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10
lllustrations of the
Dynamical Theory of

Gases *
JAMES CLERK MAXWELL

SUMMARY

In view of the current interest in the theory of gases proposed by
Bernoulli (Selection 3), Joule, Krénig, Clausius (Selections 8 and 9) and
others, a mathematical investigation of the laws of motion of a large
number of small, hard, and perfectly elastic spheres acting on one another
only during impact seems desirable.

It is shown that the number of spheres whose velocity lies between
vand v + dv is

where N is the total number of spheres, and « is a constant related to the
average velocity:
mean value of v* = 3 a?.

If two systems of particles move in the same vessel, it is proved that the
mean kinetic energy of each particle will be the same in the two systems.

Known results pertaining to the mean free path and pressure on the
surface of the container are rederived, taking account of the fact that the
velocities are distributed according to the above law.

The internal friction (viscosity) of a system of particles is predicted to be
independent of density, and proportional to the square root of the

* Originally published in Phil. Mag., Vol. 19, pp. 19-32; Vol. 20, pp. 21-
37 (1860); reprinted in The Scientific Papers of James Clerk Maxwell (ed.
W. D. NiveN), Cambridge University Press, 1890 Vol. 1, pp. 377-409.

148



MAXWELL: THE DYNAMICAL THEORY OF GASES 149

absolute temperature; there is apparently no experimental evidence to
confirm this prediction for real gases.

A discussion of collisions between perfectly elastic bodies of any form
leads to the conclusion that the final equlhbnum state of any number of
systems of moving particles of any form is that in which the average
kinetic energy of translation along each of the three axes is the same in all
the systems, and equal to the average kinetic energy of rotation about each
of the three principal axes of each partlcle (equipartition theorem). This
mathematical result appears to be in conflict with known expenmental
values for the specific heats of gases.

PART I

On the Motions and Collisions of Perfectly Elastic Spheres.

So many of the properties of matter, especially when in the gaseous
form, can be deduced from the hypothesis that their minute parts are
in rapid motion, the velocity increasing with the temperature, that
the precise nature of this motion becomes a subject of rational
curiosity. Daniel Bernoulli, Herapath, Joule, Krénig, Clausius,
etc.T have shewn that the relations between pressure, temperature,
and density in a perfect gas can be explained by supposing the
particles to move with uniform velocity in straight lines, striking
against the sides of the containing vessel and thus producing pres-
sure. It 1s not necessary to suppose each particle to travel to any
great distance in the same straight line; for the effect in producing
pressure will be the same if the particles strike against each other:
so that the straight line described may be very short. M. Clausiust
has determined the mean length of path in terms of the average dis-
tance of the particles, and the distance between the centres of two
particles when collision takes place. We have at present no means of
ascertaining either of these distances; but certain phenomena, such
as the internal friction of gases, the conduction of heat through a gas,
and the diffusion of one gas through another, seem to indicate the
possibility of determining accurately the mean length of path which
a particle describes between two successive collisions. In order to

T See the Bibliography and Selections 3, 8 and 9 in this volume.

} See Selection 9.
F*
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lay the foundation of such investigations on strict mechanical
principles, 1 shall demonstrate the laws of motion of an indefinite
number of small, hard, and perfectly elastic spheres acting on one
another only during impact.

If the properties of such a system of bodies are found to correspond
to those of gases, an important physical analogy will be established,
which may lead to more accurate knowledge of the properties of
matter. If experiments on gases are inconsistent with the hypothesis
of these propositions, then our theory, though consistent with itself,
is proved to be incapable of explaining the phenomena of gases. In
either case it is necessary to follow out the consequences of the
hypothesis.

Instead of saying that the particles are hard, spherical, and elastic,
we may if we please say that the particles are centres of force, of
which the action is insensible except at a certain small distance, when
it suddenly appears as a repulsive force of very great intensity. It 1s
evident that either assumption will lead to the same results. For the
sake of avoiding the repetition of a long phrase about these repulsive
forces, I shall proceed upon the assumption of perfectly elastic
spherical bodies. If we suppose those aggregate molecules which
move together to have a bounding surface which is not spherical,then
the rotatory motion of the system will store up a certain proportion
of the whole vis viva, as has been shewn by Clausius, and in this way

we may account for the value of the specific heat being greater than
on the more simple hypothesis.

