receiver coil
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have their axes perpendicular to each other and both of them perpendicular to the

axis of the NMR magnet to minimize any potential cross-coupling. The transmitter

coil, along with the sample, the input circuit and the SQUID chip are in a cryogenic

environment. The rest of the spectrometer operates at room temperature.

3.3.1 The input circuit and transmitter coil

The input circuit was tuned at a frequency of 963 kHz inside the cryostat. A single

surface-mount 470 pF capacitor was used to resonate at a frequency somewhat near

970 kHz, a quiet place as far as magnetoacoustic noise was concerned (see Section

3.4.6). The Q of the input circuit, Qip, was measured to be 100 ± 5. The copper

receiver coil acted as the resistive element Ri of the input circuit. We can estimate

the value of this resistance by

Ri =
ω0Lt

Qip

∼ 2.6Ω

where Lt is the total inductance of the input circuit (42.68 µH). The rest of the com-

ponents of the input circuit were the input coil, the Q-spoiler and the compensation

transformer. Apart from the receiver coil, the components of the input circuit along

with the SQUID chip carrier were located inside a cylindrical Nb shield designed to

protect the SQUID from environmental magnetic noise. Several Nb superconducting

pads deposited on a fibre board acted as connection points to which the different

components of the input circuit were connected. This fibre board lay on a stycast

holder which also gave support to the SQUID carrier. The assembly is shown in

Figure 3.3. The Q-spoiler chip had two screw terminals through which it was con-

nected to the Nb pads on the fibre board. Both, the compensation transformer and

the input coil were located on the reverse of the stycast holder. A small hole drilled



Chapter 3. The NMR experiment 74

Figure 3.3: Input circuit and SQUID connections showing stycast holder front (a)
and back (b)(not to scale). The yellow area represents the fibre board containing
the Nb superconducting pads. A blow up of the SQUID chip is shown in (c), along
with the SQUID connections.

on the stycast allowed the twisted pair coming from the input coil to be connected

to the Nb pads.
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Figure 3.4: Top and Side views of both halves of the receiver coil former. The 3 mm
deep groove in the bottom side of the lower half provides a path for the wiring to
cross from one side to the other.

The receiver coil

The receiver coil, rectangular in shape, is wound around a coil former which encloses

the experimental NMR cell. The receiver coil former is made out of Stycast 1266

and a rectangular shape was chosen over a circular one in order to improve the filling

factor. The coil is split into two halves to allow some space for the cell’s fill line.

The wire used is enamelled copper wire, 44 SWG (80µm diameter), and the coil

consists of 45 turns on each side of the fill line. This gives us a measured inductance

of Lp = 37.9 µH. Figure 3.4 depicts a sketch of the top and bottom halves of the

receiver coil former. The lower half of the former presents a 3 mm deep groove in

the bottom side to allow the wiring to cross from one side of the former to the other.

We can approximate the field:current ratio for an equivalent circular coil by the
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expression

Br =
µoNK

l
(3.9)

where K is an inhomogeneity factor referring to the fact that the solenoid is not

infinite, K = 1/[1 + 0.45(2a/l)], and l and a are the length and the radius of the

solenoid, respectively. Taking a as the smallest possible radius of the solenoid, this

is, the height of the coil, one can find Br = 6.81 mT/A. This parameter is very

important since the NMR signal size is determined by the magnetic field inside the

receiver coil. The copper leads coming from the receiver coil are heat sunk in a

wedge-shaped plate at the lower end of the heat switch and soldered to CuNi clad

NbTi leads which join the rest of the input circuit at the 4K plate. The room

temperature resistance of the receiver coil was 18.3 Ω. Copper was chosen for the

receiver coil in order to avoid the magnetic disturbances in the field homogeneity of

the sample produced by superconducting wires.

The input coil

The “flip-chip” SQUID input coil is wound out of 106 µm Formvar CuNi clad NbTi

wire. It is circular in shape with a diameter of 5.8 mm and it consists of 2×11

turns, one on top of the other. The reason of having two layers of wire is the higher

inductance one can achieve in that way and, therefore, the higher mutual inductance

between the input coil and the SQUID. In order to measure the inductance of the coil,

it is connected to a LC circuit and the value of the capacitor is changed over a range

which goes from 0 to 100 pF. For each value of the capacitor the resonant frequency is

measured with a Vector Impedance Meter. By plotting 1/ω2 against the capacitance

and doing a linear fit we obtain a slope whose value is the desired inductance. The

measured inductance of the coil is Li = 4.78 µH and the measured mutual inductance
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with the SQUID is Mi = 2.27 nH. The input coil is placed in a circular groove

machined in the input circuit stycast holder (see Figure 3.3). It is intended to place

it as close to the SQUID chip as possible in order to achieve maximum coupling. The

leads from the input coil are soldered to two of the superconducting pads present

on the fibre board.

The Q-Spoiler

Although the design of the transmitter and receiver coil is made to minimize any po-

tential current in the receiver coil arising from the transmitter signal, cross-coupling

does occur. This can have a harmful effect on the SQUID performance if large

signals are coupled to the SQUID. In order to prevent that, a dynamic resistance

is connected in series to the input circuit. This device is called a Q-Spoiler and it

consists of a series of around twenty unshunted DC SQUIDs connected in series. A

niobium control line running along the array is used to modulate the critical cur-

rent of the device. While the current flowing through the Q-Spoiler is less than its

critical current, the device behaves as a superconductor and has no effect on the

input signal whatsoever. If the current exceeds the critical current of the Q-Spoiler,

then it becomes resistive and the signal coupled to the SQUID is reduced sensibly.

The critical current of the Q-Spoiler is controlled by a modulation coil. This critical

current can take values between 20 and 40 µA for our particular Q-spoiler, as shown

in Figure 3.5. The resistance in the normal state is 400 Ω.

The ring down time of the input circuit following the removal of the transmitter

pulse is given by

τ =
2Qip

ωo

For our values of Qip ∼ 100 and fo = 963 kHz, our ring down time constant was
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Figure 3.5: The Q-spoiler I-V characteristic. The maximum (black line) and min-
imum (red line) critical currents are 40 and 20 µA, respectively. The device has a
normal state resistance of 400 Ω.

about 33 µs. Due to the fact that 3He has a T ∗
2 of the order of ms, much larger than

the ring down time, it was not necessary to minimize the Q-Spoiler critical current

with the modulation line during these experiments.

The Q-spoiler used in this experiment was supplied by STAR Cryoelectronics.

The compensation transformer

We found that the signal fed back to the SQUID via the feedback coil was also

coupled to the input coil and gave rise to a number of undesirable effects, such as



Chapter 3. The NMR experiment 79

the dependence of the input circuit Q on the value of the feedback resistance, Rf .

The system white noise was also found to vary with Rf . In order to get rid of those

effects we use a compensation transformer. This consists of two superconducting

twisted pairs twisted around each other forming an eight-shaped figure. Each of

the loops of the eight-shaped outline has a radius of 3 mm. One of the twisted

pairs is connected to the input circuit using the superconducting pads whereas the

other is connected in series to the feedback loop via the f+ terminal on the SQUID

chip and to the room temperature preamplifier (see Figures 3.2 and 3.3). The

current flowing through the twisted pair connected to the feedback coil induces a

current equal and of opposite sign in the twisted pair connected to the input circuit.

The compensation voltage across Ri, therefore, is equal and opposite in sign to the

induced voltage in the input coil coming from the feedback coil. It is important to

connect the compensation transformer in the correct way around to get the desired

effect. This is identified by performing a set of measurements of the input circuit Q

factor with different feedback resistors and observing any potential oscillations on

it. These measurements were made on a transport dewar outside the fridge and are

shown in tables 3.1 and 3.2 We can see in Table 3.1 that the Q is strongly dependent

Feedback Resistor Qip measured
2× 1kΩ 634.80

2× 2.2kΩ 2518.26
2× 4.7kΩ 369.01

Table 3.1: Q dependence on feedback resistors with compensation transformer in
first way around

on the value of the feedback resistor. The behaviour is not linear, either, since the

Q is four times larger with a pair of 2.2 kΩ feedback resistors than with a pair of

1.1 kΩ and for two 4.7 kΩ feedback resistors it has about half the value it had for
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Feedback Resistor Qip measured
2× 470Ω 124.98
2× 1kΩ 113.17

Open Loop (Shallow side) 141.27
Open Loop (Steep side) 141.65

Table 3.2: Q dependence on feedback resistors with compensation transformer in
second way around

the pair of 1.1 kΩ. Changing the compensation transformer the other way around

we observed a much more stable behaviour of the Q, with a value of the expected

order for the input circuit. This was the way around chosen for the compensation

transformer.

The transmitter coil

The transmitter coil is wound in a saddle geometry around a MACOR former and

glued using black 2651 Stycast. The coil is made out of CuNi clad NbTi wire with

106 µm total diameter and it consists of 15 turns on each side of the saddle, with a

120o angle in each circular arc. It is 44 mm long with a diameter 22 mm. The length

being double the diameter provides the best field homogeneity at the center of the

coil [55]. For a saddle coil with N turns, radius r and length 2l, the field:current

ratio is given by [55]

Bt =
Nµo

√
3

π

(
rl

(r2 + l2)3/2
+

l

r(r2 + l2)1/2

)
(3.10)

For our transmitter coil we found B = 1.015 mT/A. Its measured inductance was

53.3 µH. The leads from the transmitter coil are heat sunk at the mixing chamber

plate and then again at the 4 K plate before entering the dipper probe (see Section

3.3.4).
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3.3.2 The W9 series SQUID

The SQUID used throughout this work was made at PTB in Germany. The SQUID

chip contained an integrated APF coil and was deposited on a plastic chip carrier,

where four Nb pads gave access to the SQUID points V +, V−, f+ and f− (Figure

3.3 c). The SQUID was first tested in a transport dewar outside the cryostat. It was

Parameter Label W9M-6w/957-C51

Maximum critical current Ic 4.85 µA
Modulation depth for minimum noise ∆V 38.9 µV

SQUID gain at working point Vφ 540.8 µV/φo

Flux noise at 1 kHz < φ2
N,i >1/2 1.14 µφo/

√
Hz

SQUID self-inductance Ls 210 pH

Table 3.3: SQUID parameters at 4.2 K as measured at PTB

operated from a control box connected to the room temperature read-out electronics.

A set of BNC sockets provided connections to the current, voltage and flux bias and

to the FLL switch. The box also allowed to manually change between Reset and

FLL modes by mean of a switch. For every BNC socket a knob could be used to

adjust the current applied to the socket. In Reset mode the DC voltage and current

offsets could also be adjusted using another two knobs to provide zero voltage across

the SQUID and zero current through it.

Figure 3.6 shows the measured I-V and V-φ characteristics of our SQUID. In

order to measure the SQUID I-V characteristic a low frequency (64 Hz) sine wave

was applied to the current bias through the BNC socket in the SQUID control box.

By adjusting the φbias pot the critical current was set to its maximum. The V-φ

characteristic could be viewed by applying the same signal to the φbias socket. The

Ibias pot was adjusted to obtain the maximum amplitude in the V − φ characteris-

tic. The Vbias and φbias pots were likewise adjusted to establish the working point.
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Figure 3.6: SQUID I-V (a) and V-φ (b) characteristics as measured in a transport
dewar at 4.2 K

While measuring the characteristics, the SQUID was operated in open loop with the

feedback resistor removed in order to prevent any effect from the feedback circuit.

Prior to the experimental work inside the fridge, the spectral noise of the SQUID

system was tested in a transport dewar in order to adjust the optimal value of the

feedback resistor Rf . A dummy receiver coil was used to mimic the actual receiver

coil later used in the experiment. An inductance of 76.94 µH was measured for this

receiver coil and the input circuit resonant frequency was 820 kHz. The capacitor

used in the transport dewar had a value of 477 pF. The noise spectrum was captured

with a spectrum analyzer from DC to 10 MHz for three different values of feedback

resistors with the electronics in FLL mode. Figure 3.7 shows the spectral noise

for 2 × 1.1 kΩ (red), 2 × 2.2 kΩ (blue) and 2 × 4.7 kΩ (black). The system
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Figure 3.7: The SQUID system noise spectrum for 2 × 1.1 kΩ (red), 2 × 2.2 kΩ
(blue) and 2 × 4.7 kΩ (black) feedback resistors

bandwidth showed a dependence on the value of the feedback resistor, whereas the

magnitude of the noise peak and the system white noise seemed to be independent of

Rf . The bandwidth decreased with increasing values of Rf , as expected [54]. It was

also attempted to measure the system response with 2 × 470 Ω feedback resistors,

but the feedback loop did not hold lock (at the time of writing, the cause of this

problem is not completely understood). Therefore, the choice was made to use 2 ×
1.1 kΩ feedback resistors in order to get the highest possible bandwidth (which was

measured to be 5 MHz).

With the SQUID spectrometer inside the cryostat the noise flux density was

measured for a number of different temperatures of the input circuit. As we can

see in Figure 3.8, the magnitude of the noise peak decreases with
√

T , indicating

that the measured noise is Johnson noise due to the resistance of the input circuit.

If we extrapolate the data to zero flux density we can infer a noise temperature

of the system of TN ≈ 800 mK. This means that below 800 mK the output noise
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Figure 3.8: Flux noise density of the noise peak as a function of temperature. The
extrapolated linear fit shows a noise temperature TN ≈ 800 mK

was dominated by the SQUID intrinsic noise and the SNR did not benefit from

subsequent cooling of the receiver coil.

One could now use Equation 3.7 and our spectrometer parameters to calculate

the noise temperature we should be measuring (which is not the optimum noise

temperature since the parameter x = (ωoM
2
i )/(RiLs) was not set to 1). Using

Ri = 2.6Ω, Mi = 2.27 nH, Ls = 210 pH, fo = 965 kHz and < φ2
N >1/2= 1.41µφo/

√
Hz

(including the effect of the preamplifier) we obtain a noise temperature of TN = 78

mK. It is evident that the measured noise temperature far exceeds the calculated

noise temperature. We measured the SQUID noise at 100 kHz in the cryostat and

obtained< φ2
N >1/2= 1.49 µφo/

√
Hz, which agrees with the value provided by the

SQUID manufacturer (1.41 µφo/
√

Hz with our preamplifier). The disagreement
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between the measured and calculated noise temperatures could be due to the effect

of a spurious resistance in the input circuit, or some capacitive or inductive coupling

to the SQUID. One potential candidate for these couplings was the APF circuit. In

order to further investigate this issue, we made measurements in a transport dewar

on two different SQUIDs: one with and one without APF. We used a high Q tank

circuit with a superconducting receiver coil. The use of a superconducting receiver

coil would make easier to identify the effect of any spurious resistance in the input

circuit. In the SQUID with APF we measured a Q of 200 at a resonant frequency

of 1.6 MHz. Since now the total inductance of the input circuit was 16.3 µH, this

gave a resistance of 0.844 Ω. The Q was also found to decay by a factor of two at

the steep side of the V-φ characteristic. This could be an effect of the APF. In the

SQUID without APF, however, our Q was 600 and the input circuit resistance was

0.08 Ω. Also, the Q was not varying when we changed the SQUID working point

from one side of the V-φ characteristic to the other.

These measurements suggested that the reason for the high noise temperature

measured inside the cryostat could be the APF circuit. Although we could clearly

see 3He NMR signals with our spectrometer, as shown in Section 3.5, future work

on this experiment will probably imply the use of a SQUID without APF.

3.3.3 The room temperature read-out electronics

The room temperature read-out electronics were designed by Dr. D. Drung from

PTB, Berlin and have been described elsewhere [56]. They consisted of a integrated

unit shielded in a brass can. The feedback resistors could be plugged in the circuit

through four pin connectors. The electronics were connected to a 9-way Fischer

connector on the top of the dipper probe. We used the electronics set XF2-HTS
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M3, which provided an open FLL gain of 0.4194 Vφ−1
o for 2×1 kΩ feedback resistors

and a preamplifier noise of 0.7 nV/
√

Hz. An extra amplifier following the FLL

output provided an additional gain of 10.

3.3.4 The dipper probe

The SQUID shield and the wiring connecting the SQUID to the room temperature

electronics were located on a dipper probe which entered the cryostat through one of

the line-of-sight 40 mm diameter access ports. The probe runs through a stainless

steel vacuum tube welded to the 4K flange. At the top of the probe there is a

NW40 sealed brass plate with two NW10 sealed connectors for a SQUID box and

the transmitter coil. The top plate is connected to the 4K flange by means of

M4 stainless steel studding. A series of copper baffles are located all along the

length of the studding in order to reduce the radiative heat leak coming from room

temperature. The conductive heat leak is reduced by breaking the studding with

three teflon rods. Two twisted pairs of 44 SWG copper wire join the SQUID box

with a heat sink post at the 4 K flange. At the heat sink the copper wires are soldered

to superconducting wire which is then connected to the superconducting pads in the

SQUID chip carrier. Another copper twisted pair for the transmitter coil runs down

the probe and is heat sunk above and below the teflon rods and then to a different

post at the 4 K plate. Both heat sink posts are covered with cigarette paper to avoid

the grounding of the sunk wires. At the 4K plate there is a 1 kΩ resistor soldered

across the transmitter coil twisted pair acting as a high frequency filter with a cut

off frequency of ∼ 3 MHz. Both heat sink posts are covered in aluminium foil and

copper tape for shielding. The wiring coming from room temperature runs inside

teflon in 1.6 mm stainless steel tubing. The last copper baffle provides support for
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the two heat sink posts and for two M2 stainless steel studding which connect the

SQUID plate to the probe.

3.3.5 Pulsing the system

The pulse sequencer used to obtain our NMR data is sketched in Figure 3.2. Prior

to the pulse, the NMR static field is set at 29.75 mT, corresponding to a 3He Larmor

frequency of 965 kHz. Then, a short burst of 150 cycles of a 965 kHz sine wave is

applied to the transmitter coil via a room temperature transmitter box containing

two crossed diodes in series to block low-level noise. An Agilent 15 MHz function

generator model 33120A is used to produce the burst and to trigger the oscilloscope.

The Agilent is triggered by a home made pulse generator programmed by Dr. Tom

Crane. This pulse generator has several boards whose parameters can be changed

independently and it also makes possible to set any desired delay time between the

pulses. The pulse generator also triggers a sample and hold unit and the reset-FLL

switch in the read-out electronics (the FLL is opened during the transmitter pulse

in order to avoid saturation). The object of the sample and hold is to remove the

DC level coming from the activation of the FLL. This DC level is different each

time due to a different number of flux quanta threading the SQUID loop. After

the triggering from the pulse generator, the sample and hold allows also DC to pass

through. As a side effect, the sample and hold also affects the bandwidth of the

system (our particular unit has a bandwidth of ∼800 kHz, so the bandwidth of the

system is reduced) and the output gain. This gain change is frequency dependent

and, for our 965 kHz, it corresponds to a factor of 0.473.

The transmitter pulse could easily saturate the feedback electronics. The SQUID

is, therefore, left in reset mode until 250 µs after the pulse is finished. 50 µs after the
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activation of FLL, the pulse generator triggers the sample and hold, thus ensuring

that the captured data contain zero DC offset. The FLL is activated for 50 ms. A

delay of 460 µs between the triggering and the beginning of the data acquisition

is set in the oscilloscope. The capture length in the oscilloscope is 2400 divisions,

each division being 10 µs. The capture time is, therefore, 24 ms. It is recommended

in pulsed NMR to have capture times of, at least, 5T ∗
2 in order to avoid signal

distortion.

The transverse relaxation of the spins is due to variations of the local magnetic

field over the sample. Spins that are not stationary (like those from a gas or a bulk

liquid) would perceive larger variations of the local field. The time average of those

variations would translate into a smaller spread of fields interacting with each spin,

i. e. each spin would feel a more homogeneous field (and, therefore, a larger T ∗
2

than stationary spins). As a result, spins in a slab geometry show a smaller T ∗
2 than

spins in bulk. At the lowest temperatures attained, T ∗
2 was of the order of 1 ms,

making our capture time long enough for our purposes.