On the Motion and Collision of Perfectly Elastic Spheres.

~'Prop. 1. Two spheres moving in opposite directions with velocities
inversely as their masses strixe one another; 1o determine their

motions after impact.

Let P and Q be the position of the centres at impact; AP, BQ the
directions and magnitudes of the velocities before impact; Pa, Qb
the same after impact; then, resolving the velocities parallel and
perpendicular to PQ the line of centres, we find that the velocities
parallel to the line of centres are exactly reversed, while those
perpendicular to that line are unchanged. Compounding these
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velocities again, we find that the velocity of each ball is the same
before and after impact, and that the directions before and after
impact lie in the same plane with the line of centres, and make equal
angles with it.

Prop. 1I. To find the probability of the direction of the velocity
after impact lying between given limits.

In order that a collision may take place, the line of motion of one
of the balls must pass the centre of the other at a distance less than
the sum of their radii; that is, it must pass through a circle whose
centre 1s that of the other ball, and radius (s) the sum of the radii of
the balls. Within this circle every position is equally probable, and
therefore the probability of the distance from the centre being
between r and r + dr is

2rdr

SZ

Now let ¢ be the angle APa between the original direction and the
direction after impact, than APN = }¢, and r = ssin 3¢, and the
probability becomes

4 sin ¢do.
The area of a spherical zone between the angles of polar distance ¢
and ¢ + do is
| 27 sin ¢pdo ; .
therefore if w be any small area on the surface of a sphere, radius

unity, the probability of the direction of rebound passing through
this area 1s

a) *
4 )
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so that the probability is independent of ¢, that is, all directions of
rebound are equally likely.

Prop. III. Given the direction and magnitude of the velocities of
two spheres before impact, and the line of centres at impact; to find
the velocities after impact.

Let OA, OB represent the velocities before impact, so that if there
had been no action between the bodies they would have been at 4
and B at the end of a second. Join 4B, and let G be their centre of

gravity, the position of which is not affected by their mutual action.
Draw GN parallel to the line of centres at impact (not necessarily in
the plane AOB). Draw aGb in the plane AGN, making NGa = NGA,
and Ga = GA and Gb = GB; then by Prop. I. Ga and Gb will be
the velocities relative to G; and compounding these with OG, we
have Oa and Ob for the true velocities after impact.

By Prop. II. all directions of the line aGb are equally probable.
It appears therefore that the velocity after impact is compounded of
the velocity of the centre of gravity, and of a velocity equal to the
velocity of the sphere relative to the centre of gravity, which may with
equal probability be in any direction whatever.

If a great many equal spherical particles were in motion in a
perfectly elastic vessel, collisions would take place among the
particles, and their velocities would be altered at every collision; so
that after a certain time the vis viva will be divided among the
particles according to some regular law, the average number of
particles whose velocity lies between certain limits being ascertain-
able, though the velocity of each particle changes at every collision.

Prop. IV. To find the average number of particles whose velocities
lie between given limits, after a great number of collisions among a
great number of equal particles.
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Let N be the whole number of particles. Let x, y, z be the com-
ponents of the velocity of each particle in three rectangular direc-
tions, and let the number of particles for which x lies between x and
x + dx, be Nf(x)dx, where f(x) is a function of x to be determined.

The number of particles for which y lies between y and y + dy
will be Nf(y)dy; and the number for which z lies between z and
z + dz will be Nf(z)dz, where f always stands for the same function.

Now the existence of the velocity x does not in any way affect that
of the velocities y or z, since these are all at right angles to each other
and independent, so that the number of particles whose velocity lies
between x and x + dx, and also between y and y + dy, and also
between z and z + dz, is

Nf(x)f(»)f(z)dx dy dz.

If we suppose the N particles to start from the origin at the same
instant, then this will be the number in the element of volume
(dx dy dz) after unit of time, and the number referred to unit of
volume will be

NfO)fO)f(2).

But the directions of the coordinates are perfectly arbitrary, and
therefore this number must depend on the distance from the origin
alone, that is

ffOMN2) = ¢(x* + y* + 22).
Solving this functional equation, we find
x) = Ce'™, ¢(r?) = C3eA™,

If we make A positive, the number of particles will increase with
the velocity, and we should find the whole number of particles
infinite. We therefore make A negative and equal to — 1/a?, so that
the number between x and x + dxis

NCe—™*') dx.

Integrating from x = — 00 to x = + oo, we find the whole number
of particles,

1
NC = N, .‘. C= VR
\/ T —
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f(x) is therefore L e~

oA/

Whence we may draw the following conclusions:—
1st. The number of particles whose velocity, resolved in a certain
direction, lies between x and x + dx 1s

1
oA/

2nd. The number whose actual velocity lies between v and v + dv

N e—*¥'e") dx, (1)

1S
4
a3/ T

3rd. To find the mean value of v, add the velocities of all the
particles together and divide by the number of particles; the result is

2o
VT

4th. To find the mean value of v?, add all the values together and
divide by N,

N

p2e— 10y, (2)

(3)

mean velocity =

mean value of v? = a2 (4)

This is greater than the square of the mean velocity, as it ought
to be. '

It appears from this proposition that the velocities are distributed
among the particles according to the same law as the errors are
distributed among the observations in the theory of the * method of
least squares.” The velocities range from 0 to co, but the number of
those having great velocities is comparatively small. In addition to
these velocities, which are in all directions equally, there may be a
general motion of translation of the entire system of particles which
must be compounded with the motion of the particles relatively to
one another. We may call the one the motion of translation, and
the other the motion of agitation.

Prop. V. Two systems of particles move each according to the
law stated in Prop. IV.; to find the number of pairs of particles, one
of each system, whose relative velocity lies between given limits,
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Let there be N particles of the first system, and N’ of the second,
then NN’ is the whole number of such pairs. Let us consider the
velocities in the direction of x only; then by Prop. IV. the number
of the first kind, whose velocities are between x and x + dx, is

N—— &0 g

o/

The number of the second kind, whose velocity is between x + y
and x + y + dy, is

1
N’ —
Bvn
where f is the value of « for the second system.
The number of pairs which fulfil both conditions is

e—((x + )8 dy,

NN’ __!.__ e—(ah) + (x + y)}/ 8Y) 7, dy.

afr

Now x may have any value from — o0 to + oo consistently with the
difference of velocities being between y and y + dy; therefore
integrating between these limits, we find

NN’

1
~(y¥a? + BY)
Val+ B2 Vn ) Y ©)

for the whole number of pairs whose difference of velocity lies be-
tween y and y + dy.

This expression, which is of the same form with (1) if we put NN’
for N, a®> + B2 for a2, and y for x, shews that the distribution of
relative velocities is regulated by the same law as that of the velocities
themselves, and that the mean relative velocity is the square root of
the sum of the squares of the mean velocities of the two systems.

Since the direction of motion of every particle in one of the systems
may be reversed without changing the distribution of velocities, it
follows that the velocities compounded of the velocities of two

particles, one in each system, are distributed according to the same
formula (5) as the relative velocities.
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Prop. VI. Two systems of particles move in the same vessel; to
prove that the mean vis viva of each particle will become the same
in the two systems.

Let P be the mass of each particle of the first system, O that of
each particle of the second. Let p, ¢ be the mean velocities in the
two systems before impact, and let p’, ¢’ be the mean velocities after
one impact. Let 04 = p and OB = ¢, and let AOB be a right angle;
then, by Prop. V., AB will be the mean relative velocity, OG will be

the mean velocity of the centre of gravity; and drawing aGb at
right angles to OG, and making aG = AG and bG = BG, then Oa

will be the mean velocity of P after impact, compounded of OG and
Ga, and Ob will be that of Q after impact.