The NMR pulse could certainly induce eddy currents in the metallic substrate

of the cell. An eddy current is a phenomenon caused by a moving magnetic field

intersecting a conductor or vice-versa. The relative motion causes a circulating flow

of electrons, or current, within the conductor. These circulating currents create

magnetic fields that oppose the change in the external magnetic field. The current

circulation can result in Joule heating of the substrate. For a rectangular metallic

sheet of thickness t, the heating per unit area due to a magnetic field B in the plane

of the sheet follows [57]

Q̇

A
=

ωδ

2µ0

B2

[
sinh(t/δ)− sin(t/δ)

cosh(t/δ) + cos(t/δ)

]
(3.11)
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where ω is the field frequency and δ is a characteristic length called the skin depth

δ =

(
2ρ

ωµ0

)1/2

with ρ the resistivity of the metal. The skin depth gives a measure of the length scale

over which the magnetic field decreases in strength within the metal. Residual Resis-

tance Ratios (RRR) of similar silver samples have been measured in the past giving

values of about ∼300. This gives a resistivity at 4.2 K of ρ = 5.74× 10−11 Ωm−1.

From the definition of skin depth we obtain, at 1 MHz, δ = 3.8µm, which is much

less than the 1 mm thickness of our silver substrate.

The 90o pulse required a transmitter current of 112 mA during 155 µs (see

Section 3.4.5). Using Equation 3.10 we find that such a transmitter pulse provides

a magnetic field of 0.114 mT. According now to Equation 3.11 that magnetic field

dissipates a power per unit area of 0.12 W/m2 during the 155 µs pulse. For our two

13 mm diameter silver discs, therefore, the total power dissipated is 31.8 µW for each

155 µs pulse, or, in other words, 4.92 nJ dissipated per pulse. If we were to pulse

every second, that would average a total heat leak of 4.92 nW. Note that the heat

transfer to the sample would only happen after the spins are tipped, which means

that the signal we obtain is the state of the spins at the pre-pulse temperature.

In order to reduce this heat leak as much as possible, the pulse size used during

these measurements was equivalent to a ∼ 20◦ tipping pulse (25 mA in the trans-

mitter current and 0.24 nJ dissipated per pulse). Below 1 mK the pulse rate was

kept at 1 pulse every 30 seconds, corresponding altogether to a heat leak of 8 pW.
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Figure 3.9: Sketch of the assembly of the experimental NMR cell (not to scale).
A Kapton ring (b) provides the spacing between the top (a) and bottom (c) silver
surfaces. See text for further explanation.

3.4 The experimental NMR cell

The study of thin films of 3He presents severe experimental complications such as

the small number of quasiparticles involved in the measurements and the stability

of the sample. The NMR cell used for this experiment is designed to overcome those

difficulties. Figure 3.10 shows a sketch of both halves of the experimental cell as

well as the assembly of the fill line to the top surface whereas the general assembly

of the cell surfaces can be seen in Figure 3.9. The 3He quasiparticles are adsorbed

on two 1 mm thick circular silver surfaces which form the top and bottom of the

cell. A Kapton ring with the same OD as the diameter of the cell, 1 mm wide and

200 µm thick provides the spacing between both surfaces. The bonding of the two

halves of the cell is attained by painting both sides of the Kapton ring with Stycast

2651 and letting the assembly to dry out. Once the epoxy is dry, the edges of the

Kapton ring are likewise painted with the same Stycast. From each surface of the

cell a 5 mm wide, 24 mm long rectangular tab emerges in order to provide a thermal

link to the nuclear stage. The circular surfaces where the 3He is adsorbed have a
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Figure 3.10: Design of the experimental NMR cell with fill line. a) Top view of the
top surface. b) Top view of the bottom surface. c) Side view of the top surface. d)
Longitudinal section of top surface showing assembly with thick silver tube

diameter of 13 mm, making the total length of each surface 37 mm. The diameter

of the adsorbing surfaces was chosen as a compromise to maximize the surface area

of the experimental sample and keeping it within the high homogeneity region of

the NMR magnet. In order to allow 3He inside the cavity, the top surface presents a

hollow tube. The tube and the silver disc form a single piece of metal. This tube is

4 mm long with 2 mm OD and 1.75 mm ID and is attached to another silver tube,

60 mm long, with 2 mm OD and 1 mm ID. The attachment is made by thinning
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Figure 3.11: The NMR cell with transmitter and receiver coils set mounted on the
silver plate.

the thicker tube, as depicted in Figure 3.10, and inserting it inside the thinner tube.

This is done in such a way that a small length of the inner tube appears through the

bottom side of the top silver surface. A 0.5 mm diameter 72Ag28Cu brazing wire

is placed around the gap between the inner tube and the silver disc and the set is

taken to 830 oC for five minutes. After the brazing is made, the extra length of the

inner silver tube is machined away. The thicker silver tube joins on to a 0.15 mm

ID CuNi tube which runs up to the room temperature gas handling system. Since it

is needed to avoid condensation of the liquid inside the fill line, a heater made from

44 SWG constantan wire is employed below the cold plate (which operates at ∼60

mK) to wrap around the fill line. The fill line is also weakly thermally linked to the

cold plate and mixing chamber plate of the cryostat. A thin film resistor provides

yet another way of applying heat to the fill line. This resistor is attached to the fill

line just outside the MACOR transmitter coil former, as shown in Figure 3.11.

There are several reasons behind the choice of silver as a substrate. First of all,

it is a high-conductivity metal in order to minimize thermal gradients, particularly
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those arising from heating associated with NMR pulses. Note that the 3He sample is

cooled down through an area of ∼ 1 cm2 and this boundary dominates the thermal

resistance between it and the nuclear surface. Silver has a smaller nuclear heat

capacity than copper, making it easier to cool down well below 1 mK, and the

magnetoacoustic resonances following a NMR pulse are not as intense as those in

copper [58]. Silver is used in both surfaces in order to avoid temperature gradients

within the cell which could lead to internal flow of 3He due to the thermomechanical

effect [38] of the normal liquid, as observed in the previous cell used by Dyball [51].

The whole NMR cell assembly, comprising the transmitter coil MACOR former

and the NMR cell enclosed by the receiver coil stycast holder, sit on a 10 mm thick

silver plate connected thermally to the nuclear stage by a 10 mm diameter silver

rod. This silver rod serves also as mechanical support. The NMR cell rectangular

tabs present a M3 clearance hole at 22 mm from the centre of the circular surface

through which a silver post runs providing thermal link with the experimental silver

plate by means of a cone joint. A 200 µm thick silver washer is used between the

tabs at the M3 clearance hole. The PLM thermometer is also mounted on this silver

plate. A silver holder acts as a mechanical support for the thermometer. This silver

holder is clamped to a silver post connected to the silver plate and thus providing a

thermal link with the nuclear stage. Figure 3.11 shows the assembled NMR set in

the experimental area along with the PLM thermometer.

3.4.1 Preparation of the metallic surfaces

Prior to the assembly of the cell, the silver surfaces needed to be mechanically

polished and characterized. The polishing was carried out using a Buehler Minimet

1000 polishing machine. The surfaces to be polished were attached to a brass holder
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Figure 3.12: Surface characterisation as measured by a Tencor Profilometer (a) and
by an Atomic Force Microscope (AFM)(b).

using wax. First, each surface was “roughed” down using grit paper. Then, the

brass holder was attached to the polishing machine. The surfaces were polished

using diamond paste and water as a lubricant. The diamond paste was progressively

reduced in size, from 9 µm grit size to 3 µm and, finally to 1 µm. After this last

stage, the final polish was made using a solution of Al2O3 which had a particle size of

0.05 µm. This polishing method enabled us to achieve a measured surface roughness

of ± 10 nm, as shown in Figure 3.12.

3.4.2 Top and Bottom Films

Liquid 3He is ideally adsorbed on the silver surfaces of the cell forming two uniform

films, one at the top surface and one at the bottom surface. A state of equilibrium

is reached in which the chemical potential of both film surfaces is the same. The

liquid is bound to the surfaces by van der Waals forces, which arise from the fluctu-

ating dipole moments of the atoms. Near the absorption surface the van der Waals

potential has the form −C3d
−3, where C3 is a constant describing the strength of

the long-range van der Waals interaction and d is the thickness of the 3He film.
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However, for thicker films, a retardation effect takes place and the van der Waals

potential for a film of thickness d can be written as [59]

Vretarded(d) = −γo
do

1.4

1

d4

where γo and do are constants that depend both on the liquid and on the substrate.

For 4He adsorbed on gold, do has a value of 160 Å and γo has a value of 3100 kB Å3

[59]. We will use those values for this discussion. Note that the retardation effect

only occurs for films of thickness much larger than do. We can, therefore, write

−γo
do

1.4

1

d4
b

= −γo
do

1.4

1

d4
t

+ mgh (3.12)

where db and dt are the film thicknesses at the bottom and the top of the cell,

respectively, m is the mass of a 3He atom and h is the height of our cell, in this case,

200 µm. We use now the values of γo and do and find that

1

d4
t

− 1

d4
b

= 2.02× 10−12Å
−4

Therefore, when db → ∞, dt → 840 Å. This is the maximum possible thickness on

the top surface. We will define dTOTAL = dt + db and dM = 84 nm. We have then

that

1

d4
t

=
1

d4
b

+
1

d4
M

and thus

dt = db

(
1 +

d4
b

d4
M

)−1/4

(3.13)
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Figure 3.13: The thickness of top (red) and bottom (black) films within the NMR
cell as a function of the total thickness for a cell height of 200 µm

We can also express the total thickness as

dTOTAL = db

[
1 +

(
1 +

d4
b

d4
M

)−1/4]
(3.14)

By using Equations 3.13 and 3.14 we can relate each of both films to the total

thickness. This is shown in Figure 3.13. We can observe that up to about 50 nm

both films increase at the same rate. Above 50 nm, however, gravity starts to make

increasingly difficult the adsorption of liquid in the top film. For a 150 nm thick

film on the bottom surface, the top film has already reached its maximum of 84 nm.

This model did not take into account the possibility of capillary condensation

of the liquid in the corners of the cell. Another analysis is presented in Section

4.2.1 in which the film surface energy is considered, although there the non-retarded

potential is used to investigate the possibility of capillary condensation for thin films.

In the NMR cell, the stycast used to bond the top and bottom halves could form a

curved surface in which the 3He could adsorb smoothly forming a constant thickness
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Figure 3.14: Film distribution over the substrate for a tilted cell

film all over the cavity. The NMR data presented in the next section did not show

clear signatures of capillary condensed liquid in the corners.

3.4.3 Effect of the tilt

If the silver surfaces are not absolutely levelled, the thickness of each film will vary

throughout the substrate. We can study this effect by writing an equation similar

to Equation 3.12

−γo
do

1.4

1

d4
l

= −γo
do

1.4

1

d4
r

+
mgD sin θ

kB

(3.15)

where now dl is the left side thickness and dr is the right side thickness, respectively,

as shown in Figure 3.14. D is the diameter of the cell and θ is the tilt angle. We

have then

1

d4
l

− 1

d4
r

= 1.808× 10−10 sin θÅ
−4

= t
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Figure 3.15: Variation of the film thickness as a function of the tilt angle. The black
curve corresponds to a tilt angle of 1◦, the red curve to 0.1◦ and the blue curve to
0.01◦.

We will call t the tilt factor. Let us now write dl as a function of dr

dl = dr[1 + td4
r ]
−1/4 (3.16)

Figure 3.15 shows the left and right sides thicknesses for different tilt angles. The

black curve corresponds to a tilt angle of 1◦, the red curve to 0.1◦ and the blue curve

to 0.01◦. Even for a tilt of 0.01◦, we can observe that above 200 nm the left side of

the cell does not adsorbs any more liquid. It is thus important to make sure that

the cell is as levelled as possible in order to avoid a non uniform thickness across

the entire substrate.

3.4.4 Signal sizes and inferred magnetisation

In order to know the magnetisation of a 3He sample we need an estimation of the

number of spins contributing to its NMR line. This estimation is made as follows.
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From Equation 3.9 we can obtain the current flowing through the input circuit as a

result of a given flux change in the receiver coil. Let us consider a signal following

a 90o pulse. The flux in the receiver coil produced by the NMR signal would be

φr = BrcKM0vs

with Brc the field per unit current at the centre of the coil, K the inhomogeneity

factor, M0 the magnetisation of the sample and vs sample volume. This gives rise

to an induced voltage across the receiver coil which is given by

Vr = −∂φr

∂t
= ω0BrcKM0vs

since the flux varies sinusoidally with time at a frequency ω0 and the phase is unim-

portant for our purposes. For this calculation we will use BrcK = 8.7 mT/A, which

is equivalent to take K = 1 in Equation 3.9. The factor K is the major source of

error in these calculations. Taking it as 1 makes Bc, if anything, an overestimation

of the actual field within the coil.

The voltage across the receiver coil would produce a current flowing through the

input coil

Iip =
ω0BrcKM0vs

Ri

(3.17)

and a flux coupled to the SQUID

φSQ =
ω0BrcKM0vsMi

Ri

where Mi is the mutual inductance between the input coil and the SQUID and Ri

is the resistance of the input circuit. This resistance is given, as noted in Section
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3.2.2, by

Ri =
ω0LT

Qip

with LT the total inductance of the input circuit. Therefore

φSQ =
BrcKM0vsMiQip

LT

(3.18)

Now, 3He follows Curie’s law down to its magnetic temperature, Tm=253 mK, below

which the magnetisation remains constant as a function of temperature. This gives

a magnetisation for a spin density n of

M0 =
nh̄2γ2

4kBTm

B0

and this can be related to the total number of spins Nspins in the sample by

M0 =
Nspinsh̄

2γω0

4kBTmvs

(3.19)

We can now substitute Equation 3.19 into Equation 3.18 to obtain a flux through

the SQUID

φSQ =
BrcKNspinsh̄

2γω0MiQip

4kBTmLT

This flux is multiplied by the read-out electronics’ FLL gain and by the sample and

hold gain before reaching the oscilloscope. The Fourier transformed signal height is

then given by (see Appendix B)

Hs =
VsT

∗
2

2∆

where ∆ is the sampling interval. Finally, we need to take into account the fact that
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we wait during the input circuit ring-down following a transmitter pulse and only

then we start to capture the data. By that time, the original NMR signal will be

decreased by a factor e−t/T ∗2 . The above analysis was for a 90o pulse. The tipping

angle used in these experiments was ∼20o and that needs also to be scaled in our

final result. We can now relate the number of spins with the height and width of

the measured NMR signal by

Nspins =
8 Hs ∆ kB Tm LT

GSH GFLL Brc K h̄2 γ ω0 Mi Qip T ∗
2 cos(70) e−t/T ∗2

(3.20)

For our particular set-up, GSH = 0.473 at 963 kHz, GFLL = 0.4194 V/φ0, BrcK = 8.7

mT/A, γ = 2.038 × 108 s−1T−1, f0 = 963 kHz, Mi = 2.27 nH, Qip = 100 and

LT = Lp + Li = (37.9 + 4.78) µH= 42.68 µH. The capture delay time was 460 µs

and the oscilloscope was set to 120,000 points in 2400 divisions at 10 µs/division.

This gives a sampling interval of ∆ = 2 × 10−7 s/point. T ∗
2 and Hs were obtained

from the width and the amplitude, respectively, of the NMR peak. The number of

spins can be also translated into film thickness by using the molar volume of 3He

(36.59 cm3/mol) and the substrate surface (9.5× 10−5 m3 each plate). We obtain

t = 6.393× 10−25Nspins

where t is the total thickness (i.e. top and bottom films) in meters.

3.4.5 The 90 o pulse

To calibrate the tipping angle provided by a given transmitter pulse, we studied the

signal height as a function of the current through a 10 Ω resistor in the transmitter

coil circuit. The test was carried out on a sample of 4.1 ×1017 spins at a temperature
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Figure 3.16: The NMR signal height as a function of applied current in the trans-
mitter coil. The transmitter pulse has a frequency of 965 kHz and is applied during
155 µs.

of ∼7 mK. The applied current was varied by changing the amplitude of the trans-

mitter pulse, of frequency 965 kHz and duration 155 µs. According to the solution

of Equation 3.2, the magnetic field required to produce a 90o pulse would satisfy

γBt = π/2

when the magnetic field is applied during a time t. Therefore, for t =155 µs, the

required magnetic field is 4.97×10−5 T. Since the magnetic field exciting the spins is

half of the total applied field [50], we would need an RF field of amplitude 9.94×10−5

T. From Equation 3.10 the total current needed for a 90o pulse is 98 mA. Figure

3.16 shows the result of our measurements. The maximum of the quadratic fit

to the data corresponds to a current of 112 mA, a discrepancy of ∼15% with the

calculated value. In order to reduce the eddy current heating and provided that the
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Figure 3.17: The frequency components of the background resonances (black) com-
pared to the frequency components of the 155 µs transmitter pulse (red)

NMR signals could be resolved with ease even for our thinnest samples, a tipping

pulse of 20o was used throughout all our measurements.

3.4.6 NMR signals and Background resonances

The NMR data was taken on a PC and Fourier transformed using a LabView routine.

We took background signals with the NMR field off-tune. After Fourier transform-

ing this data, several magnetoacoustic resonances were observed in the frequency

domain. The comparison of these resonances with the exciting pulse can be seen

on Figure 3.17. The signal was averaged for 30 times. A sharp feature is clearly

seen at around 962 kHz, even though that corresponds to the first minimum of the

transmitter pulse. This peak was coherent in nature and could, therefore, be re-

moved by subtracting the background signal from the data signal. This subtraction

was done by moving the static field a few kHz away from the Larmor frequency

and subtracting the resultant data set from the signal data in the time domain. We
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Figure 3.18: Time domain (a) and frequency domain (b) NMR signals for a sample
consisting of 29× 1017 spins (2×927 nm). Data were averaged 30 times.

observed that the background signal changed after transferring liquid helium to the

cryostat, so it was needed to refresh it after each transfer.

A typical NMR signal, corresponding to a sample of 29×1017 spins (2×927 nm)2

is displayed on Figure 3.18. The time domain data (Figure 3.18a) was taken for

24 ms. After subtracting the background, the Fourier transformed line (Figure

3.18b) was fitted to a Lorentzian curve to give a T ∗
2 of 4.3 ms. For shorter T ∗

2

times (i.e. signals from the superfluid state) a string of zeros could be added to

the end of the time domain data to increase the number of points of the NMR

line. The frequency resolution in the frequency domain is inversely proportional

2From this point onwards we will adopt the following notation when referring to a NMR sample:
x spins (2×y nm), meaning that the nominal number of spins was x and that corresponds to two
films y nm thick each, should the morphology be that of a regular slab.
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Figure 3.19: NMR signal from 29 × 1017 spins (2×927 nm) (black) compared with
the background (red). Both signals were averaged 30 times.

to the capture time so if we double the number of points in the time domain the

number of points in the frequency domain is also increased by a factor of two. The

feature visible on the left wing of the line in Figure 3.18b was artificially created

by the background subtraction. The background (as well as the signal) was divided

in small intervals, each of which was fit to a polynomial prior to the subtraction.

The number of degrees of freedom allowed in the fits could be chosen. We observed

that changing that number of degrees of freedom had different effects on the output

Fourier transform lineshape. The final choice was to use a nine-order polynomial.

For our thickest samples, the background subtraction was not strictly necessary,

as shown in Figure 3.19.
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3.5 Results and discussion

Prior to cooling down to superfluid temperatures, we attempted to make a system-

atic study of sample growth. The idea was to obtain a signal which would be stable

over time and to get the maximum amount of the added atoms inside the experimen-

tal cell. We will briefly summarize the observations that led to the sample growth

method used in the NMR experiment and will comment on the differences with the

method used in the Torsional Oscillator experiment (Section 4.4.1).

3.5.1 Forming the samples

Attaining a stable and well defined film in this cell presents several problems which

make the choice of a growth method a critical part of the experiment. One of the

difficulties is to ensure that the sample forms inside the cavity and not along the fill

line. The fill line heaters are designed to avoid such a problem. Another issue is the

possibility of the formation of droplets, rather than an homogeneous film, inside the

cell. This is the reason for doing a sample annealing, in which the cell is taken to a

higher temperature once the loading has taken place, in an attempt to redistribute

the liquid homogeneously. Other problems include the capillary condensation of the

liquid in the edges of the cell (which is studied in Chapter 4) and the stability of

the sample after its formation.