Y

-

Now AB = Vp? +q3 AG =

2 2
P ‘\/Pzpz + quz
BG = Vp* +¢%, O0G= ———;
p+o 7 ™1 P+ O

VO (n2 + a2) + P2p? + O%q?
therefore p' = Oa = MM

P+ Q ’
d ' Qb= £ LT P T XA
- p=0 P+ Q
P— Q\?2
d 2 '2=( ) Pp* - 0q%). 6
and Pp Qg PT O (Pp* — 0q°) (6)
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It appears therefore that the quantity Pp? — Qg? is diminished at
every impact in the same ratio, so that after many impacts it will
vanish, and then

Pp*= Qq>.

Now the mean vis viva is 2Pa* = (3n/8)Pp? for P, and (37/8)Qq? for
(; and it is manifest that these quantities will be equal when
Pp* = Qq°.

If any number of different kinds of particles, having masses P, Q,
R and velocities p, g, r respectively, move in the same vessel, then
after many impacts

Pp?* = Qq? = Rr?, &c. (7)

Prop. VII. A particle moves with velocity r relatively to a number
of particles of which there are N in unit of volume: to find the
number of these which it approaches within a distance s in unit of
time.

If we describe a tubular surface of which the axis is the path of the
particle, and the radius the distancé s, the content of this surface
generated in unit of time will be nrs?, and the number of particles
included in it will be

Nrrs?, (8)

which is the number of particles to which the moving particle
approaches within a distance s.

Prop. VIII. A particle moves with velocity v in a system moving
according to the law of Prop. IV.; to find the number of particles
which have a velocity relative to the moving particle between r and
r + dr.

Let u'be the actual velocity of a particle of the system, v that of the
original particle, and r their relative velocity, and 0 the angle between
v and r, then

u? = p? 4 r2 — 2pr cos 0.

If we'suppose, as in Prop. IV., all the particles to start from the
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origin at once, then after unit of time the ‘* density  or number of
particles to unit of volume at distance u will be
N _1...... e—(ull ﬂ')
37’

From this we have to deduce the number of particles in a shell whose
centre is at distance v, radius = r, and thickness = dr,

1 r
a\/'n:v

which is the number required.

Cor. It is evident that if we integrate this expression fromr = 0 to
r = 00, we ought to get the whole number of particles = N, whence
the following mathematical result,

—((r — v)tfa?) --(fr -+ u)’/u')} dr , (9)

I dx . x (e~ ) — g~ (*+ Dy = 4/nqa.  (10)

0

Prop. IX. Two sets of particles move as in Prop. V.; to find the
number of pairs which approach within a distance s in unit of time.

The number of the second kind which have a velocity between v
and v + dv is

4
Nf
B /n '

The number of the first kind whose velocity relative to these 1s
between r and r + dr is

20180 gy = 1.

1 (e = 0%eh) _ o~ + 0aY) gp =
LA/ TV

N

and the number of pairs which approach within distance s in unit of
time is
nn'nrs?,

= NN’ —; 2 52 2pe—B) {g—((0 = YY) _ o0+ 1SN dp dy,

o
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By the last proposition we are able to integrate with respect to v,
and get
4 \/n

_TVR 2.3, _(rbat + B
(a2+ﬁ2)3sre rila ) dr.

NN’

Integrating this again fromr = 0 to r = o0,

2NN’ +/n Vo2 + B2 52 (11)

1s the number of collisions in unit of time which take place in unit of
volume between particles of different kinds, s being the distance of
centres at collision.

The number of collisions between two particles of the first kind, s,
being the striking distance, is

2N? \/n V202 5,2 ;
and for the second system it is
2N"2y/n V2B%s,2 .

The mean velocities in the two systems are 2a/4/n and 28/+/n; so
that if /; and /, be the mean distances travelled by particles of the
first and second systems between each collision, then

1 4\/ 2 2

-_— = ﬂNl '\/25'12 RNZ i B 32,
l, o

i \/ 2 2

7 = N, - 5+B s + 7N, /25,2
2

Prop. X. To find the probability of a particle reaching a given
distance before striking any other.