We studied the growth of four different samples. For our first two samples,

consisting of 3.3×1017 (2×105 nm) and 5.9×1017 spins (2×189 nm), the cell was

kept stable at 60 mK with the fill line heater on while the gas was allowed into the

fill line. This avoided the formation of liquid outside the experimental cell. The

cell was then taken to 450 mK in order to anneal the samples and the NMR signal

increased in both cases. Lowering the temperature to 200 mK resulted in the NMR
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signal size reaching its maximum. For these two first samples we observed at 200 mK

the total number of spins added. Both heaters were kept on during the annealing

process. The next step was to cool down the cell again to ∼ 80 mK, at which point

both heaters were switched off and the cell was taken to the fridge base temperature

(∼ 5− 6 mK). The signal at base had less spins than the signal at 200 mK but was

found stable over a period of more than 12 hours.

Since we found that we achieved the total amount of spins added at 200 mK

there was no need to go to 450 mK. For the next sample we introduced 9.9×1017

spins (2×316 nm) into the fill line with the cell stabilized at 60 mK and both heaters

on. The temperature was then raised to 200 mK and left there until the NMR signal

stopped increasing. When the magnetisation reached its maximum the same cooling

procedure as for the previous samples was used to reach base temperatures. This

became from this point onwards the loading method for the NMR cell. The signal

at base temperature always showed a number of spins which was smaller than the

number of spins at 200 mK, suggesting that part of the sample left the cavity during

the cool down. The samples, however, were found to be stable at base temperature

for periods of weeks. We used the measured number of spins at base as our nominal

loading in the NMR experiment.

This loading procedure was studied once more in a sample consisting of 13.9×1017

spins (2×444 nm) with the same results observed in the sample with 9.9×1017 spins

(2×316 nm).

As we will show in Section 4.4.1, the growth method for the Torsional Oscillator

was different from the method described above. In the torsional oscillator cell, the

part which is thermally linked to the nuclear stage is the copper isolator located

above the oscillator. This is, therefore, the coldest point of the device. The liquid

was expected to condense in some volume inside the portion of the fill line running
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through the copper mass. In order to encourage the liquid to reach the experimental

cell it was needed to heat the nuclear stage up to ∼ 450 mK, where the vapour

pressure of 3He is ∼ 0.1 mbar. In the NMR experiment, however, the experimental

cell itself is thermally linked to the nuclear stage and the liquid is expected to

condense inside the cavity. Going to 450 mK, therefore, is not necessary to grow

a sample within the NMR cell. The growth in signal size observed at 200 mK was

probably due to liquid condensed in the silver tube connected to the upper half of

the cell being poured inside the cavity due to the gravitational force. Nevertheless,

as far as the annealing process is concerned, going to 450 mK in the NMR cell would

probably allow the transformation of potential liquid droplets formed inside the cell

into a uniform film. The vapour pressure of 3He at 200 mK is quite low (10−4 mbar)

and evaporation is unlikely, so once the sample is formed no annealing is possible at

that temperature. As we will show in Sections 3.5.3 and 3.5.4, some of our samples

probably suffered from incorrect annealing and not always formed a film in the NMR

experiment.

3.5.2 The solid layer

A solid layer was expected to be formed in the metal surfaces.This solid layer is a

consequence of the strong van der Waals binding potential at the substrate surface.

The first layer follows Curie’s Law (Equation 3.3) down to lower temperatures than

bulk liquid. The second layer behaves like a high density liquid. Bulk 3He at zero

pressure has a magnetic temperature of Tm = 253 mK. Therefore, at 1 mK, the

magnetization per atom from the solid would be 253 times larger than that from the

liquid. Typical surface densities are 10 atoms/nm2 in the first layer and 8 atoms/nm2

in the second. For our geometry, that means that, for a 100 nm thick film the signal
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from the solid should have a magnetisation of about ∼ 4 times the magnetisation

of the liquid. However, the solid signal has a extremely short T ∗
2 (hundreds of

microseconds), and cannot be observed due to our long capture delay time (460 µs)

which is set in order to allow the ring down of the input circuit following the removal

of the transmitter pulse.

Another possible effect from the solid layer is a frequency shift in the normal

liquid signal due to solid-liquid exchange. Other experiments [42] have observed a

tipping angle dependence in the liquid due to the shift in the solid. The frequency

shift in the liquid under a constant tipping angle, however, was negligible for a 300

nm thick film. The fact that we do not observe a frequency shift in the normal state

liquid even for our thinner samples could be due to its morphology: a liquid droplet,

for example, would have much less interaction with the solid than the same amount

of atoms distributed as a uniform film.

3.5.3 Imaging the samples

Ideally, one would like to know precisely what the disposition of the liquid is within

the experimental cell. We tried to map out the sample’s morphology by means

of a set of shim coils situated inside the helium bath. These coils allowed us to

produce the field gradients ∂Bz/∂x and ∂Bz/∂y, amongst others. Therefore, the

frequency spectrum of the NMR signal can in principle provide an image of the

sample. However, a precise calibration of these gradients was not available, since

the shim coils are part of the high homogeneity NMR magnet. We applied currents

from 1 to 5 A to the X and Y shim magnets in order to produce field gradients of

different magnitudes. The currents were applied in both directions so the actual

current range was from -5 to +5 A. As shown in Figures 3.20 and 3.21, the NMR
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Figure 3.20: NMR lineshapes for different currents in the x-gradient coil. The black
line is the unshimmed signal. The applied currents are 1 (red), 2 (green), 3 (blue),
4 (cyan) and 5 (magenta) A. The coil was biased forward (positive currents, b) and
reversed (negative currents, a). Data corresponds to a 29×1017 spins (2×927 nm)
sample.

lineshape changes with the applied field gradient. As the coil current is increased, a

two-peak structure develops, the more clear case being the +X shim (Figure 3.20b).

This configuration would be compatible with a capillary condensed ring around the

edges of the cell. However, it was observed that the separation between the peaks

was not constant, but changed with sample sizes, or even with different anneals of

the same sample. That suggested a morphology consisting of little bulk-like droplets

condensed over different places within the cavity and which would give rise to a peak

separation in response to a field gradient. A spherical droplet 200 µm in diameter

(the height of our cell) would contain of the order of 1 ×1017 spins. Therefore, some

of our samples might well consist of several spaced droplets.
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Figure 3.21: NMR lineshapes for different currents in the y-gradient coil. The black
line is the unshimmed signal. The applied currents are 1 (red), 2 (green), 3 (blue),
4 (cyan) and 5 (magenta) A. The coil was biased forward (positive currents, b) and
reversed (negative currents, a). Data corresponds to a 29×1017 spins (2×927 nm)
sample.

The unshimmed signal was often seen to be formed by more than one peak, re-

vealing some planar inhomogeneity in our static field. The shim study of the samples

also allowed us to determine the optimum shim configuration in order to observe

a single peak with maximum height. This configuration varied with the samples.

In the case of Figures 3.20 and 3.21 it can be seen that the optimum configuration

is +2 A in the Y shim and -1 A in the X shim. The results presented in the next

section were obtained with all our samples in the optimum shim configuration.
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3.5.4 Superfluid results

We observed superfluid transitions in sample sizes ranging from 3×1017 spins (2×96

nm) to 48×1017 spins (2×1.53 µm). As discussed in Section 3.4.2, the film thickness

of the top film has a higher boundary of about 84 nm and, therefore, it is expected

that the majority of the liquid would get adsorbed in the bottom of the cell for our

thickest samples.

Due to the imperfect annealing of our samples they probably included small

bulk-like droplets with a diameter similar to the height of the cell (200µm), as

noted in Section 3.5.3. We show one of the observed superfluid transitions in Figure

3.22. These data correspond to 29×1017 spins (2×927 nm, more likely distributed

as a ∼1.8 µm slab in the bottom surface) and were taken on warming. A current

of -1 A was applied to the Y-SHIM magnet in order to obtain a signal as sharp

as possible in the normal state. Two main peaks could, nonetheless, be resolved at

temperatures near Tc
3. The red line corresponds to a temperature of 0.94 mK and it

is at the Larmor frequency. As the temperature decreases, we can observe a positive

frequency shift and two peaks can be clearly resolved. Below 0.75 mK (green line)

the two peaks join in a single peak due to the decrease in T ∗
2 which makes the lines

wider. The coldest signal (blue line) was taken at 0.60 mK. The inset shows the

total magnetisation of the signal (black dots), the magnetisation of the left hand

peak (red squares) and the magnetisation of the right hand peak (blue triangles).

The magnetisation for each peak was calculated by plotting the square of the NMR

signal and fitting each individual peak of the squared signal to a Lorentzian. This

gave the parameters T ∗
2 and Hs mentioned in Section 3.4.4 and the number of spins

could be then calculated by using Equation 3.20. We can see that below 0.84 mK

3With regard to notation, we will refer to the bulk 3He superfluid transition as Tc throughout
this work. When talking about the transition temperature of films we will use T film

c or, simply, T f
c .
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Figure 3.22: Positive frequency shift from a sample consisting of 29×1017 spins
(2×927 nm). The red line corresponds to a temperature of 0.94 mK and the cold-
est temperature was 0.60 mK (blue line). At 0.75 mK (green line) the two peaks
join each other due to a decrease in T ∗

2 . The inset displays the dependence of the
magnetisation with temperature (see text for explanation).

the total magnetisation drops slightly due to a lost in resolution of the right hand

peak. The magnetisation remains nearly constant down to 0.65 mK, where the short

T ∗
2 makes difficult to obtain a reliable estimate of the number of spins.

When doing transverse pulsed NMR on superfluid 3He, it is expected to observe

a frequency shift (whose sign depends on the relative orientation of the l and d

vectors) with unchanged magnetisation in the NMR line for 3He-A. A decrease in

magnetisation with no change in frequency for small tipping angles would suggest

a transition into 3He-B (see Chapter 2). The positive shift observed in Figure 3.22

would suggest a transition into 3He-A with a dipole locked texture. Our static mag-
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netic field of ∼ 30 mT is enough to make the d vector to orientate perpendicular to

the field throughout the whole sample in order to minimize the Zeeman energy of

the Cooper pairs. The l vector would tend to be parallel to the d vector in order

to minimize the dipole energy, but there is a strong boundary condition on it: the l

vector is perpendicular to the walls over distances smaller than the dipole bending

length. This length, in superfluid 3He-A, is ∼ 10µm, so it would be possible in a

200 µm diameter droplet for the l vector to become parallel to the d vector, thus

producing a positive shift. The B phase could, under certain conditions, produce

also a positive shift. The tipping angle in that case should be greater than the

critical angle 104o in order to provide an additional torque in the magnetic moment

of the Cooper pairs. Osheroff and Corruccini [60] observed that for tipping angles

larger than 104o two components comprised the precession signal, one of them at the

Larmor frequency and the other following the theoretical predictions of Brinkman

and Smith [61]. Both components showed a diminished magnetisation. Since that

is not what is observed in Figure 3.22 and the magnetisation remains reasonably

constant, we can conclude that the observed superfluid transition corresponds to

the A phase. We also can rule out a tipping angle larger than 104o with our small

tipping pulses and, therefore, the possibility of a transition into the B-phase can be

disregarded. According to the bulk phase diagram of superfluid 3He, the A phase

should not occur at zero pressure, but the size effects on the order parameter of su-

perfluid 3He in a 200 µm droplet could be strong enough to produce an A-like phase

at the bulk transition temperature even at zero pressure [62], [63]. For smaller sam-

ples we observe a similar behaviour (see Figure 3.23). The transition temperature,

about 0.89 mK, is sample independent, suggesting that smaller samples consist of

a smaller number of similar size droplets. The discrepancy between the transition

temperature observed and the 3He bulk transition temperature is attributed to an
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Figure 3.23: The frequency shift as a function of temperature for samples consisting
of 29×1017 spins (2×927 nm) (black squares), 14×1017 spins (2×448 nm) (blue
triangles) and 4×1017 spins (2×128 nm) (red circles). They all show a similar
transition temperature of about 0.89 mK.

inefficient cooling of the samples, which would place them slightly hotter than the

PLM thermometer reading (the same effect is observed in the torsional oscillator

experiment, see next Chapter).

Another kind of superfluid transition was observed on the 29×1017 spins (2×927

nm) sample. The positives shifts shown above were observed the first time the

samples were cooled down below the superfluid transition after the annealing. This

particular sample, however, behave differently during the second superfluid transi-

tion. After observing the discussed positive shift, the sample was left to warm up

to base temperature and then cooled again. In this case the normal state signal

split into two peaks at 0.82 mK. One of the peaks was shifted negatively whereas
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Figure 3.24: Signal split for a sample consisting of 29×1017 spins (2×927 nm). Data
cover a temperature range between 0.82 mK (red line) and 0.81 mK (blue line) and
were taken on cooling.

the other one was slightly positively shifted (Figure 3.24). The data were taken on

cooling in small steps, allowing the sample to reach thermal equilibrium in between

cooling stages. Further cooling below 0.80 mK produced the signal to snap into

a single peak which shifted positively as the temperature decreased. This result

could be explained under the light of a spin wave model [64]. In this model the

relative orientation of the l and d vectors changes over the sample, giving rise to

different textures. In a uniform l field a uniform spin wave is excited with frequency

f̃ = cos 2θ with θ being the angle between the l and d vectors. The conditions

close to the walls resemble pure l vector solitons [65]. The spin wave potential has

two minima adjacent to the walls and a maximum in the centre. The potential

minima (dipole-unlocked texture) would produce a negative NMR shift whereas the
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maximum (dipole locked texture) would produce a positive shift.

We could model our sample by two thin films on the top and bottom plates of

the cell joined by a liquid pillar stabilized by capillary condensation. The l vector

would be pinned perpendicular to the walls by boundary conditions and it would

align parallel to the d vector in the pillar. Therefore, simultaneous positive and

negative frequency shift could be observed below the superfluid transition. This

configuration is believed to be metastable and subsequent cooling could result in

the liquid snapping into a droplet, thus producing the same results as in Figure

3.22. This was, in fact, the observed behaviour.

Although the signal splitting could only be seen below 0.82 mK that temperature

only represents a lower boundary for the transition temperature. Indeed, the small

shifted peak could have started the split at a slightly higher temperature but re-

mained unresolved due to a lack of resolution in the NMR line. A reliable extraction

of the number of spins from the Fourier transformed NMR signal was not successful

due to the proximity of the two peaks. A transition temperature as low as 0.82 mK

would suggest we were observing the novel phase predicted by the theory [28] in

the region of the confined phase diagram where the B-phase is not available at any

temperature.

Although it would be interesting to study the tipping angle dependence of the

shift, it was not possible to do such a measurement. Any attempt to increase the

tipping angle resulted in the signal jumping into a positively shifted line, probably

because the transmitter pulse produced a change in the morphology of the liquid.

The signal splitting was highly reproducible in this sample, always on the second

superfluid transition after the sample growth. Once it was observed for the first

time in a sample, it also could be reproduced provided the temperature was kept

below 1 mK.
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Figure 3.25: A superfluid transition in a sample consisting of 29×1017 spins (2×927
nm) with no frequency shift and a decrease on magnetisation (inset) indicative of B
phase. The transition temperature is 0.89 mK.

These observations suggested that the first incursion into the superfluid state

acted as a sample anneal (a “superfluid anneal”), changing the morphology of the

liquid as a result of the mechanical properties of superfluid 3He.

Yet another different superfluid transition was observed on the 29×1017 spins

(2×927 nm) sample. This observation followed a first cool down to 0.73 mK in

order to do a “superfluid annealing”. The sample was then taken to 1 mK and

cooled down again to 0.53 mK. No frequency shift was observed in this measurement

whereas the magnetisation was decreased down to half the value of the normal state

magnetisation. Figure 3.25 shows these results. The red signal was taken at 0.94

mK and the blue signal at 0.53 mK. The signal height decreases as the sample

is cooled down and the signal width simultaneously increases, in an effect similar
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to that on Figure 3.22. But if we calculate the total magnetisation we observe a

steady linear decrease, a characteristic associated with the B-phase. In fact, the

spin susceptibility of the B-phase is proportional to the Yosida function [20]. In

the Ginzburg-Landau region, the Yosida function can be expanded in powers of the

energy gap ∆

Y (T ) ≈ 1− 7

4
ζ(3)

∆2(T )

π2k2
BT 2

c

+ ...

where ζ is the Riemann zeta function. By using the BCS value of the energy gap it

can be proved [20] that the Yosida function is linear from Tc down to 0.5Tc.

The data shown in Figure 3.25 were taken on warming and the sharp feature

on the magnetisation near Tc could be due to a B to A transition before reaching

the normal state. That transition would take place over a very short temperature

range [28] and the frequency shift associated with it could be masked by the fact

that each data set was taken averaging pulses for 50 minutes. The B to A transition

could occur during the acquisition of a single NMR data set with the signal shifting

in frequency and coming back to the Larmor frequency in that period of time. The

averaging procedure would produce an artificial widening of the unshifted signal

because of the temporary shift. This would translate into a smaller T ∗
2 and, hence,

a larger magnetisation, according to Equation 3.20.

This sample was subsequently cooled down from 1 mK to 0.79 mK and a signal

split like the one shown in Figure 3.24 was observed. Although this method of sample

growth and superfluid anneal was repeated up to four times, the B-transition could

not be reproduced, and from the second superfluid transition only a signal split was

observed.

A thicker sample consisting of 48×1017 spins (2×1.53 µm, probably distributed

as a 3.0 µm slab on the bottom surface) was formed and annealed in the same fashion
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Figure 3.26: NMR signals showing negative shift from a sample consisting of 48×1017

spins (2×1.53 µm) on two different coolings. Red lines are negative frequency shifts
and blue lines are at the Larmor frequency. The sample was cooled down to 0.38
mK (thick lines) and 0.75 mK (thin lines).

as the previous samples. In this case, and during the second demagnetization below

Tc, we observed a signature of the A-phase over two different coolings. The first

incursion into the superfluid phase in this sample was not monitored, as it was used

as a superfluid anneal. In the second demagnetization below Tc, the whole signal

was negatively shifted, consistent with a dipole unlocked texture. We show the tran-

sitions in Figure 3.26. After about 20 hours in the superfluid state the NMR signal

jumped to the Larmor frequency and showed a decreased magnetisation suggesting

a transition into the B-phase with the n vector parallel to the static magnetic field.

No transition temperature could reliably be extracted because the sample was not

allowed to reach thermal equilibrium with the PLM thermometer during the cool
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down. Each NMR data set was acquired for 50 minutes, an interval of time during

which the sample was changing its temperature and the PLM thermometer, pulsed

every five minutes, was showing different readings. In Figure 3.27 we can appreciate

this behaviour in the spacing of the green triangles, which correspond to this sam-

ple. The points were taken at equal intervals of 50 minutes, as noted above. Near

Tc, during the demagnetization process, the points are spaced out, indicating a fast

change in temperature. When the demagnetization was finished both, the sample

and the thermometer, kept cooling, more slowly, for several hours until they reached

thermal equilibrium with the nuclear stage. This slower change in temperature can

be appreciated in the closed together green points of Figure 3.27. The minimum

temperatures were 0.38 mK (thick lines in Figure 3.26) and 0.75 mK (thin lines in

Figure 3.26). No subsequent B to A transition was observed on warming.

The superfluid A-phase would be stabilized only over a narrow temperature

regime near Tc for such a thick film. 3 µm translates into approximately 40 co-

herence lengths, corresponding to an interval of less than 0.05 mK in which the

A-phase is stable (see Figure 2.7). This indicates a strongly supercooled A-phase

in a metastable state and points out the first order nature of the A to B transition

in superfluid 3He. Note that the cell levelling would play a relevant role in such a

thick film (see Section 3.4.3) and the thickness of the slab at the upper side of the

tilted substrate could be significantly smaller than the thickness at the lower side.

This is, to our knowledge, the first A-B transition observed in a 3He film at zero

pressure using transverse pulsed NMR.

The problem of the B-phase nucleation in a supercooled A-phase has been stud-

ied in the past both, theoretical [66], [67] and experimentally [68], [69] and, most

importantly, [62]. For a bubble of B-phase within the supercooled A-phase to grow

it has to have a minimum critical radius of Rc = 2σ/|∆F |, where ∆F is the dif-
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ference in the bulk free energies of the two superfluid phases and σ is the surface

tension. Rc has a value of about 0.45 µm at T = 0 and increases with temperature,

reaching a value of ∼ 1.5µm at 0.7Tc. For smaller radii, the surface energy forces

the B-phase bubble to disappear. The transition from the supercooled A-phase to

the energetically preferred B-phase occurs due to thermal fluctuations within the

A-phase. The values of Rc stated above correspond to an energy barrier for thermal

nucleation of the order of 106kBT , which makes homogeneous nucleation impossible

in this system. Several possible explanations to this phenomenon have been given

in the past. One of those explanations is the nucleation near the surfaces of the con-

tainer. The textural effects associated with rough surfaces could depress the barrier

to nucleation. Another option is a model proposed by Leggett in 1984 [67] and

called the “baked Alaska” effect. In this model cosmic ray muons or other forms

of ionizing radiation pass through the supercooled A-phase. Secondary electrons

created by these cosmic rays would heat the superfluid above Tc within a volume

of the order of R3
c .

3He quasiparticles have a mean free path comparable to this

radius and, thus, would form a shell of normal fluid with the center relatively free

of quasiparticles. Leggett suggested that the B-phase could nucleate in this interior

and grow, protected by the normal fluid shell, large enough to be stable when the

shell dissipated. This model was tested at Stanford in 1992 [62] using a 60Co source

to simulate cosmic-ray muons and it was found that the nucleation rate increased

by more than three orders of magnitude when the 60Co sample was placed near

the superfluid. On restricted geometries, they suggested that nucleation could be

possibly induced by a combination of the radiation and the textural defects caused

by rough surfaces.

Under the light of the above considerations we could suggest that A to B tran-

sition observed in our largest sample was triggered by the surface roughnesses in
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combination with ionizing radiation. A small B-phase seed would form at the sur-

face of our cell and grow from there. For our positive shifts, the possibility of a

spherical A-phase droplet would imply that the liquid had less contact surface with

the roughnesses, making the nucleation less likely.

It is interesting to compare our results with the expected NMR behaviour for

the bulk. Although no measurements have been done at saturated vapour pressure

concerning the transverse NMR shift of 3He-A, the higher pressures measurements

can be extrapolated to make them comparable with our work. The NMR transverse

frequency shift in 3He-A in bulk samples is given by the Pythagorean relation

ν2
trans = ν2

long + ν2
L

where νL is the Larmor frequency and νlong is the usual field-independent frequency of

the longitudinal ringing of the A-phase following a sudden change in the magnetic

field. For both the, A-phase and B-phase, the longitudinal resonance given by

Leggett is [70]

ν2
long = α(3πγ4h2) < R2 > [Ψ]2/χ (3.21)

where γ is the gyromagnetic ratio for 3He, h is Planck’s constant, α is a phase-

dependent factor (1/2 for B-phase and 1/5 for A-phase), χ is the magnetic suscepti-

bility and [Ψ] is the amplitude of the order parameter. < R2 > is a renormalization

constant. Substituting the order parameter in Equation 3.21 we obtain, near T = 0

for the A-phase

ν2
long(A)[T ] = ν2

long(A)[0][1− C(T/Tc)
4]

Schiffer et al. [71] measured the temperature dependence of the longitudinal res-

onance at pressures of 5, 12, 21, 29.4 and 34.2 bars. At the lower pressures the
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B-phase always nucleated relatively close to Tc, limiting their data to the high tem-

perature regime. However, for the 29.4 and 34.2 bars data they could measure

νlong(A) in the low temperature limit. The slope of ν2
long(A)[T ] versus (T/Tc)

4 gave

them a value for ν2
long(A)[0] which they then used to obtain the averaged energy

gap, ∆A0, as a function of the BCS cutoff energy εc. The cutoff energy is bounded

between 0.040 and 1.0 K and they found that ∆A0 was remarkably insensitive to

it. The renormalization factor (a function of the energy gap and the cutoff energy)

they used was obtained from the B-phase data in the low temperature limit.

Moving now on to the Ginzburg-Landau limit, ν2
long is linear in (1 − T/Tc), the

slope being given by

∂[ν2
long(A)]

∂(T/Tc)
= − π

10
γ2(1 +

1

4
Z0)[2N(0)]

∆C

CN

< R2 > (kBTc)
2

(
ln

1.14εc

kBTc

)2

(3.22)

We will call this slope −f(P ) because it is a function of the pressure only (provided

we stay within the Ginzburg-Landau regime). Reference [71] takes into account that

the linear behaviour of the longitudinal shift in temperature is restricted to a region

near Tc. In fact, they find that the curvature is insignificant for T > 0.9Tc and

pressures below 34.2 bars.

The only quantities which remain uncertain in Equation 3.22 are εc and < R2 >.

The value of the slope can be used to get a relationship between these two quantities.

< R2 > is found to depend only weakly, if at all, on temperature. The values of

the cutoff energy closest to the theory are obtained using < R2 >= 1 and this value

falls around 0.8 K at zero pressure. A linear fit to the points of reference [71] gives

a value for the slope at zero pressure of f(P )P=0 = 0.489× 1010 Hz2. Another work

[72] provides only a data point at 2.05 bar for f(P ) (0.61×1010 Hz2) and use this

point along with some other experimental data [73], [74], [75], all above 20 bar, to
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Figure 3.27: Positive frequency shifts from our 29×1017 spins (2×927 nm sample
(red circles) compared to the zero pressure extrapolation of the bulk data from
reference [71] (red line). The negative shift from the 48×1017 spins (2×1.52 µm)
sample (green triangles) is shown for comparison.

map out the f(P ) function. Reference [72] uses a value of 0.7 for < R2 > and a

value of 0.7 K for εc, both independent of pressure. We use reference [71] to compare

our data with, since it is more accurate at lower pressures than reference [72].

Our A-phase positive frequency shifts are in good agreement with the bulk data

(see Figure 3.27, red circles) down to T ∼ 0.85Tc. As discussed above, it is unlikely

that the observed frequency shift came from B-phase due to our small tipping angle

along with the results from the imaging attempt. Figure 3.27 adds yet another

support to the hypothesis of a bulk-like A-phase taking place in our small droplets

with a transition temperature similar to the normal to B transition temperature in

bulk at zero pressure. We show the negative shift data (green triangles in Figure
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3.27) to highlight the difference in behaviour of the two superfluid transitions. They

show a fair departure from the bulk data. This could be a signature of suppression

of the order parameter. As these data were taken on cooling, there exists the chance

that the actual points would be slightly hotter than the points displayed. This would

only make the green triangles to lie further from the extrapolated red line.

As mentioned in Chapter 2, there have been other measurements of the A-B

transition on the past [45], [46] for film thicknesses of the order of 1 µm and a range

of pressures from 10 bar to 30 bar. A supercooled A phase was observed at 10

bar [47] by the Osaka City University group. This group made measurements on

3He slabs of fixed thickness of 1.1 µm with diffuse boundaries. Their substrate was

polyethylene and the used 4He to coat the surfaces. For their higher pressures, 20,

24 and 27 bar, they observed a suppression of TAB of about 15% with respect to

the bulk transition. The supercooled A-phase they observed at 10 bar had a TAB

transition temperature of 1.5 mK whereas the theoretical calculations [27] predicted

1.7 mK. The supercooled A-phase survived for four days in their run.

Another experiment in which a supercooled A-phase was observed is that of

Freeman and Richardson [42]. They performed measurements on 300 nm thick 3He

films enclosed by two diffusive walls and used Mylar sheets as a substrate. They

observed the superfluid A-phase, but not the A-B transition. Their pressures ranged

from 1.5 to 22.6 bars. They also studied the effect of coating their substrate with 4He

and found indication of specular boundary conditions, as the superfluid transition

temperature approached the bulk value by increasing 4He coverage.
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3.5.5 Conclusions

Our cell was designed to allow us to continuously tune the film thickness at zero

pressure. Unfortunately, our sample growth method was not optimal and our sam-

ples probably suffered from imperfect annealing, as the measurements performed

with our shim coils suggested.

We detected NMR signals from superfluid samples ranging from 3× 1017 (2×96

nm) to 48 × 1017 spins (2×1.52 µm). All samples showed a positive shift the first

time they were cooled down below the superfluid transition, which was measured to

be 0.89 mK, independent of the sample size.

For our 29×1017 spins (2×927 nm) sample we observed a different behaviour after

the first superfluid transition. During the second cool down the NMR signal split

into two peaks at 0.82 mK and snapped into a single positively shifted peak at 0.80

mK. This behaviour could be explained by a spin-wave theory. After reannealing

this sample, and following a first incursion into the superfluid state, another kind

of superfluid transition was observed. This time, the NMR signal remained at the

Larmor frequency and showed a linear decrease in magnetization, a signature of the

superfluid B-phase. The transition temperature was again 0.89 mK. Following this

transition, the signal split observed before was recovered. The B-phase transition

could not be reproduced in subsequent reannealings of the sample.

Finally, for our 48×1017 spins (2×1.53 µm) sample we observed a negative shift

over two different coolings. This was a signature of the A-phase in its dipole-unlocked

texture, which, with our experimental settings, could only be caused by a film. This

A-phase was strongly supercooled, remaining in that state at temperatures of 0.38

and 0.75 mK for around 20 hours before a sudden transition into the B-phase.

Subsequent warming of the B-phase did not show a signature of the A-phase before
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the normal state. These were, to the best of our knowledge, the first observations

of the A-B transition on a confined slab geometry at zero pressure. Other works

[47] have observed the A-B transition at pressures as high as 20 bars in 1.1 µm

thick films, whereas supercooling of the A-phase has likewise been observed at high

pressures [42], [47].

The temperature dependence of our positive frequency shifts was in good agree-

ment with the extrapolation to zero pressure of previous studies [71] done in bulk

superfluid 3He at higher pressures.

We showed that our SQUID spectrometer has enough sensitivity to observe sig-

nals from films thinner than 100 nm. The measured noise temperature, 800 mK,

was, however, much higher than the 78 mK expected. This was believed to be caused

by the inductive coupling of the APF coil to the input coil. Further improvements in

the spectrometer include the use of SQUIDs without APF and SQUID arrays. The

next generation of cells for this project are based on alternative geometries, where

the cavity would be a single submicron slab and the pressure could be changed in

order to tune the reduced thickness d/ξ(T ). In such a geometry there is the advan-

tage of a well-defined morphology of the sample, but the minimum reduced thickness

achievable is limited by the size of the cavity, since the coherence length can only be

decreased by applying pressure. These cells would be made out of materials which

would be strong and flat at the same time. Glass and silicon are the two more

immediate candidates at the time of writing.



Chapter 4

The Torsional Oscillator

experiment

Any sufficiently advanced technology

is indistinguishable from magic.

Arthur C. Clarke.

Rationale

The torsional oscillator technique was first used by Andronikashvili in 1946 when

studying the normal and superfluid components of 4He-II [76] and nowadays it has

become a widespread technique in the study of superfluids. It allows the detection of

extremely small changes in the moment of inertia of the system under investigation.

In the case of superfluid 3He, the superfluid component of the liquid decouples

from the oscillator and no longer contributes to the total moment of inertia. This

129
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causes the oscillator to resonate at a slightly higher frequency. The fraction of fluid

decoupled can then be measured by measuring the shift in the resonant frequency.

In these experiments the torsional oscillator has been used to study the flow of

3He slabs in the extreme Knudsen limit. In this limit the inelastic mean free path,

λ = vFτη where vF is the Fermi velocity and τη the quasiparticle relaxation time,

is much larger than the slab thickness, and so is the viscous penetration depth,

δ = (2η/ωρ)1/2 with η the viscosity and ρ the density. Therefore, in this regime,

the film is expected to be locked to the oscillating surface and can be regarded as

a surface boundary layer. The inelastic mean-free path is temperature dependent

in normal 3He, in contrast to classical fluids, with λ ∝ 1/T 2. The reason for this

is the Fermi liquid nature of liquid 3He. This dependence of λ with T allows us to

enter the Knudsen regime (for which the Knudsen number, KN = λ/d ∼ 1) from

viscous flow (where KN < 1 and the main interaction of the quasiparticles is with

themselves) by cooling down the sample. Beyond the Knudsen limit one enters the

ballistic regime (or extreme Knudsen limit, KN À 1) in which the inelastic mean-

free path is much larger than the thickness of the slab and the main interactions of

the quasiparticles are those with the walls. It is, therefore, in the ballistic regime in

which the surface roughness plays an essential role. In fact, the nature of the elastic

scattering processes from the surface is what determines whether the film will remain

locked to the oscillating substrate or not. The surface roughnesses correlations are

of the uttermost importance when describing the interaction between the liquid and

the substrate.

An important part of this experiment explores the behavior of the liquid in

its normal state. This was motivated by some very surprising results observed at

temperatures well above the superfluid transition.

Of course, 3He is not the only system for which this technique is employed.
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Figure 4.1: Cross section of the torsional oscillator (not to scale)

Other experiments involving torsional oscillators include gravity waves studies [77]

and, more recently, possible quantum flow in solid 4He [78].

In this Chapter we will describe the design and construction of the torsional

oscillator and the experimental setup. We will then present the data obtained from

the normal liquid measurements, which showed a decoupling of the film, and will

discuss the results under the light of an internal friction model. We will describe the

changes made in the cell’s surface in order to pin the films down to the superfluid

transition temperature. The last part of the Chapter will show the superfluid tran-

sitions observed in our films and a comparison of our results with past experiments

and theories will be provided.

4.1 Oscillator design

The torsional oscillator used for this experiment is a double oscillator (see Figure

4.1). We will give here a brief description of its design and method of construction.

A more detailed account can be found elsewhere [79], [80]. There are two oscillat-

ing parts in the device: the head, which contains the 3He sample, and the body,

cylindrical in shape. The head, which is built with two circular pieces, is attached
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to the body through a hollow torsion rod. A second hollow torsion rod connects

the body to the foot of the oscillator, which is clamped to the nuclear stage and

does not oscillate. Both torsion rods also function as a fill tube to admit the 3He

sample. The upper part of the cell, both torsion rods, the body and the foot are

machined from a single piece of coin silver (silver-copper alloy with 90% silver and

10% copper). The lower part of the head is a circular disc machined independently,

also from coin silver. Two magnesium wings are attached to the body in order to

excite and detect the oscillator’s motion, forming a pair of capacitive transducers

with two copper electrodes mounted on the experimental plate.

The device has several natural resonant modes, namely, two torsion modes (sym-

metric and antisymmetric) as well as floppy modes. We run the oscillator in the

antisymmetric torsion mode (i. e. the head and the body oscillating out of phase

about an axis along the torsion rod) for this is the most sensitive mode to any po-

tential change in the oscillating frequency arising from changes in the moment of

inertia of the head. The floppy mode (in which the head and body oscillate about

an axis perpendicular to the torsion rod) is desired to be as high in frequency as

possible in order to prevent it from being excited. This is achieved by using a short

torsion rod and by keeping the wings as close to the rod as possible. The moment

of inertia of the head for the antisymmetric torsion mode is desired to be as small

as possible in order to be sensitive to any potential decoupling of the liquid 3He

sample.

To detect the mass loading of 3He slabs as thin as 100 nm an extremely sensitive

torsional oscillator is required. Torsional oscillators used to study bulk superfluid

3He have a typical slab thickness of ∼ 5 µm and are usually machined from BeCu. In

our case, due to the small samples studied, the frequency stability and the tempera-

ture dependence of the empty oscillator are critical. This was the reason behind the
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choice of coin silver, which provides a small background temperature dependence

of the resonant frequency as compared to equivalent BeCu oscillators [81]. The fre-

quency stability of the oscillator under a stable temperature was found to be better

than ±1µHz/10h, which translates into a frequency resolution better than 1 part in

109. The wings were made out of magnesium (a low density metal to minimize its

moment of inertia). This magnesium electrode had to be electrically isolated from

the body, since they would be biased at a high voltage during the experiment in

order to drive the oscillator and detect its response. The electrodes were, therefore,

epoxied to the body with cigarette paper spacers [79]. The epoxy used was Stycast

2850 FT. The two discs which form the head of the oscillator are 15 mm in diameter

and each 1.05 mm thick. They are diffusion welded by mean of a 50 µm thick 0.5

mm wide copper gasket [79]. The head torsion rod has a length of 2.5 mm an ID

of 0.36 mm and an OD of 1.8 mm. The body is a cylinder 7.5 mm high with a

diameter of 13 mm. The body torsion rod is 5 mm long with an ID of 1 mm and

an OD of 1.6 mm. The device is mounted on to a copper torsional isolator which

serves as a filter for high frequency vibrational noise coming from the environment.

This torsional isolator is a cylinder with a diameter of 3.9 cm and 1.5 cm high. It

presents a 1 mm diameter clearance drill through which the oscillator fill line runs.

The isolator joins a smaller copper block, 13 mm in diameter and 4 mm high, which,

in turn, is attached to a copper post connected to the nuclear stage of the cryostat.

The resonance frequency of the isolator is 25 Hz. Also attached to the isolator are

the L-shaped copper electrodes, 5 mm thick and 24.5 mm high, placed within 50

µm of the oscillator wings. The foot of the electrodes is 15 long and 5 mm high.

The coaxial cables connected to the electrodes are anchored to the isolation mass to

avoid coupling any acoustic vibration and to promote the stability of the oscillator

frequency. All these dimensions were chosen for the antisymmetric torsion mode to
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Figure 4.2: The torsional oscillator mounted on to the nuclear stage.

resonate at about 3 kHz. The lengths of the torsion rods set the floppy mode of

the whole oscillator at 341 Hz and the floppy mode of the head at 4.6 kHz. The

resonance frequency of the symmetric torsion mode was found at 660 Hz. Once in

the cryostat, the cell was levelled to a degree better than 0.1o with the aid of a

travelling microscope. Figure 4.2 shows the torsional oscillator mounted on to the

nuclear stage and the 3He Melting Curve Thermometer next to it.

4.2 The experimental cell

The torsional oscillator experimental cell shares the design with the NMR cell de-

scribed in the previous chapter, the only difference being the bond between the two

silver plates. The polishing recipe explained in Section 3.4.1 was used to achieve

a roughness of ±10 nm over a length of 50 µm. For this cell, however, the upper

surface formed a single piece with the oscillator’s body and had to be mounted on

the polisher with the help of a brass holder. The available space in the mechanical

polisher constricted the maximum length of the oscillator to 2 cm. Once polished,

both discs were assembled with the copper gasket. Copper makes the bond leak
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Figure 4.3: Probable film profile within the cell

tight and provides good thermal contact between both coin silver plates. Also, cop-

per and coin silver have a similar thermal expansion coefficient. The assembly was

then taken to 755 ◦C for 40 minutes in a furnace while held together with the help

of a jig. This procedure relies on the phase diagram of copper and silver alloys [81].

4.2.1 Study of the film profile

The copper gasket presumably produces a corner much sharper and defined than

the Stycast in the NMR cell. It is possible then to make an estimation of the liquid

profile within such a cavity. A possible situation is depicted in Figure 4.3. We

assume that there exists the possibility for capillary condensation to occur (i. e. the

height of the cell is less than twice the capillary length, which for 3He is about 380

µm). The question is how thick the film can be grown before it capillary condenses,

at which point any subsequent liquid allowed within the cell would join the meniscus.

We want to compare the cost in energy of adding a particle to the film to the cost

in energy of adding a particle to the corner. For this reasoning, and since we want

to obtain the thinnest film at which capillary condensation occurs, we will use the

non-retarded Van der Waals potential without the retardation effects introduced in

Section 3.4.2 where we were studying much thicker films. Gravity is neglected this

time for simplicity. Assume that the chemical potential before adding the particle

is µo. Then, the energy cost of adding a particle to the film is given by

µf = µo − C3

z3
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Now for the meniscus we have that the change in energy is going to be given by the

change in the surface energy of the liquid-vapour interface. This will involve the

surface tension of the liquid, which is the energy per unit area at the interface. The

pressure difference across the liquid-vapour interface is given by [82]

σ(
1

R1

+
1

R2

)

with R1 and R2 the two principal radii of curvature at the surface. For our case,

these radii are the radius of the cell and the radius of the meniscus. The radius

of the meniscus is much smaller than the radius of the disc and therefore we can

neglect the latter in the previous expression and simply write

dp =
σ

r

That change on pressure results in a change on the molar Gibbs energy or, in other

words, on the chemical potential according to the well known dµ = vdp = dp/n (at

constant temperature), with v the volume of a particle and n the number of particles

per unit volume. The energy cost of adding a particle to the meniscus is, then,

µm = µo − σ

r
· 1

n

The negative sign arises from the fact that the concave vapour-liquid interface im-

plies that the liquid has lower pressure than the vapour. Since the vapour pressure

is zero in our experiment, the liquid pressure has to be negative. Therefore the

negative sign in the surface energy.
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Now we can set both potentials equal and get

σ

r
· 1

n
=

C3

z3

Since r has an upper bound (h/2), it cannot become arbitrarily large and therefore

neither can z. At some point the atoms will start joining the meniscus. We can

define the characteristic length ζ = (nC3/σ)1/2 [83]. Then we obtain

r =
z3

ζ2

Using now the values σ = 1.55 × 10−4 J/m2, C3 ∼ 3500 KÅ3 and a density of 36

gm/cm3 for 3He, we get ζ ' 2 nm. The maximum radius achievable is r = h/2 = 25

µm. That implies a maximum film thickness of z ∼ 50 nm.