Let us suppose that the probability of a particle being stopped
while passing through a distance dx, is adx; that is, if N particles
arrived at a distance x, Nadx of them would be stopped before
getting to a distance x 4+ dx. Putting this mathematically,

dN
e — N ’ N —_— C —ox v
I &, Or e
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Putting N = 1 when x = 0, we find ¢ ** for the probability of a
particle not striking another before it reaches a distance x.

The mean distance travelled by each particle before striking 1s
1/a = I. The probability of a particle reaching a distance = nl/ with-
out being struck is e™*. (See a paper by M. Clausius, Philosophical
Magazine, February 1859.)%

If all the particles are at rest but one, then the value of « 1s

o = 7s>N,

where s is the distance between the centres at collision, and N is the
number of particles in unit of volume. If v be the velocity of the
moving particle relatively to the rest, then the number of collisions 1n
unit of time will be

vrs’N;
and if v, be the actual velocity, then the number will be v a; therefore

v
o = — s>N,
U1

where v, is the actual velocity of the striking particle, and v its

velocity relatively to those it strikes. If v, be the actual velocity of the

other particles, then v = Vv,2 + v,2. If v; = v,, then v = /2v,,
and

o = V2 ns?N.
Notel. 1T M. Clausius makes & = 47s2N.

T See Selection 9.

* [In the Philosophical Magazine of 1860, Vol. I, pp. 434-6, Clausius
explains the method by which he found his value of the mean relative
velocity. It is briefly as follows: If u, v be the velocities of two particles

their relative velocity is v/u* + v — 2uv cos 6 and the mean of this as

regards direction only, all directions of v being equally probable, is shewn
to be

1v® |
v + !—Ewhenu<v,andu+—lj-whenu>v.
3 v 3 u

If v = u these expressions coincide. Clausius in applying this result and
putting u, v for the mean velocities assumes that the mean relative velocity
is given by expressions of the same form, so that when the mean velocities
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Prop. XI. In a mixture of particles of two different kinds, to find
the mean path of each particle.

Let there be N, of the first, and N, of the second in unit of volume.
Let s, be the distance of centres for a collision between two particles
of the first set, s, for the second set, and s’ for collision between one
of each kind. Let v, and v, be the coefficients of velocity, M,, M, the
mass of each particle.

The probability of a particle M, not being struck till after reachmg

a distance x, by another particle of the same kind 1s
—JZ 78,3N, x

are each equal to u the mean relative velocity would be 4u. This step is,
however, open to objection, and in fact if we take the expressions given
above for the mean velocity, treating ¥ and v as the velocities of two
particles which may have any values between 0 and oo, to calculate the
mean relative velocity we should proceed as follows: Since the number of
particles with velocities between ¥ and « + du is

4
B

the mean relative velocity is

f f wyle — o +-'-"/ﬁ')(u + %g) dudv +

352,1- f J‘ 12pie—(t/a® + v'!ﬂ')( v + .-—_) du dv.

This expression, when reduced, leads to

N ute—@e") dy

o® B"::r

vw TR

which is the result in the text. Ed. (W. D. Niven).]

11 Inaletter to William Thomson in 1871, Maxwell makes the following
remark on this discrepancy In numerlcal factors: * Clausius made
objection No. 1 to an integration founded on his theory of uniform velocity
of molecules. (This is the first commitment of Clausius to such a theory.)
As he was sure to be converted & I was lazy, I said 0. Objection No 2 &c.
to theory of diffusion and conduction were well founded . . . " (see H. T.
BERNSTEIN, Isis 84, 212, 214 (1963)). As it turned out, Clausius was indeed
converted (Lumiére Electrique 17, 241 (1885)) without any further effort on
Maxwell’s part. The above note by W. D. NIveN in Maxwell’s Scientific
Papers, Vol. 1, p. 387, gives a concise explanation.
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The probability of not being struck by a particle of the other kind in
the same distance is

e vi F (03/r,)ns’?Nox

Therefore the probability of not being struck by any particle before
reaching a distance x is

e 7(J/25,3N, + V1 + (0,0, )3 Ny)x : a

and 1if /; be the mean distance for a particle of the first kind,

1 2

Tl = +/2n8,*°N, + = Jl + 5‘:'—25’21\(2 : (12)
Similarly, if /, be the mean distance for a particle of the second kind,