According to the previous calculation we should be prevented from growing films

thicker than 50 nm. That is certainly not the case reflected by the data. A possible

explanation could be related to the growth method used for this cell (see Section

4.4.1): the film might be deposited by distillation from the liquid condensed along

the fill line that runs through the body. A thicker film thus deposited could probably

be metastable in this geometry.

4.3 Experimental details

In order to carry out the measurements we need to apply a periodical force to the

oscillator and measure its response to that excitation. Figure 4.4 shows the exper-

imental setup employed for this purpose. We applied a periodic sinusoidal signal

from a Stanford function generator (model DS345) to one of the copper electrodes

to excite the oscillator. The measured capacitances of the transducers formed by
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the copper electrodes and the magnesium wings were 4.75 and 2.89 pF. To improve

sensitivity the detection electrode was the one with the larger capacitance. The

wings of the oscillator were connected to a DC voltage of 100 V through a resistance

of 10 MΩ. A 1 µF capacitor connected to ground acted as a short for any parasitic

AC current coming from the voltage supply. The purpose of this high tension was

to linearize the force applied on the wings of the oscillator. The force exerted on

the plates is given by F = CV 2/2d, which is not linear in voltage. However, when

the AC signal is on top of a high enough DC voltage, we have

V = (VDC + δV ), and V 2 = (VDC + δV )2

V 2
DC + 2VDCδV + (δV )2 ' V 2

DC + 2VDCδV

since the amplitude of the exciting signal (2 mV) is much smaller than the DC

voltage applied and we can neglect second order terms in δV . The output was sent

through a EG&G preamplifier model 5182 to a Krohn-Hite filter model 3343 set as

a band pass between 1700 and 3700 Hz and lock-in amplified with a Stanford model

SR830 DSP. The in-phase and quadrature components of the signal were introduced

into a computer which also controlled the Stanford generator parameters. The

Stanford function generator was communicated with the computer by means of a

GPIB interface. The oscillator was driven at a fixed frequency close to its resonance.

From the in-phase and quadrature components one can obtain the dissipation and

the resonance frequency (see Appendix B). A LabView program determined the

resonance frequency from the input data and changed the frequency of the exciting

signal in the Stanford generator to match the oscillator’s resonance frequency.

To remove any ambiguity in the estimation of the resonant frequency when per-
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Figure 4.4: Experimental setup for the torsional oscillator experiment.

forming the experiment the lock-in amplifier should be set to detect components of

the signal in phase and quadrature with the excitation in zero relative phase at res-

onance. This is achieved by doing a slow frequency sweep over a frequency span of

∼200 Hz around the resonant frequency. The relative phase of in-phase and quadra-

ture is thus calculated and the phase in the lock-in amplifier changed accordingly.

Figure 4.5 (a) shows a typical frequency sweep, done at a constant temperature of 10

mK. Also shown in the Figure (b) is the relative phase between the components as

a function of frequency. The in-phase component (red line in Figure 4.5 a) and the

quadrature component (black line in Figure 4.5 a) were squared and added together

to obtain the squared modulus of the signal. The maximum of the squared modulus

allowed us to determine the resonance frequency. The relative phase between the

components could be calculated as arctan(Y/X) where Y is the in-phase component

of the resonance and X is the quadrature component.
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Figure 4.5: Typical frequency sweep done at 10 mK to determine the relative phase
between the in-phase (red line) and quadrature (black line) components of the oscil-
lator output signal (a). Also displayed is the relative phase as a function of frequency
(b).

4.4 Normal fluid measurements

The results and data presented in this Section were obtained previous to this thesis

but are included for completeness. They will help to understand the reasons that led

to the design of the experimental cell used for the measurements on the superfluid

phase. Further details can be found elsewhere [80].

4.4.1 Sample preparation

The range of film thicknesses studied in this first cell was from 100 to 300 nm. In

order to get a reliable measure of the thickness of the film one needs to relate the
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change in frequency observed when filling the oscillator with the mass of a 3He slab.

The change in the resonant frequency is going to be related to the change in

moment of inertia due to the mass loading according to

|∆f |
fo

=
|∆I|
2I

where fo is the resonant frequency and I is the total moment of inertia of the

oscillating head. Consider now a slab of material of radius R, mass M and thickness

h. The moment of inertia for the antisymmetric torsion mode is given by

I =
1

2
MR2 =

1

2
ρhπR4

For two (top and bottom) films of thickness t, and since IHead À ILiquid, we can

approximate the change in frequency as

|∆f | = ρliquid t R4
slab

ρmetal hR4
head

× fo (4.1)

where h is the height of the head of the oscillator. The antisymmetric torsion mode

resonance frequency for this oscillator was 2840 Hz. Hence, for two 1000 Å thick

films we get a frequency-thickness conversion of 1 mHz/(2× 1000 Å), according

to Equation 4.1. For our resonance frequencies and with our frequency resolution

(better than 1 part in 109) our uncertainty in film thickness is of about ±40 nm

(roughly half a coherence length) if we assume our annular ring model to be correct.

The sample growth method used in the torsional oscillator differs significantly

from the method used in the NMR experiment (see Section 3.5.1). Figure 4.6 shows

a typical filling procedure. A shot of 3He was allowed into the filling system with
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the fill line heated near 1 K and the oscillator stabilized at 60 mK1. That prevented

the gas from condensing along the fill line and the liquid was formed initially inside

the oscillator, but still outside the cell. Note that the copper isolator is the part

which is thermally linked to the nuclear stage and it is, therefore, the coldest point

of the device. The point at which the hollow tube running along the oscillator’s

body joined the clearance drill in the copper mass provided some dead volume. It is

in this dead volume where the liquid probably condensed. The oscillator was then

taken to 490 mK, where the saturated vapour pressure of 3He is ∼ 0.1 mbar, in

order to evaporate any liquid condensed outside the oscillator and make it condense

inside the cell. The drop in frequency was monitored and the cell was cooled back

down once the frequency was flat or we achieved the desired load. The typical

loading rate was recorded to be around 0.1 mHz/h. The frequency shift at 60 mK

was then converted into film thickness using Equation 4.1 and used as our nominal

film thickness. The measurements reported in this section were obtained from films

whose nominal thicknesses were 100, 240 and 350 nm. In Figure 4.6 we plot the

difference between the inferred frequency at a given time and the frequency of the

empty oscillator at 60 mK, fo. At temperatures higher than 60 mK the background

frequency drops dramatically (see Figure 4.7). That is the reason of the sudden

change in frequency when the cell is heated to 490 mK. During the cool down from

490 mK to 60 mK some liquid probably condensed inside the oscillator’s body and

was poured inside the head by gravity. Part of the liquid, however, could have

remained inside the body’s hollow tube, to which the oscillator is insensitive. That

could be the reason of the slight discrepancy between the loading at the two different

temperatures shown in Figure 4.6. After each change in temperature the oscillator

1The reason for using 60 mK as a reference frequency is the maximum that the background
frequency shows at that temperature, making it more stable against small temperature changes.
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Figure 4.6: Typical filling procedure for the torsional oscillator. The black line
represents the frequency minus the frequency of the empty cell at 60 mK (fo). The
green line is a polynomial fit to the frequency drop at 490 mK. See text for further
explanation.

was retuned in order to obtain a reliable reading in frequency, as can be seen in the

sharp features of the black line.

4.4.2 Results and discussion

For the normal liquid measurements, the temperature was measured and regulated

using a 3He melting curve thermometer mounted on the nuclear stage (see Appendix

A). The empty cell temperature dependence of the frequency and the dissipation

are shown in Figure 4.7. For each film studied, the frequency and dissipation empty

cell backgrounds were subtracted. Figure 4.8 shows the frequency shift fraction

together with the dissipation measured for several films. There is a flat region at high
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Figure 4.7: Frequency and dissipation temperature dependence for the empty cell.

temperatures (above 60 mK) in the fractional frequency shift, which is consistent

with the film locked to the substrate. However, as the temperature drops below ∼60

mK the film starts to decouple. This behavior is independent of the mass loading.

The decoupling is also reflected in the dissipation data, where all three film studied

show a maximum at ∼ 10 mK. The maximum in the dissipation is a consequence of

the liquid losing lock with the substrate and arises from the interaction between the

oscillator and the liquid quasiparticles. All three films studied have about the same

finite extrapolated frequency shift at T = 0. According to Landau-Tizsa two-fluid

theory [84], [85] all the fluid should be decoupled at T = 0. Therefore, that residual

frequency shift can be interpreted as capillary condensed liquid around the circular

perimeter of the cell. The extrapolated frequency shift is equivalent to that of a 50

nm thick film on each surface.
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Figure 4.8: Fractional frequency shift and dissipation for nominal film thicknesses
of 350 nm(black), 240 nm(red) and 100 nm(green)

The viscous penetration depth of 3He at 100 mK is of the order of 5 µm and

increases when the temperature decreases. The film should then behave as a rigid

object locked to the oscillator throughout all the measured temperature range. Since

this is not the case, surface slip must be taken into account in order to analyze these

results. We can model the film as an mass m connected to the oscillator via a

dashpot and with a damping force applied to it. The damping force per unit area is

then given by the velocity of the film relative to the surface multiplied by a friction

coefficient η. Solving the equations of motion for this system, we find that

xo

Xo

=
1

1 + iωτosc

(4.2)

where xo and Xo refer to the oscillating amplitudes of the oscillator and film, re-
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spectively, ω is the angular frequency and τosc is a relaxation time defined by m/η

with η the friction coefficient between oscillator and film.

From 4.2 it can be seen that for short relaxation times (small τosc) the phase of the

complex denominator in the right is small and the film can follow the movement of

the oscillator. As τosc increases, so does the phase and for large relaxation times that

is translated into a decoupling of the film (the film cannot “follow” the oscillator).

The effect of the film is to change the natural resonance frequency and quality

factor (Q) of the oscillator:

∆f

fo

= − m

2M

1

1 + (ωτosc)2
(4.3)

∆

(
1

Q

)
= −m

M

ωτosc

1 + (ωτosc)2
(4.4)

From the frequency shift and dissipation data we can obtain ωτosc by simply dividing

them. If we now plot ωτosc versus 1/T we observe a linear behavior (see Figure 4.9).

The slope and m/M can be used as fitting parameters in equations 4.3 and 4.4 for

the frequency shift and dissipation data after taking into consideration the thickness

independent frequency shift at T = 0 (Figure 4.8). As it can be appreciated from

Figure 4.8, these fits(represented by lines in that Figure) show reasonable agreement

with the data.

Figure 4.8 also shows that the decoupling temperature depends on film thickness.

The thinner the film, the colder the decouple temperature. As stated above, to enter

the Knudsen flow the condition for the Knudsen number, KN = λ/d, is KN ∼ 1.

Therefore, going to a thinner film should make the inelastic mean-free path at which

Knudsen flow is entered lower. That means entering the Knudsen flow at higher

temperatures, since λ ∝ 1/T 2. On the other hand, the Knudsen minimum has been
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Figure 4.9: Temperature dependence of the relaxation time τosc for nominal film
thicknesses of 350 nm(black), 240 nm(red) and 100 nm(green)

measured to move to higher temperatures with increased specularity [86], which

could be the case in this study, although no measurement has been done on this

(like, for example, preplating the substrate with 4He).

In order to explain the 1/T behavior of the film-substrate relaxation time, τosc,

we can take into account four different times relevant to our problem:

• τosc ∝ 1/T (film-substrate relaxation time)

• τη ∝ 1/T 2 (quasiparticle relaxation time)

• τR = m∗
3R

2/h̄ (characteristic of the surface)
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• τF = h̄/(2EF)

where m∗
3 is the 3He effective mass, EF is the Fermi energy and R is the correlation

length. When τη ¿ τR it can be shown [87] that

τη

τosc

=
2
√

2

3
π

(
τη

τF

)1/2(
l

R

)2
1

kFd
(4.5)

where l is the height of the surface inhomogeneities (10 nm for our cell). The

condition τη ¿ τR is easily fulfilled in our case, since τη ∼ 1.24 × 10−6 s at 1

mK and τR = 1.20 × 10−5 s for a roughness size2 of 300 nm. From equation 4.5

τosc ∝ √
τη ∼ 1/T as measured. However, the dependence τosc ∝ d that the model

predicts has not been observed, as commented above.

Another suitable way to measure τosc would be to measure the parameter (l/R).

The surface characterisation of the substrate would give a value for l, whereas R

could be inferred by studying the spatial distribution of the surface roughnesses and

calculating their autocorrelation function. This function is given by

G(x, y) =

∫ ∞

−∞

∫ ∞

−∞
Ψ∗(s, p)Ψ(s + x, p + y) ds dp

where the function Ψ(x, y) describes the surface profile. Using now the definition of

the inverse Fourier transform of a two-dimensional function

Ψ(x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ψ∗(kx, ky)e

i(kxx+kyy) dkx dky

2Equation 4.5 provides a way of inferring R/l, since all other parameters entering the expression
are known. We obtain a value of R/l ∼ 30
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we can write

G(x, y) =

∫ ∞

−∞
ds

∫ ∞

−∞
dp

[ 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ψ∗(kx, ky)e

−i(kxs+kyp) dkx dky

]
×

×
[ 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ψ∗(k′x, k

′
y)e

i[k′x(s+x)+k′y(p+y)] dk′x dk′y
]

and, after rearranging terms and making use of the fact that

∫ ∞

−∞
ei(k′′−k′)s ds = 2πδ(k′′ − k)

we finally obtain

G(x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
|ψ(kx, ky)|2 ei(kxx+kyy) dkx dky

In other words, the autocorrelation function G(x, y) of the surface profile Ψ(x, y) is

the inverse Fourier transform of the modulus squared of the Fourier transform of

Ψ(x, y). The interfacial friction model presented above assumes Gaussian correla-

tions for the surface roughness [87]. Should this be the case for our substrate, the

full width at half maximum of the autocorrelation function would give the value of

R.

The decoupling of the normal liquid prevents the observation of superfluidity.

That decoupling occurs because of long film-substrate relaxation times at low tem-

peratures. In order to keep the normal fluid coupled to the oscillator, one would

need to decrease the relaxation time. The design of a new cell aimed for that by

adding randomly distributed elastic scattering centres. This is described in the next

Section.
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4.5 Superfluid measurements

The addition of elastic scattering centres to the cell’s surface in order to drag the

normal component of the liquid implied the fabrication of a new oscillator. This

idea already appears in the torsional oscillator work of Freeman and Richardson

[42] where the liquid was confined inside a set of Mylar sheets. To establish the

spacing between the Mylar surfaces they added polystyrene microspheres which also

fulfilled the function of pinning the normal liquid. The design and construction of

our new cell were kept identical to those of the former undecorated oscillator. After

polishing both surfaces and before making the diffusion bond we carried out the

decoration of the surface.

4.5.1 Decoration procedure

The polished oscillator was placed on a teflon holder which covered the perimeter

of the circular surface thus preventing particles from being deposited in the region

where the copper gasket would later be placed. The holder creates a 14 mm diameter,

1 mm deep cavity in which a solution of particles in ethanol is poured. We used

silver powder from Alfa Aesar consisting of spherical particles of 0.6 µm average

diameter. The powder was 99.9% in purity. The surface to be covered was a circle

of 14 mm (oscillator minus copper ring) diameter (1.54×10−4 m2) and we aimed for a

particle every ∼ 5µm. That translates into 1012

25
particles/m2 or 6.16 million particles

to cover our surfaces. Taking into account the density of silver (10.49 g/cm3) and

the fact that each silver particle is a rough sphere of 0.6 µm diameter (which is

equivalent to a volume of 1.13 × 10−19 m3) we can infer that the mass of powder

necessary for our purposes is 7.3 µg. This number was too small to be measured

in our lab. We therefore prepared a suspension of silver powder in ethanol with
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Figure 4.10: Electron micrograph of the oscillator’s decorated surface. The shown
area is ∼ 100µm ×100µm.

the adequate composition and covered the oscillator surface with it. The volume

of the 14 mm diameter, 1 mm deep cavity is 1.54 × 10−7 m3. From the density

of ethanol, 0.789 g/cm3, that volume is equivalent to 0.121 g of ethanol. Hence,

the solution should have a ratio of masses 1:16.6×103 silver:ethanol. The 0.5 mg of

silver powder measured was diluted in 10.53 cc (8.31 g) of ethanol. That dilution

was used to fill up the cavity and the holder was placed in an ultrasonic bath until

the ethanol evaporated. The ultrasonic bath caused the particles to be distributed

randomly. The treated substrate was then brought to 755 ◦C for 10 minutes and

then submerged inside ethanol in the ultrasonic bath to remove any loose particles.

The decoration was carried out in both halves of the oscillator’s head and then

the cell was diffusion bonded as explained above. Figure 4.10 shows a photograph

of 100 µm × 100 µm area of the actual decorated surface. The white dots are the

silver particles.
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Figure 4.11: Fractional frequency shift and dissipation data comparing undecorated
(circles) and decorated (triangles) oscillators. The film remains locked down to 1
mK in the new cell. Nominal thicknesses are 143 nm (cyan), 112 nm (purple), 84
nm (red) and 44 nm (yellow). The dissipation shows no peak as opposed to the
previous undecorated cell, where the decoupling of the films was accompanied by a
maximum in the dissipation.

4.5.2 Effect on the film

We studied films of different thicknesses in this new decorated oscillator. In this

case, the resonance frequency of the antisymmetric torsion mode was ∼ 2570 kHz.

According to equation 4.1 the frequency to nominal thickness conversion was now

0.909 mHz/(2 × 1000 Å). Figure 4.11 displays the temperature dependence of the

fractional frequency shift and dissipation for nominal film thicknesses of 143, 112,

84 and 44 nm. (where the residual frequency shift of 0.5 mHz. due to the annular

ring suggested by Figure 4.8 has already been subtracted). It is clear the locking

of the film to the substrate down to temperatures of the order of the millikelvin,
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bordering the superfluid transition temperature. The dissipation data appears flat

in contrast with the maximum observed in the data from the undecorated oscillator.

These results reinforce the interfacial friction model presented earlier.

Our observations meant that the normal liquid was locked to the cell and that

decoupling would only occur as a result of a superfluid transition. We present the

superfluid results in the next Section.

4.5.3 Results and discussion

In these experiments we are able to cool below 0.5 mK, the total residual heat leak to

the nuclear stage being about 4 nW at zero magnetic field. The thermometry below

1 mK is based upon the nuclear magnetic susceptibility of platinum wires (PLM

thermometer explained in Appendix A). Two runs in the cryostat were performed

with the decorated oscillator: Run 13 and Run 14.

In Run 13, after carrying out the decoration, we experienced some experimental

problems with the oscillator. In this Run we observed a big change in the tem-

perature dependence of the empty oscillator resonance frequency (see Figure 4.12).

Also, the oscillator was found to be rather unstable upon perturbations: a helium

transfer on the cryostat, a sudden change in temperature or the loading procedure,

would cause a jump in frequency, thus making necessary to shift our background.

Constantly adding and subtracting random shifts to the frequency was absolutely

undesirable and, in fact, a clear superfluid transition in a film could not be deter-

mined. It also compromised the reliability of the determination of the nominal film

thickness.

However, we did measure the response of three different samples of nominal film

thicknesses 100, 180 and 300 nm (Figure 4.13). Below 0.90 mK all three films show
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Figure 4.12: Background comparison between undecorated (blue) and decorated
cells. The red line shows the background of the decorated cell during Run 13,
where high instabilities were observed. After some changes in the cell (see text) the
background became much flatter (black points) in Run 14. The inset is a blow up
of the region below 10 mK.

a departure from the background. This was our first observation of a superfluid

transition in the torsional oscillator and gave evidence of the effectiveness of the

decoration method described above. The two thinner films show an increase in the

momentum of inertia below 0.90 mK, contrary to what one would expect from a

superfluid transition. Such a behavior is not well understood yet, although it could

be a consequence of a redistribution of the liquid within the cell following the bulk

transition. Further cooling made the 180 nm sample to actually decouple, reaching

a total frequency shift of about 1.1 mHz at 0.30 mK. We never cooled down the 100

nm sample below 0.82 mK. The most striking feature from this set of data comes

from the thickest film (red line in Figure 4.13). The magnitude of the sharp peak
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Figure 4.13: Sub-1mK data for samples of nominal thicknesses of 100 (black), 180
(green) and 300 (red) nm obtained in Run 13. All coverages show a departure from
the background (blue line) below 0.90 mK. The thickest film shows a resonance
which could be attributed to coupling with fourth sound.

is of the order of the total frequency shift from loading. It actually looks like the

imaginary component of a resonance. This resonance is likely to arise from the

coupling of the oscillator to some sound mode in the liquid. 3He shows five different

kinds of sound, some of them only observable on its superfluid form. Normal 3He

at high temperatures and low frequencies has only ordinary “hydrodynamic” or

first sound. As the temperature decreases, a collisionless collective mode develops.

That new mode is the zero sound [18], in which the quasiparticles do not come

into thermal equilibrium locally but respond only dynamically. Zero sound is also

observed in superfluid 3He [88] and has an excitation frequency of the order of tens

of MHz. Second sound [89] is characteristic of 3He-4He mixtures and arises from
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the counter-oscillation of the normal and superfluid mass densities. Third sound,

related to waves on the surface of a thin film of superfluid, has modes of frequencies

of the order of Hz in superfluid 3He [30]. Fourth sound [90], like third, is only related

to the superfluid part of the liquid, and the normal fluid remains clamped [91]. It

occurs in restricted geometries where the normal component is locked to the walls

due to its viscosity while the superfluid is free to flow. The velocity of fourth sound

C4 ∝
√

ρsC2
1/ρ, where C1 is the velocity of first sound, ρs is the superfluid density

and ρ is the total density. This means that fourth sound is for the superfluid the

equivalent of first sound for the normal liquid. This could be used to measure the

superfluid density. It is this mode that we believe was probably coupled to the 300

nm sample. We did not, however, investigate this effect in deeper detail.

Before running the oscillator again some minor changes were made on the sys-

tem concerning the anchoring of the coaxial cables connected to the magnesium

electrodes. These cables were probably acting as a mechanical link between the cell

and the nuclear stage. Also, the fridge was run with the air mounts down which did

not prevent us from cooling below 0.5 mK. As a result, the temperature dependence

of the background frequency improved noticeably, as shown in Figure 4.12. Here,

the black points were taken at several stabilized temperatures, whereas the blue and

red lines represent fits to the measured backgrounds in the other two cases. Not

only the instabilities completely disappeared after carefully rearrange the wiring,

but the new background was less temperature dependent than that of the previous

undecorated cell, which implied a better mass resolution for our samples.

We move on now to discuss the superfluid transitions observed in the new cell

during Run 14. We made measurements on three different samples, of thicknesses

143, 112 and 83 nm, and for all of them we observed a bulk superfluid transition.

This is shown in Figure 4.14, where the thicker lines represent the frequency and
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Figure 4.14: Sub-1mK frequency (thick lines) and dissipation (thin lines) data for
samples of nominal thicknesses of 143 nm (black), 112 nm (blue) and 83 nm (green)
in Run 14. Data were taken on warming. The red line represents the empty cell
frequency background. See text for explanation.

the thinner lines represent the dissipation. These data were taken on warming.

Evidence of a superfluid transition in the film was only found in two of the samples

(143 and 112 nm): for both of them a sudden increase in slope (in the frequency

data) occurs at 0.73 mK. All three samples showed a “bump” in the frequency at

the beginning of their decoupling. This feature was more pronounced the smaller

the nominal thickness of the sample. It happened around bulk Tc for the two thicker

samples, but colder, at about 0.80 mK, for the 83 nm sample (green line in Figure

4.14) and it could be linked to a change in distribution of the liquid within the

cell. For the 143 nm sample and the 112 nm sample the jumps in the dissipation

at 0.88 mK coincided with the beginning of the frequency decoupling. We attribute
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these jumps in dissipation, therefore, to a superfluid bulk transition in the capillary

condensed liquid at the periphery of the cell.

The Ginzburg-Landau theory predicts a superfluid transition temperature of

0.21 mK for a 83 nm thick film. The coldest temperature achieved in our 83 nm

sample was 0.48 mK and nothing in the data suggested that a superfluid transition

occurred in a film. The behaviour in frequency of this sample near bulk Tc is not

well understood. Its frequency joins the empty cell background at a temperature

which is colder than the decoupling temperature of the two thicker samples. The

dissipation, however, shows a jump around bulk Tc, agreeing with the observations

made in the other two samples and revealing that the superfluid bulk transition also

took place at 0.88 mK in the 83 nm sample. The two sudden drops in frequency at

0.50 and 0.54 mK were caused by helium transfers to the cryostat.

As commented above, the measured temperature for the superfluid bulk transi-

tion was 0.88 mK for all our samples. The 3He bulk superfluid transition temperature

is 0.94 mK at zero pressure and we believe that the reason for the disagreement in

Tc shown by our data is a temperature gradient between the thermometer and the

sample. Also, in Run 13 we measured a superfluid bulk transition temperature of

0.90 mK (see Figure 4.13). This difference in Tc between the two runs could be due

to a change in the thermal resistance of the cone joint which provides the thermal

link from the nuclear state to the PLM thermometer after the thermal cycle between

the runs.

We will study now the film transition for our 143 nm and 112 nm samples. It

is clear from Figure 4.14 that a sudden increase in the frequency slope occurs at

0.73 mK for both samples. The higher rate of decoupling can be attributed to the

superfluid transition in the film. Now, both samples show the change in slope at the

same temperature whereas they have different nominal film thickness. However, the
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nominal film thickness was calculated under the assumption that the bulk liquid at

the edge of the cell contributed with 0.5 mHz to the total frequency shift at loading.

If we consider a smaller contribution from the bulk liquid at the edges for our 112 nm

sample, the nominal thickness would be different. Specifically, a 0.3 mHz frequency

shift from the edge at loading would mean a change in nominal thickness from 112

nm to 134 nm. That would also explain the slower decoupling shown by the blue

curve in Figure 4.14 between 0.88 and 0.73 mK. We will consider these issues in the

analysis below.

Let us analyze the 143 nm sample first. The reduced superfluid density is related

to the change in period by

ρs

ρ
=

∆P

(1− χ)(∆Pload)
(4.6)

where ∆P is the change in period due to the superfluid decoupling and ∆Pload is

the change in period observed when filling the cell up. Imperfections in the flow

path could keep a fraction, χ, of the sample coupled to the oscillator, even when the

liquid is completely superfluid. In their torsional oscillator experiment, Freeman and

Richardson measured the χ factor of their oscillator using pure 4He [92] and found

a value of 0.27. Their substrate was Mylar and the samples were enclosed between

two enclosed boundaries. They expected χ to be approximately half the measured

value and attributed the discrepancy to an imperfect parallel plates geometry. Our

case is slightly different, since our samples present a free surface and, therefore, have

less contact area with the substrate. Since χ was not measured for our cell, we will

take the χ factor as zero throughout our analysis.

In order to extract the superfluid film fraction and compare it with the predic-

tions of the Ginzburg-Landau theory one needs to subtract the decoupling of the
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bulk liquid capillary condensed around the cell perimeter. The reduced superfluid

density as a function of temperature for bulk 3He at zero pressure has been studied

in the past [93]. In reference [93] we use the data from the Cornell group to get a

bulk period shift that we can compare with our results. It is important to remember

the role played by the bulk liquid at the edges when calculating that loading period

shift. Let us consider that the bulk liquid is responsible for a total shift in frequency

of 50 mHz. Now, when working in periods, we do the following:

∆PTotal =
1

fo − 1.8× 10−3
− 1

fo

= ∆PBulk + ∆Pfilm

where fo is the frequency of the empty cell at the temperature at which our nominal

film thickness is calculated (60 mK) and our sample had a loading frequency shift

of 1.8 mHz in total. Now, of this total frequency shift of 1.8 mHz, 0.5 mHz come

from the bulk. Therefore

∆PBulk =
1

fo − 0.5× 10−3
− 1

fo

Hence, the period shift due to the film is simply

∆Pfilm = ∆PTotal −∆PBulk

One could, of course, argue that we could also calculate the change in period due

to the film first and then obtain the bulk by subtracting it from the total. That

calculation would give a film period change smaller than the above obtained by four

parts in 10000. That means a difference in thickness of 0.6 Å, less than our thickness

resolution (1 Å).

The bulk superfluid density experimental points can be fit in order to obtain a
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Figure 4.15: The bulk superfluid fraction for 3He-B as measured at Cornell [93] at
zero pressure as a function of temperature (black). The red curve is a fourth order
polynomial fit to the experimental points.

curve with which compare our measurements. This is shown in Figure 4.15, where

the discrepancy in the bulk superfluid transition temperature is due to temperature

scale differences. By multiplying the red curve in Figure 4.15 by our ∆PBulk we can

estimate what the period shift would be as a function of temperature following a

superfluid transition in the liquid located at the periphery of our cell. For our 143 nm

sample, assuming a 0.5 mHz frequency shift from the bulk liquid, the resultant curve

is the red line in Figure 4.16, which also shows the measured period shift (black line)

and the difference between both (green line). The agreement is remarkable down to

T/Tc = 0.82.

Below T/Tc = 0.82 our data no longer follows the bulk data, indicating a possible

transition in the film. We can now treat the bulk period shift as a background and
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Figure 4.16: Period shift from our 143 nm thick film (black line). The empty cell
background has been subtracted. The red line shows data from ref [93] scaled by
our period change on loading. The green line is the difference between the black
and red lines and reflects the behavior of the film.

subtract it from our data (green line). The resulting line is then divided by ∆Pfilm

to obtain the superfluid film reduced density (black line in Figure 4.18).

The Ginzburg-Landau theory provides an estimate of the superfluid density near

Tc. For 3He-A it has been calculated [26], [94], [95] that

< ρA
s >

ρA
s,bulk

= 1− k(w)

w
(4.7)

where w is the dimensionless thickness D/ξ(T ). Note that in our case, due to

the specular boundary of the free surface, our thickness d = D/2. The function

k(w) = 3.2 for w >> π [96] in 3He and varies slowly with w. Let us develop the above
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expression a bit further by using the correlation length temperature dependence

ξ(T ) = ξT

(
1− T

Tc

)−1/2

The correlation length in superfluid 3He has two components: one longitudinal and

one transversal to the order parameter. It is the shortest one, the transverse com-

ponent ξT, the one we use in this analysis following the conventional procedure [23].

This transversal component can be expressed as

ξT =

√
3

5
ξs

where ξs is the s-wave BCS correlation length and is given by

ξs =

√
7ζ(3)

48

h̄vF

πkBTc

ζ is the Riemann zeta function and vF is the Fermi velocity. The quantity h̄vF/πkBTc

is the zero pressure, zero temperature coherence length for superfluid 3He, ξo.

We can now write Equation 4.7 as

< ρA
s >

ρA
s,bulk

= 1− k
ξ(T )

D
= 1− k

2d

√
3

5

√
7ζ(3)

48
ξo

(
1− T

Tc

)−1/2

(4.8)

The film thickness is related to the film superfluid transition temperature by [26]

ξo

d
∼

(
1− T film

c

Tc

)1/2
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Figure 4.17: Ginzburg-Landau theoretical curves for the superfluid film fraction in
different film thicknesses

and Equation 4.8 becomes

< ρA
s >

ρA
s,bulk

= 1− k

2

√
3

5

√
7ζ(3)

48

(
1− T

Tc

)−1/2 (
1− T film

c

Tc

)1/2

Operating and rearranging, we finally reach

< ρA
s >

ρA
s,bulk

= 1− 0.649
k

2

(Tc − T film
c

Tc − T

)1/2

(4.9)

Using the superfluid bulk data of reference [93] and a constant value of 3 for the

function k(w), we can produce a family of curves describing the reduced superfluid

density for a number of different T film
c (Figure 4.17). However, the Cornell data

[93] refer to an isotropic superfluid density, which is not the case for 3He-A. For
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an anisotropic superfluid we should use the z component of the superfluid density

tensor, ρA,⊥
s . Although they are different, related by ρA,⊥

s = 2ρB
s /5β245, they can be

regarded as equal in the weak coupling limit [97]. In the strong coupling limit the

error made in such an approximation is of the order of 10-20%.

Comparing our data with the Ginzburg-Landau prediction for a film with a

transition temperature T f
c/Tc = 0.82 we observe a reasonable agreement down to

T/Tc = 0.75. This is shown in Figure 4.18. The Ginzburg-Landau theory also

predicts a film thickness of 173 nm for a transition temperature of T f
c/Tc = 0.82,

our nominal film thickness being 143 nm for this sample. A possible explanation for

this disagreement could be related to the larger thickness of the film on the bottom

surface of the cell, as explained in Section 3.4.2.

A theoretical prediction for ρs/ρ as a function of film thickness near T = 0 that

does not make use of the Ginzburg-Landau theory of phase transitions can be found

in the work of Yamamoto et al. [29], which we will discuss below.

As a final remark, we would like to point out that the 143 nm sample was cooled

down twice, in both cases showing identical responses in frequency and dissipation.

The previous analysis can be now be applied to our 112 nm sample. Figure

4.19 shows the period shift of this sample (thin blue line) along with the calculated

period shift for a bulk sample contributing with 0.3 mHz (thick blue line) and 0.5

mHz (red line) at loading. The black line represents the period shift of the 143 nm

sample. The period shift of the 112 nm sample agrees remarkably well with the blue

thick line from T/Tc = 1 down to T/Tc = 0.82 and falls well below the red line.

That reinforces the hypothesis of the capillary condensed bulk liquid contributing

with 0.3 mHz frequency shift at loading. As discussed above, that would put the

nominal thickness of this sample at 134 nm, probably slightly thicker at the bottom,

consistent with the measured T/Tc = 0.82. The film superfluid transition is masked
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Figure 4.18: Superfluid film fraction from a 143 nm thick film (black) compared to
the theoretical prediction for film with T f

c/Tc = 0.82 (red). We observe a reasonable
agreement down to T/Tc = 0.75.

by a sudden jump in the period shift at ∼ T/Tc = 0.8, caused by a helium transfer to

the cryostat. Under the light of these results, it seemed that we had actually formed

a sample similar in thickness to our 143 nm sample. We could now also isolate

the response from the film by subtracting the bulk period shift. This is shown

in Figure 4.20. As it can be seen, both data set have a similar decoupling below

T/Tc = 0.82, which suggests that both sampled actually consisted of films with

similar thicknesses. If, as it can be inferred from the data, the amount of capillary

condensed bulk liquid at the perimeter of the cell was not constant but changed

with the samples, the growth of a film with a specific thickness would constitute a

problem. Further research is necessary in order to understand this issue.

We will now compare the results from our 143 nm sample with other previous
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Figure 4.19: Period shifts from our 112 nm nominal thick film (thin blue line). The
calculated bulk period shift considering a contribution of 0.3 mHz (thick blue line)
and 0.5 mHz (red line) at loading are also displayed. The black line represents
the period shift from our 143 nm sample. The empty cell background has been
subtracted for all data.

experiments performed on similar systems. As presented in Chapter 2, the group at

Purdue University [97] measured several film thicknesses ranging from 100 to 170

nm. They used a torsion pendulum and their samples, like ours, presented a free

surface. Figure 4.21 shows their measured transition temperatures for several film

thicknesses. The inset shows their experimental setup. Although their transition

temperatures agreed within reason with the theoretical calculations of reference [25]

(see Figure 4.21), their measured superfluid density was much lower than ours.

As it can be seen in Figure 4.22, even for their thickest films (∼ 160 nm) they

never measured a superfluid fraction of more than 8% at T/T c = 0.4 whereas we

were obtaining a 9 % decoupling from the film at T/T c = 0.64 (note that their
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Figure 4.20: Superfluid film fractions from the 143 and 112 nm samples compared
to the theoretical prediction for a film with T f

c/Tc = 0.82. Both samples show
similar behaviour below T f

c = 0.82, suggesting that they actually consist of films
with similar thicknesses (about 140 nm).

nominal thicknesses in Figure 4.22 are doubled to account for the free surface and,

therefore, their empty squares are the closest to our 143 nm data). Interestingly,

one of their measurements (on a film 137 nm thick) was done at nearly the same

film thickness as ours. The measured reduced film transition temperature for this

sample was T film
c /Tc = 0.82. Their results showed an anomaly in the superfluid

density at precisely this thickness. When they plotted ρs/ρs,bulk as a function of the

reduced film thickness w = 2d/ξ(T ), they found that their set of data fell into two

different curves, determined by whether the film thickness was above or below 1375

Å. They suggested that a thickness dependent phase transition was taking place in

the film. Since the Ginzburg-Landau theory [26] predicted a film thickness of 353
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Figure 4.21: The transition temperature as a function of film thickness as measured
by Xu and Crooker [43]. The inset shows the experimental setup.

nm, much thicker than their film, for the A-B transition to occur at a temperature

T/Tc = 0.82 (see Figure 2.5) they suggested a non-B unidentified phase for their

anomaly. We could not support or refute this last result with this work, since only

one film thickness could be successfully studied, but Schechter et al. [30] (see below)

never observed such a behaviour.

Schechter et al. [30] measured the superfluid fraction of thin 3He films by using

the third sound technique. Their range of thicknesses varied from 92 to 281 nm and

observed reasonable agreement with the theory in the Ginzburg-Landau regime (see

Figure 4.23). The samples were grown by positioning a thick horizontal copper disk

in a container of 3He. After the 3He bath was cooled below the superfluid transition,

the van der Waals attraction between the 3He and the copper disk pulled 3He atoms
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143 nm

Figure 4.22: The superfluid density as a function of the temperature for several
film thicknesses as measured by Xu and Crooker [43]. Data from this work are
represented by the red line. The nominal thicknesses from the reference are doubled
in order to account for the free surface. Our film thickness of 143 nm would be the
closest, therefore, to the empty squares in the Figure.

onto the disk’s exposed surface. The thicknesses of the films were governed by the

energy balance between the gravitational force and the van der Waals interaction

between the copper and the 3He and they could be determined by using the substrate

as one side of a parallel plate capacitor (the other side being a suspended plate above

the sample) and taking into account the dielectric constant of 3He (∼ 1.0426). The

capacitance increased, thus, linearly with the film thickness. This method had the

disadvantage of a possible tilt in the capacitor plates and they relied, therefore, on

the alternative parameter h, the height from the surface of the bulk liquid to the

surface of the film. h was related to the film thickness by a power law. However,

they found discrepancies between the film thicknesses measured on two differen runs
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Figure 4.23: Superfluid densities as a function of temperature as measured by
Schechter et al. [30]. Discrete points are experimental results whereas lines represent
the Ginzburg-Landau predictions. Data from this work are plotted for comparison
(red line).

and estimated a consistent error of up to ∼ 15% in those measurements.

Comparing our results with the third sound experiment we see that for a film

with a transition temperature of T f
c = 0.82Tc our data are in good agreement down

to the coldest temperature we achieved. This can be seen in Figure 4.23, where

we plot our superfluid density as a red line. Their nominal thickness for a film

with T f
c/Tc = 0.82 was 174 nm, whereas our nominal film thickness for the same

transition temperature is 140 nm. Interestingly, there is a discrepancy between our

Ginzburg-Landau calculated curves (see Figure 4.17) and the theoretical curves in

Figure 4.23. Unfortunately, Schechter et al. did not report the source of the bulk

superfluid data they used in their analysis.
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Figure 4.24: Theoretical dependence of the transition temperature with film thick-
ness after Kjäldman et al. [25]. The red point represents this work, with the nominal
film thickness multiplied by two to account for the free surface. See text for further
explanation.

With regard to the existent theories, we observe a slight discrepancy with respect

to the work from Kjäldman et al. [25]. This is shown in Figure 4.24. The red point

represents our data after multiplying the nominal film thickness by two in order

to account for the free surface of our film. According to that work, a transition

temperature of T f
c/Tc = 0.82 would correspond to a film of thickness 2× 177 nm, in

fairly good agreement with the third sound experiment. The theoretical work of Li

and Ho [27] would attribute the same transition temperature to a slab of thickness

2×186 nm. Our nominal film thickness assumes an equal distribution of the sample

between the top and the bottom of our cell but it well could be the case (see Section

3.4.2) that the bottom film is actually thicker than the top one. Actually, for a total
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Figure 4.25: Theoretical dependence of the transition temperature with film thick-
ness after Vorontsov and Sauls [28]. The red point represents this work. See text
for further explanation.

thickness (top plus bottom) of 286 nm, our model predicts a ∼ 200 thick film at the

bottom surface.

The most recent theoretical treatment of this kind of systems [28] (see Chapter

2) is in better agreement with our results, as shown in Figure 4.25. As stated

in Chapter 2, this calculation refers to a film with one diffusive and one specular

scattering surfaces, as it is our case. Our measurement is represented by the red

point in Figure 4.25.

Another model which considers a film enclosed by a rough wall and a free surface

[29] obtains the current density through quasi-classical Green’s functions. This

work reports a slightly higher superfluid fraction for a 174 nm sample than the

measurements by Schechter et al. [30]. A comparison between this model, the third
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Figure 4.26: Temperature dependence of the superfluid density for various film
thicknesses after Yamamoto et al. [29] (black lines). The symbols denote the work
by Schechter et al. [30]. The red line represents our work.

sound data and our data is displayed in Figure 4.26. Data from our work would fall

between their 122 nm and 174 nm calculations.

It is interesting to compare our experimental results with other work not neces-

sarily involving restricted geometries such as superfluidity of 3He in porous media.

One of these porous media, extensively used in 3He experiments is aerogel. Aero-

gel is a tenuous random solid network of SiO2 particles of approximately 25 Å in

radius with very low densities and large surface area. In the commonly accepted

picture, it does not behave like a surface, since the silica diameter is smaller than

the 3He superfluid coherence length, but rather like a collection of impurities. How-

ever, qualitatively the effect of the aerogel on superfluid 3He is the same as that of
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Figure 4.27: Temperature dependence of the bare normal fluid density in 98 % (left)
and 99.5 % (right) aerogel after Lawes and Parpia [98]. The solid symbols are at 25
bars of pressure, the gray symbols at 10 bars and the open symbols at 2.5 bars. The
red lines represent this work. The solid lines are the scaled BCS Yosida functions
[98] with gap scaling factors of (from bottom to top) 1, 0.91, 0.83, 0.77, 0.71, 0.67,
0.63, 0.59, 0.56 and 0.53, showed for comparison.

confinement: both the superfluid density and the transition temperature are sup-

pressed by the aerogel. Figure 4.27 shows a set of measurements done in 98 and

99.5 % open aerogels at several pressures [98]. It represents the bare normal fluid

density versus the reduced temperature. The bare normal fluid density accounts for

the pressure-dependent adjustment to the normal fluid density arising from Fermi

liquid corrections to the effective quasiparticle mass. It is given by

ρb
n

ρ
=

ρn

ρ

1 +
(

F1

3

)(
1− ρn

ρ

)
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Figure 4.28: The superfluid fraction in 98 % open aerogel at various pressures as a
function of temperature after Porto and Parpia [9]. The curves correspond to, from
left to right, 3.4, 4.0, 5.0, 6.1, 7.0, 8.5, 10, 13, 15, 20, 25 and 29 bars. The inset
shows the superfluid fraction in the bulk for 0.5, 10, 15 and 20 bars over the same
temperature range. The red lines represent this work.

where F1 is the pressure-dependent Landau parameter (5.27 at zero pressure) and

ρn/ρ is the measured normal fluid density. From the figure we can see that our data

displays a behaviour which does not correspond to any of the pressures displayed

either in the 98 % or the 99.5 % aerogel. The slope of the bare normal fluid den-

sity versus temperature is smaller in our experiment than in the aerogel studies.

Likewise, if we produce a plot equivalent to Figure 4.17 for a given aerogel density,

as shown in Figure 4.28, we find that our superfluid density does not agree with

the superfluid density in aerogel for a similar transition temperature. Figure 4.28

represents the superfluid fraction, ρs/ρ, at various pressures as a function of tem-
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Figure 4.29: The bulk temperature dependent coherence length for different pres-
sures plotted against the reduced temperature. The dots represent superfluid tran-
sitions in 98 % aerogel after Porto and Parpia [9]. Superfluidity does clearly not
occur at a fixed value of the bulk temperature dependent coherence length.

perature for 98 % aerogel [9]. Whereas our superfluid fraction (red curve) is steeper

than any of the aerogel curves, our superfluid transition temperature corresponds

to a pressure somewhere between 4 and 5 bars in 98 % aerogel. This should not be

surprising at all, since we should realize that there is a big difference in the physics

of superfluid 3He between confined geometries and aerogel. In the case of a regular

slab geometry, such as the experiments reported in this work, the behaviour of the

superfluid reflects the temperature and pressure dependence of the coherence length.

In other words, the onset of superfluidity for all pressures occurs at a fixed ξ(T ) for a

given film thickness. However, this is not the case for 3He in aerogel [9]. Figure 4.29

displays the bulk temperature dependent coherence length for different pressures.
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Figure 4.30: A pressure sweep from 14 to 5.6 bars at a fixed temperature T = 0.295
mK for 3He in 98 % aerogel using a torsional oscillator, after Matsumoto et al. [99]
(a). The measured period falls below a critical density (pressure) signaling the onset
of superfluidity. Repeating that measurement over a range of temperatures, we can
map out the phase diagram of 3He on 98% aerogel (b). The solid line is 3He in bulk,
circles are data from Matsumoto et al. [99] and triangles are data from Porto and
Parpia [9], also for 98% aerogel.

At each pressure the bulk coherence length at the transition temperature is shown

as a dot. It is evident that the superfluidity is not manifested at a fixed value of the

bulk ξ(T ).

The work in aerogel, nevertheless, could be taken as a starting point for finding

evidences of Quantum Phase Transitions (QPT) in 3He systems [99]. In the work

by Matsumoto et al. they found, as Figure 4.30 shows, that there was a critical

3He density (pressure) below which the system exhibits superfluidity for each fixed

temperature. By changing that temperature, they could map out the Pressure-
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Temperature phase diagram at low temperatures. Extrapolation of the data showed

that the normal-superfluid phase boundary intersected the pressure axis. There

was, therefore, a normal to superfluid continuous phase transition at T = 0 at a

nonzero pressure. This results suggest that a similar effect could take place in 3He

in restricted geometries. For a film thickness smaller than one coherence length

and at saturated vapour pressure, superfluidity would not be observed, even at zero

temperature, according to Figure 4.25. In order to observe superfluidity in those

conditions, pressure should be applied to diminish the zero temperature coherence

length. Therefore, an experiment could be designed that would measure the su-

perfluid density as a function of the film thickness at a fixed temperature. Since

a continuous change of film thickness at constant temperature is not possible with

our present setup, we could vary the pressure instead, and measure the superfluid

density as done in Reference [99]. It is for this reason that the torsional oscillator

experiment could also benefit from a confined cell such as the one described in Chap-

ter 3. Changing the temperature for each measurement and then extrapolating in

the same way as Matsumoto et al. would experimentally solve the low temperature

region of the superfluid phase diagram as a function of film thickness. Of course,

similar experiments could be done using the NMR technique.

4.5.4 Conclusions

Two different very sensitive torsional oscillators were used to measure the temper-

ature response of films with different thicknesses. A superfluid state could never be

seen in the first of our cells due to a decoupling of the liquid in the normal state.

This effect could be explained by an interfacial friction model which supported a

1/T dependence of the film-substrate relaxation time.
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A new decorated cell, to which silver particles were added to the substrate in

order to lock the film, allowed us to observe superfluid transitions over a certain

range of samples. For two of our samples, with nominal thicknesses of 112 and

143 nm, we observed a superfluid transition that agreed, in both cases, with the

Ginzburg-Landau prediction for a slab of 173 nm and a transition temperature of

T film
c = 0.82 mK. That suggested that the two films actually had the same thickness

and that the amount of capillary condensed bulk liquid at the edge of the cell was

not constant over the samples.

Our results were in reasonable good agreement with some theoretical [25], [28],

[27], [29] and experimental [30] works, whereas our measured superfluid film fraction

presented a significant departure from the results of another torsional oscillator

experiment [43].

A comparison between our experiment and other experiments dealing 3He in

porous media, like aerogel, was also done. We found that, although in both cases

the order parameter of the superfluid was strongly affected by the media, the physics

of confined 3He is completely different from the physics of 3He in aerogel, which is

believed to be a disordered system.



Chapter 5

Conclusions and future work

Every saint has a past and every sinner has a future.

Oscar Wilde.

This work had as a purpose to study superfluid 3He confined to a planar geometry

of size of the order of the coherence length. Two main experimental techniques were

used for this study: Nuclear Magnetic Resonance, which explored the magnetic fea-

tures of the superfluid state and a torsional oscillator based on its flow properties.

The NMR experiment was successful in observing superfluidity in samples of thick-

nesses ranging from about one to ten coherence lengths (93 to 1500 nm thick films),

whereas the torsional oscillator experiment showed evidence of superfluidity in two

samples. Although with different nominal thicknesses, 112 nm and 143 nm, these

two samples exhibited a very similar response below 0.73 mK, suggesting that they

were formed by films of similar thickness. We summarize in this Chapter the results

obtained and suggest possible directions for future experiments which might stretch

the limits of the current experimental capabilities.

181
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5.1 NMR summary

The NMR cell design for this experiment was based on the previous work from

Dyball [51]. In that work, the NMR cell consisted of a single silver surface enclosed

in a stycast chamber. The 3He samples within that cell were observed to be unstable

at all temperatures, probably due to temperature gradients which made the liquid

move towards the hotter part of the cell. By employing two silver discs we could

obtain a similar thermal environment throughout the experimental substrate and

there was no sign of signal decaying over a period of weeks. The cell fill line was

also designed to avoid any space in which the liquid could allocate by capillary

condensation.

In the NMR experiment we observed superfluid transitions on samples of different

sizes. Most of our samples showed a positive frequency shift below the superfluid

transition, which was inconsistent with a liquid film deposited on the cell substrate.

They also had the same transition temperature independent of the sample size.

Those facts, together with the results of the sample imaging using the magnet shim

coils, suggested that our samples were imperfectly annealed and consisted of small

droplets scattered over the silver plates. In thicker samples, consisting of a 1.8 µm

thick film, we observed a signal splitting below the superfluid transition, always after

a previous superfluid transition which we believed acted as a “superfluid anneal”.

The split was observed between 0.82 and 0.80 mK and further cooling would make

the signal to snap into a single, positively shifted peak. We explained these results

under the light of the spin wave theory. Also for this later sample, a transition into

a superfluid B-phase, for which the magnetisation decreased as the temperature was

lowered and the NMR signal remained at the Larmor frequency, was observed. This

transition into the B-phase could not be reproduced again, even after reannealing



Chapter 5. Conclusions and future work 183

the sample following the same experimental steps. For an even thicker sample,

equivalent to two films of 1500 nm on the top and bottom surfaces, but probably

consisting of a single 3000 nm thick film in the bottom surface, we finally observed

a negative frequency shift, also after a superfluid anneal, indicating the presence of

an uniform and stable film within the cell. This was consistent with a supercooled

A-like phase in a film. The transition temperature of this transition could not be

precisely determined, though, due to the fact that it was observed on cooling and

the thermometer could not reach thermal equilibrium with the sample during the

demagnetization. The A-phase showed a sudden transition into the B-phase after

about 20 hours. During the warm up of the B-phase, no subsequent observation of

the A-phase was possible before the transition into the normal state.

These results proved how important was the sample annealing for obtaining a well

characterized film. Our sample growth method probably suffered from imperfections.

The samples were taken to 200 mK after the gas had been allowed into the cell.

However, the vapour pressure of 3He at 200 mK is of the order of 10−4 mbar and

that was certainly not enough to properly anneal the samples. The reason for not

going above 200 mK was that the experimental cell was the coldest part of the

NMR system and at that temperature we observed inside it the total amount of

spins added to the fill line.

5.2 Torsional oscillator summary

A previous torsional oscillator experiment on a similar cell showed that the liquid

started to decouple at temperatures as high as 60 mK. This decoupling made impos-

sible the observation of superfluidity. The frequency shift extrapolated to a value

which was independent of the sample size. That suggested a model in which the
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sample was formed by two films adsorbed on the top and bottom surfaces of the cell

plus a sample independent capillary condensed ring around the edges of the cavity.

The normal fluid results were explained with the help of a facial friction model. In

order to drag the normal fluid the model concluded that the quasiparticle-substrate

relaxation time should be decreased. A new cell was designed and constructed which

shared all the characteristics of the former one but was decorated with silver particles

of 0.6 µm diameter on average. The particles, spaced about 10 µm from each other,

acted as elastic scattering centres and the new cell was successful in keeping the

normal fluid locked down to the superfluid transition temperature.

In a first attempt on the new cell a clear superfluid transition in the film could

never be observed, due to the high level of noise in the oscillator’s background. How-

ever, we observed an interesting feature in a 300 nm thick film. For this film both,

the resonance frequency and dissipation below the superfluid transition, strongly

resembled the real and imaginary part of a resonance. This was thought to be due

to fourth sound coupling to the oscillator. Although it was not investigated further,

this sound coupling could be used as a tool for obtaining the superfluid density in

films over a certain range of thicknesses.

After making some changes in the anchoring of the electrodes wiring and running

the experiment with the cryostat’s air mounts down, which resulted in a much more

stable and flat background, we could observe two clear superfluid transitions coming

from a ∼ 140 nm thick film. These transitions came from samples of different

nominal thicknesses, but they showed, after subtracting the empty cell background

and the effect of the capillary condensed liquid in the corners of the cell, the same

behaviour below 0.73 mK. This transition temperature was consistent with the work

of Vorontsov and Sauls [28], but slightly discrepant with the work of Kjäldman et al.

[25]. However, a balanced distribution of the liquid between the top and the bottom
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surfaces of the cell was unlikely: the bottom film was expected to be thicker and,

in this case, it could be as thick as 200 nm. Our results agreed with the work on

third sound from the Cornell group [30] regarding superfluid density for a film with

the same transition temperature, although their nominal thickness was about 35 nm

larger than ours. The group at Purdue, however, reported much lower superfluid

densities for similar thicknesses.

Comparing our results with work carried out in disordered systems, such as 3He in

aerogel, we found that, for similar transition temperatures, the slope of the superfluid

density versus temperature of our films was steeper. A possible explanation for

this could be that for a 3He slab the superfluid transition takes place at a fixed

temperature dependent coherence length ξ(T ) for all pressures, whereas this is not

the case for 3He in aerogel.

5.3 The road to the future

The study of superfluid 3He films under confinement could benefit from several

improvements in our experiments. First of all, for our current cells, a mechanism

to obtain a direct measure of the film thickness like, for example, the inclusion of

a parallel-plate capacitor could remove most of the uncertainty in our nominal film

thickness.

The problem of capillary condensation on the edges of the cavity could be over-

come by using a nanofabricated cell with a gap of the order of a few hundred nanome-

ters. In such a cell, the spacing would be fixed and completely filled with 3He. The

coherence length, and therefore the reduced thickness, could be changed by applying

pressure. The main problem with this kind of cell is that the coherence length has

its maximum at saturated vapour pressure, so the reduced thickness could only be
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increased for a given gap height. A gap small enough to allow the study of both,

the very thin film regime and the A-B transition region of the phase diagram, would

become necessary. This confined cell should be machined out of a material which

could be polished to the desired level of flatness and, at the same time, be strong

enough to stand the high pressures (several tens of bars) necessary to cover an ap-

preciable region of the phase diagram. The main candidates are silicon and glass. A

group in Cornell, led by Professor Jeevak Parpia, is already working on that project.

The NMR spectrometer could be also improved to have a lower noise temper-

ature and, therefore, lower noise level. This could be achieved by using a SQUID

without APF, since our measurements suggested that the inductive coupling be-

tween the APF and the input coil was the cause of our high noise temperature. Our

group has achieved in the past noise temperatures of the order of 100 mK in similar

spectrometers [51]. The use of SQUID arrays as a multistage amplifier has also been

considered and it is currently being developed.

Regarding the measurements presented in this work, the current setup could

certainly be exploited further. An effective sample growth method has only been

learnt for the torsional oscillator cell, and further investigation is necessary in order

to understand the way samples grow in the NMR cell.

In addition to the ideas stated above, one could consider adding 4He to the

substrate in order to obtain a specular boundary for the 3He quasiparticles. This

preplating would allow the study of the effect that the boundary conditions have on

the order parameter of the confined superfluid.
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5.4 Final remark

In summary, we have explored a small part of the phase diagram of superfluid 3He

under planar confinement. We have found the superfluid transition on two 140 nm

thick films using the torsional oscillator technique. These results agreed with third

sound experiments performed on similar systems. Using the NMR technique we were

able to observe the transition from a supercooled A-like phase to a B-like phase on

a 3 µm thick film. This is, to the best of our knowledge, the first observation of the

A-B transition in a film under saturated vapour pressure.
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Cryogenics and thermometry

Muchos años después, frente al pelotón de fusilamiento,

el coronel Aureliano Buend́ıa hab́ıa de recordar aquella

tarde remota en que su padre lo llevó a conocer el hielo.

Gabriel Garćıa Márquez. “Cien años de soledad”

3He films need to be taken to temperatures well below 1 mK in order to observe su-

perfluidity. This appendix describes the dilution refrigerator and the nuclear demag-

netization stage with which those temperatures are achieved and the thermometers

used to measure them.

A.1 The demagnetization cryostat

The ultra-low temperature apparatus used in these experiments consisted of an

Oxford Instruments Kelvinox 400 dilution refrigerator with an attached nuclear

demagnetization stage. The dilution unit was designed with the purpose of meeting

188
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some custom requirements such as line of sight access ports and the incorporated

demagnetization stage. We will provide here a brief description of all the parts

involved in the cryogenic apparatus.

A.1.1 General overview of the cryogenic system

The cryostat hangs from a Dural table sat on four Newport I-2000 high performance

laminar-flow air mounts. The air mounts are supported by several 30 cm thick sheets

of wood which rest on concrete pillars. The purpose of the air mounts is to isolate

the cryostat from potential vibrations which could induce eddy current heating by

moving the nuclear stage with respect to the magnetic field. The vibration could

also potentially affect the experimental results by making the 3He films to move

within the cells. Early measurements on the air mounts performance showed that the

operation of the device reduced the magnitude of the vibrations, both horizontal and

vertical, by a factor of 10 at the vibrational noise peaks. The highest transmissibility

of the air mounts was found in the range 1-10 Hz. A more extensive study of these

measurements and of the air mounts performance can be found elsewhere [100]. In

order to further reduce the vibrations, the vacuum pumps are kept in a separate

pump house outside the building and bolted to a large concrete block, isolated from

the floor of the lab. Also, the pumping tubes are isolated using soft bellows sections.

The lower parts of the cryostat, where the lowest temperatures are achieved,

are enclosed by a copper heat shield, which is bolted on to the continuous heat

exchanger plate. In order to keep the nuclear stage still with respect to the heat

shield, a small brass ring in contact with the nuclear stage is mechanically attached

to a larger brass ring in contact with the shield by means of a network of cotton

thread which does not provide any heat link. This device is called “spider”. Another
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spider fixes the position of the heat shield with respect to the inner vacuum can,

or IVC. The IVC, bolted to the 4 K flange and sealed with an indium o-ring, is

made out of steel in its upper part. The lower part, inside the magnetic region, is

made from brass. In order to keep the 4 K flange cold, a copper sheet about 40

cm long is rolled around the top section of the IVC. This helps to keep the 4 K

flange at 4 K even when the bath level has decreased well bellow the top of the IVC.

Covering the IVC there is a glass reinforced plastic sliding shield which allows the

dewar to be lowered while still containing liquid helium. The vapour-shielded dewar

is bolt to the refrigerator top plate and can be raised and lowered from a pit below

the cryostat using a counter weight system. Inside the dewar are located the NMR

and demagnetization magnets (see Section A.1.3). The insert top plate contains all

the general refrigerator ports and services as well as various experimental and spare

ports. Three of these ports, with a diameter of 40 cm, provide line of sight access

down to the lower mixing chamber plate. One of them was used in this work for the

DC SQUID amplifier used in the NMR experiment.

A.1.2 The dilution unit

As many other things, the possibility of achieving low temperatures by using a

mixture of 3He and 4He was first suggested by Heinz London in 1951 at the Low

Temperature Physics Conference held in Oxford. The first commercial 3He-4He

dilution refrigerator was produced by Oxford Instruments in 1967. The physics

and operation of the dilution unit has had an extensive treatment in the literature

[101], [102], [103] and we will only give here a brief description. Figure A.1 shows a

schematic of the dilution refrigerator with the nuclear stage incorporated. Below a

ceratin critical temperature (0.87 K), the 3He-4He mixture separates into two phases:
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Figure A.1: Schematic of the dilution refrigerator (not to scale) showing the nuclear
magnetisation stage.

a lighter “concentrated phase”, rich in the isotope 3He, and a heavier “dilute phase”,

rich in 4He. A property of this mixtures is that the 3He concentration in the dilute

phase is finite even at absolute zero (∼ 6.4% at 0 K). The reason for this is that 3He is

lighter than 4He and, therefore, has a higher zero-point energy. Consequently, a 3He

atom at zero temperature will find energetically more advantageous to be surrounded

by 4He atoms rather than 3He atoms. The Pauli exclusion principle sets a limit for

the number of 3He atoms allowed in the dilute phase at each temperature (3He is a
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fermion). Of course, it will be also energetically advantageous for a 4He atom to be

surrounded by 4He atoms for the same reasons. That makes the concentrated phase

pure in 3He at zero temperature.

Since the enthalpy of both phases is different, the expansion, or “evaporation” of

3He into the dilute phase results in cooling. In other words, the concentrated phase

acts as liquid 3He whereas the dilute phase acts as 3He gas. The 4He background

in the dilute phase acts as a high-quality vacuum. The theoretical cooling power is

given by

Q̇ = 84ṅ3T
2
mc

where ṅ3 is the 3He flow rate in moles per second and Tmc is the temperature of the

mixing chamber.

The osmotic pressure between the still and the mixing chamber determines the

concentration of 3He in the still. This concentration is less than 1 % at the still

operating temperature of 0.6 K. Between the mixing chamber and the still several

heat exchangers transfer heat from the incoming concentrated phase into the dilute

phase. When the refrigerator is first operated, the mixture is condensed by means

of the 1 K pot, although phase boundary is not formed at that point, but at colder

temperatures at the mixing chamber. As the mixture is circulated, the phase bound-

ary descends to the mixing chamber, provided the concentration and the volume of

the mixture is adequate. The unit will never achieve its base temperature if the

phase boundary is located somewhere outside the mixing chamber. Thus is critical

to preserve the balance of the mixture.

The primary flow impedance (see Figure A.1) is used to provide a high enough

pressure for the incoming 3He to condense at 1 K. The rest of the path down to the

mixing chamber has to be designed such that a sufficiently high impedance remains
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to compensate for the pressure drop in the liquid as the temperature decreases.

Sometimes, a secondary flow impedance becomes necessary before the sintered silver

heat exchangers.

The pumping system consists of two different pumps. The 1 K pot is pumped

using a rotary pump (Leybold S25B) whereas the still is pumped on by a Leybold

WSU 501 roots vacuum pump, backed by a helium sealed Leybold D65BH two stage

rotary pump. Before entering the condenser, the returning 3He goes through an oil

mist filter, a liquid nitrogen cooled trap and a helium cooled trap. The 1 K pot is

continuously filled from the bath through a needle valve which can be automatically

adjusted.

The pumps and the circulation of the mixture are controlled by an Intelligent

Gas Handling system (IGH), which is designed to automate many of the required

operations using LabView software. Coupled to the IGH is the Intelligent Dilution

Refrigerator Power Supply (IDRPS) which monitors several temperature sensors on

the refrigerator. The IDRPS also controls the temperature of the exchange gas sorb

and the heat supplied to the still and mixing chamber heaters. The temperature

sensors at the cold plate, the still and the mixing chamber are monitored by a resis-

tance bridge (AVS-47) and the information is continuously stored by the LabView

software in the computer.

A.1.3 The magnet system

Two persistent superconducting magnets are located on their own support structure

inside the dewar in the helium bath. The main magnet, capable of producing a

magnetic field as high as 8 T, is used for nuclear demagnetization. This magnet

is provided with cancellation coils to remove fringing fields from the centre of the
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experimental region. The field/current ratio of the main magnet is specified by the

manufacturer as 0.08104 T/A and the current decay in persistent mode is one part

in 104 per hour. The main magnet has a bore diameter of 77 mm. The current

is supplied by an Oxford Instruments Intelligent Superconducting Magnet power

Supply, IPS120− 10, which can provide up to 90 A.

The NMR magnet, used for providing the static field in the NMR experiment and

the platinum NMR thermometer, can achieve fields of up to 3 T. The field/current

ratio for this magnet is 0.08474 T/A and the field homogeneity is of ∼ 2 parts in

105 over a 15 mm diameter sphere. Its current decay in persistent mode is less than

one part in 106 per hour. The bore diameter of this magnet is 103 mm. The NMR

magnet obtains the electric current from a home-built 2 A protected current source.

A set of coils to provide magnetic field gradients is also located inside the dewar.

They give 0.8 gauss/cm/A and were originally designed to improve the field homo-

geneity in the centre of the NMR magnet. This set of coils were used in the NMR

experiment to image the experimental sample in the cell (see Chapter 3). Figure

A.2 shows the magnetic field profile on the lower part of the cryostat. The stage

plate and the lower mixing chamber plate are both in field cancellation regions.

A.1.4 The nuclear demagnetization stage

Adiabatic demagnetization of a paramagnet is the only known method of reaching

temperatures lower than 1 mK. The idea of using nuclear magnetic moments for

adiabatic demagnetization was first proposed by Gorter in 1934 [104] and the original

experiments by Kurti in 1956 [105] reached temperatures of 20 µK. The nuclear

magneton has a value of µn = 5.1×10−27 J/T as opposed to the Bohr magneton µB =

9.3 × 10−24 J/T. Therefore, the ordering temperature for nuclear moment is much
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Figure A.2: The magnetic field profile of the nuclear stage and the experimental
region. The position of the thermometers is shown as well as the position of the
experimental cells. The field is cancelled at the lower mixing chamber plate and at
the stage plate.

lower than that of electronic moments, making nuclear demagnetization much more

convenient than electronic demagnetization for reaching ultra-low temperatures.

Our nuclear demagnetization stage, the thermal link and the heat switch were

assembled by Dr. Nyéki and Dr. Dmitriev at the Kapitza Institute for Physical

Problems in Moscow. The process used in its construction was similar in nature to
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that described by Dmitriev [106]. The nuclear stage consists of several 1 mm thick

copper sheets diffusion welded into a copper holder. It has a Residual Resistance

Ratio (RRR) of ∼ 400. The sheets help to reduce eddy current heating by providing

more surface area and are separated by 50 µm thick teflon sheets and the whole

bundle is held together rigidly with copper bolts inside teflon tubing. The dimensions

of the stage, cylindrical in shape, are 54 mm in diameter and 280 mm in length.

Applying different powers in a magnetic field and observing the subsequent warming

up of the stage, the total number of copper moles can be calculated. This number

was found to be [51], in the maximum field of the main magnet, 42.2 moles.

The nuclear stage is thermally connected to the mixing chamber through a ther-

mal link and a superconducting heat switch. The thermal link is made from seven 0.5

mm thick 5N purity annealed copper strips which are diffusion welded at both ends

into a copper comb shaped clamp terminating in a cone joint. It has a total length

of 660 mm and a RRR of ∼ 1400. The upper end of the thermal link is connected

to the heat switch plate, a 1 cm thick copper plate, which, in turn, is connected

to the mixing chamber plate through an aluminium superconducting heat switch.

This heat switch is made from five 0.32 mm thick, 5 cm long, 5N purity aluminium

strips. Both ends of the heat switch are diffusion welded into copper rods, of which

one is attached to the heat switch plate and the other to the mixing chamber plate.

To operate the switch, a magnetic field is produced in a superconducting solenoid

made out of multi-filamentary NbTi wire in a CuNi matrix. The required field is

of 10 mT. Before, during and after ramping up the main magnetic field prior to a

demagnetization process, the heat switch is in its normal state (closed) thus allowing

the refrigerator to take up the heat resulting from the ramp up and thermally con-

necting the mixing chamber and the nuclear stage during the precooling. Typical

precooling periods are of about 60 hours, after which the temperature of the nuclear
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stage is, generally, ∼ 12 mK in 7.29 T. The heat switch is opened at this point by

removing the 10 mT field, leaving the nuclear stage thermally isolated from the rest

of the refrigerator. The main field is then reduced adiabatically in steps. The final

temperature follows the expression

Bi

Ti

=
Bf

Tf

where the subindexes i and f refer to initial and final states, respectively.

A.2 Thermometry

The temperatures at different points of the refrigerator are measured with several

types of thermometers. The 4 K flange, the 1 K pot, the cold plate, the still and the

mixing chamber, all have carbon resistance thermometers. A melting curve ther-

mometer (MCT) is situated in the nuclear stage and a platinum NMR thermometer

is mounted on the silver experimental plate. These two later thermometers are used

in the data acquisition and we will briefly describe them here.

A.2.1 The melting curve thermometer

A melting curve thermometer measures the pressure of a 3He sample which is in its

liquid-solid coexistence curve. Since this curve is experimentally known, the temper-

ature can be extracted from the pressure measurement. This kind of thermometer

is useful down to about 1 mK. Below that temperature the pressure flattens out

and higher pressure sensitivity would be required. The MCT cell constitutes a pres-

sure transducer where the pressure is obtained by measuring a capacitance . The

distance between the capacitor plates is decreased when the 3He pressure increases.
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Figure A.3: The capacitance bridge used to measure the MCT capacitance.

The capacitance is measured using a standard capacitance bridge, as shown in Fig-

ure A.3. The reference capacitor is located at the 1 K plate. This set up gives us a

pressure resolution better than 10 µbar at 35 bar. This corresponds to a tempera-

ture resolution of 0.25 µK. Our MCT, on loan from PTB, is mounted in a cone joint

on the nuclear stage. Since the 3He melting curve is sensitive to magnetic field, the

MCT cell has to be located in a field cancellation region, as shown in Figure A.2.

The method for calibrating the pressure versus capacitance is the same as the one

described in Richardson and Smith [107]. This pressure calibration is carried out

at above 1 K using a Paroscientific Digiquartz gauge. Prior to the calibration the

diaphragm is exercised at 1 K in order to reduce hysteresis. The 3He A-transition

is then measured and the entire pressure range shifted so the measurement cor-

responds with that given by the Provisional Low Temperature Scale, 0.9 to 1 K:

PLTS-2000. We found, after this procedure, that the pressure at which the solid

ordering transition occurred agreed with the PLTS-2000 scale to within 0.5 mbar.

A second MCT, obtained from Sussex, was mounted on to the mixing chamber

plate. This MCT was, however, never used in the experiments reported in this work.
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A.2.2 The platinum NMR thermometer

Platinum follows Curie’s Law (Equation 3.3) down to the lowest temperatures we

can achieve with our cryostat and hence the platinum NMR thermometer was used

as our main thermometer for the sub-millikelvin range of temperatures. It consists of

a bundle of approximately 2000 25 µm thick platinum wires welded to a thick silver

wire. The silver wire is clamped to a silver post which is thermally connected to the

nuclear stage. The platinum thermometer is placed in the experimental region of

the refrigerator, just at the centre of the NMR magnet (see Figure A.2). A Kapton

former sliding over the platinum bundle provides support for a copper coil which

acts as both, transmitter and receiver. This copper coil consists of about 5000 turns

of 25 µm thick copper wire. A PLM-4 pulsed NMR system [108] operated at 263

kHz was used to measure the platinum susceptibility

The thermometer was calibrated against the MCT at several temperatures be-

tween 50 mK and 1 mK and then extrapolated to the lowest temperatures according

to Curie’s Law. Each temperature was stabilized using a PID temperature controller.

The applied pulse size depended on the working range of temperatures, the 90o pulse

being applied only at the higher temperatures to avoid saturation of the amplifiers.

At the lowest temperatures, the pulse size was reduced by a factor of 16 and we used

a couple of more pulse sizes in between in order to cross-calibrate the small pulse

against the large pulse. Also, at these low temperatures the signal to noise ratio

was large enough that a single shot was used to measure the magnetic susceptibility.

Pulses were applied every 5 minutes in order to allow the spins to recover (T1 ∼ 300

for platinum).

Figure A.4 shows the temperature of the stage as measured by the PLM ther-

mometer during a typical cooling as a function of the magnetic field. It can be
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Figure A.4: The temperature of the nuclear stage as a function of the magnetic field.

seen that the demagnetization is adiabatic down to about 0.8 mK. At lower tem-

peratures, the thermal time constant of the PLM thermometer is increased by the

parasitic nuclear heat capacity of the silver rod which provides the thermal contact

between the thermometer and the stage.
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Data analysis techniques

If we knew what it was we were doing,

it would not be called research, would it?

Albert Einstein.

B.1 Digital Fourier transform in the NMR exper-

iment

In the NMR experiment the data are obtained in the time domain. In order to

obtain a NMR signal in the frequency domain it is needed to perform a Fourier

transform of the original data. Since computers can only work with information

that is both discrete and finite in time, we need to use the digital Fourier transform

(DFT) analysis.

For a signal f(t) defined over a continuous and infinite time domain, the Fourier

201
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transform is given by

F [f(t)](ω) =

∫ ∞

−∞
f(t)e−jωtdt

When the time variable is discrete and f(t) is sampled N times with a sampling

interval of ∆ the Fourier transform can be expressed as

F(ωn) ≈ ∆
N−1∑

k=0

fke
−jωntk (B.1)

where fk = f(tk) with k = 0, 1...N − 1 and ωn = 2πn/N∆ with n = −N/2...N/2.

According to the Nyquist Sampling Theorem, in order to avoid aliasing occurring in

the sampling of a signal the sampling rate, 1/∆, should be greater than or equal to

twice the highest frequency present in the signal. Therefore, the components of the

time-domain signal with frequencies higher than the critical frequency (also called

Nyquist frequency) fc = 1/2∆ will be aliased to lower frequencies. Aliasing can

be avoided by using a low-pass filter which effectively cuts off frequencies higher

than about half the Nyquist frequency. This means that some prior knowledge

of the nature of the spectrum is often required before the exact sampling rate is

determined. The filter must be employed before the signal is digitized, for the

aliasing effects occur because of the sampling process.

We can now apply the DFT treatment to a free induction decay signal. This

signal is given by

f(t) =





0 for t < 0,

Ae−t/T ∗2 sin(ωot + δ) for t ≥ 0
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and its Fourier transform is

F(ω) =

∫ ∞

0

Ae−t/T ∗2 sin(ωot + δ)e−jωtdt =

=
A

2j

∫ ∞

0

e−t/T ∗2
[
e−j(ω−ωo)t−δ − e−j(ω+ωo)t+δ

]
dt

Integrating, we obtain

F(ω) =
A

2j

[
T ∗

2 e−jδ

1− jT ∗
2 (ω − ωo)

− T ∗
2 ejδ

1− jT ∗
2 (ω + ωo)

]

The resonance peak at ωo is the one we are interested in. The amplitude of that

complex number gives us the magnitude of the peak

| F(ω) |= A

2

[
(T ∗

2 )2

1 + (T ∗
2 (ω − ωo)2)

]1/2

At the resonance peak, this magnitude is simply

| F(ω) |p= AT ∗
2

2

Since the LabVIEW routine returns |Fn| = |F(ωn)|/∆ after the DFT, the obtained

magnitude of the peak is

Sp =
AT ∗

2

2∆

Along with the Free Induction Decay, the measured signal contains a certain level

of noise, which is also affected by the Fourier transform routine. Let us consider a

noise power < PN > (t) per unit bandwidth in the time domain arising for the noise

signal n(t). We can then make use of the Parseval’s theorem, which states that the
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power computed in either domain equals the power in the other

∫ ∞

−∞
n2(t)dt =

∫ ∞

−∞
(|N (ω)|)2dω

where N (ω) is the Fourier transform of n(t). For white noise, this theorem gives

|N |2 = N |nk|2 =
TcaptureB < N >

∆

where |nk|2 = B < PN > is the noise level sampled at intervals of ∆ and B is the

bandwidth of the working time interval. Therefore, we conclude that the rms noise

level is

(N )rms =

√
Tcapture

∆
B1/2 < PN >1/2

and, choosing the bandwidth to be equal to the Nyquist frequency, B = 1/2∆,

(N )rms =
1

∆

√
Tcapture

2
< PN >1/2

Of course, this result is also valid for frequency-dependent noise, since the functional

dependence is the same after the Fourier transform. Finally, in order to compare the

measured noise level at the peak to the magnitude of the signal at the peak we have

to include the ratio of peak noise to rms noise, K f
N, obtaining the final expression

for the noise level at the peak

NP = K f
N(N )rms =

K f
N

∆

√
Tcapture

2
< PN >1/2
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B.2 Inferred resonance frequency and dissipation

in the torsional oscillator experiment

At a fixed temperature, one could measure the resonance frequency and the dis-

sipation of the torsional oscillator by doing a frequency sweep and obtaining the

resonance curve, i.e. the energy developed in the oscillator by the driving force

versus frequency. That curve would be centered at the resonance frequency and its

width at half height would be related to the dissipation by 1/Q = γ/ωo, where 1/Q

is the dissipation, ωo is the resonance frequency and γ is the peak width at half

height.

In a practical experiment, however, the temperature is usually not fixed and that

kind of measurement is not feasible, since the resonance frequency and dissipation

are temperature dependent. Instead, the in-phase and quadrature components of

the output signal are continuously monitored and used to infer the parameters of

physical interest.

Considering the one-dimensional forced and damped harmonic oscillator, the

real (quadrature) and imaginary (in-phase) parts of the steady-state solution are

respectively given by

Y (ω) =
F̂ (ω2

o − ω2)

m[(ω2
o − ω2)2 + γ2ω2]

X(ω) =
F̂ γω

m[(ω2
o − ω2)2 + γ2ω2]

where F̂ is the (complex) amplitude of the driving force. We can now obtain an

expression for the resonance frequency by simply dividing one part of the solution

by the other, which gives

Y (ω)

X(ω)
=

Q(ω2
o − ω2)

ωoω
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Figure B.1: The Nyquist circle used to obtain an expression relating Q(T ) with
X(T ) and Y (T ).

using the definition γ = ωo/Q. This equation has the following solution for ωo

ωo =
ωY (ω)

2QX(ω)
+ ω

√
1 +

Y 2(ω)

4Q2X2(ω)

Near resonance, Y 2/X2 ¿ 1 and the square root can be approximated by (1 +

Y 2/8Q2X2), giving the (temperature-dependent) inferred frequency

ωo(T ) = ω(1 +
Y (T )

2QX(T )
+

Y 2(T )

8Q2Y 2(T )
) ≈ ω(1 +

Y (T )

2QX(T )
)

for a driving frequency ω.

The Q factor can be obtained in a similar way. At resonance, the amplitude of
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the movement is given by just the in-phase component of the solution

A(ωo) =
√

Y 2(ωo) + X2(ωo) = X(ωo) = Xo

and, therefore, Q/Xo is temperature independent. We can relate Xo to the measured

X and Y values by considering the Nyquist circle showed in Figure B.1. The circle

is centered at Xo/2 and has a diameter of Xo. For a given point (X,Y ) in the circle,

Z2 + Y 2 = R2 with Z = R−X. Therefore, R = (X2 + Y 2)/2X and hence

Xo =
X2 + Y 2

X

If we measure Q and Xo at some fixed temperature To and define K(To) = Q(To)/Xo(To)

we finally have

Q(T ) = K(To)Xo(T ) = K(To)
X2(T ) + Y 2(T )

2X(T )

and a value of Q can be obtained at any temperature by measuring the in-phase

and quadrature components of the oscillator’s response at that temperature.
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