D e 278,2N 1+ 2 g2 (13)

e V27s,*N, + =w + o2 -

The mean density of the particles of the first kind is N, M, = p,, and
that of the second N,M, = p,. If we put

2 T2 2 5 2 /2
A=\/2& B=RJ1+023 , C=nJl+UIL

Mi’ 571‘7-7; t‘;:_z?iﬂllﬂ
78,2
D= +2-2, 14
V2t (14
1 1
- = Apy + Bpy, 7 = Cp,+ Dp, (15)
1 pA
B M 3
and — =172 _ T2 (16)

Prop. XII. To find the pressure on unit of area of the side of the
vessel due to the impact of the particles upon it.

Let N = number of particles in unit of volume;
M = mass of each particle;
v = velocity of each particle;
| = mean path of each particle;

then the number of particles in unit of area of a stratum dz thick 1s
Ndz . (17)
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The number of collisions of these particles in unit of time is
v
Ndz 7" (18)

The number of particles which after collision reach a distance
between n/ and (n + dn) l is

N? e dz dn. (19)

The proportion of these which strike on unit of area at distance z is

nl—z_

20
= ; (20)
the mean velocity of these in the direction of z is

y (21)

2nl

Multiplying together (19), (20), and (21), and M, we find the

momentum at impact

02

MN
4n?l3

(n12 — z2) e dz dn. (22)

Integrating with respect to z from 0O to »nl, we get
I MNv? ne™ dhn.
Integrating with respect to n from 0 to oo, we get
L MNv?

for the momentum in the direction of z of the striking particles; for
the momentum of the particles after impact is the same, but in the
opposite direction; so that the whole pressure on unit of area is
twice this quantity, or |

p = $MNv>.

This value of p is independent of / the length of path. In applying
this result to the theory of gases, we put MN = p, and v? = 3k, and
then

P = kp,
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which is Boyle and Mariotte’s law. By (4) we have

v = 202, . o =2k (23)

We have seen that, on the hypothesis of elastic particles moving in
straight lines, the pressure of a gas can be explained by the assump-
tion that the square of the velocity is proportional directly to the
absolute temperature, and inversely to the specific gravity of the gas
at constant temperature, so that at the same pressure and tempera-
ture the value of NMuv? is the same for all gases. But we found in
Prop. VI. that when two sets of particles communicate agitation to
one another, the value of Mp? is the same in each. From this it
appears that N, the number of particles in unit of volume, is the same
for all gases at the same pressure and temperature. This result agrees
with the chemical law, that equal volumes of gases are chemically
equivalent.

We have next to determine the value of /, the mean length of the
path of a particle between consecutive collisions. The most direct
method of doing this depends upon the fact, that when different
strata of a gas slide upon one another with different velocities, they
act upon one another with a tangential force tending to prevent this
sliding, and similar in its results to the friction between two solid
surfaces over each other in the same way. The explanation of gaseous
friction, according to our hypothesis, is, that particles having the
mean velocity of translation belonging to one layer of the gas, pass
out of it into another layer having a different velocity of translation;
and by striking against the particles of the second layer, exert upon
it a tangential force which constitutes the internal friction of the gas.
The whole friction between two portions of gas separated by a plane
surface, depends upon the total action between all the layers on the
one side of that surface upon all the layers on the other side.

Prop. XIII. To find the internal friction in a system of moving
particles.

Let the system be divided into layers parallel to the plane of xy,
and let the motion of translation of each layer be u in the direction of
x, and let u = A + Bz. We have to consider the mutual action
between the layers on the positive and negative sides of the plane xy.
Let us first determine the action between two layers dz and dz’, at
distances z and — z’ on opposite sides of this plane, each unit of
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area. The number of particles which, starting from dz in unit of
time, reach a distance between n/ and (n + dn) [ is by (19),

N-?e"” dz dn.

The number of these which have the ends of their paths in the
layer dz’ is

v n ,
Né‘;ﬁe dz dz dn.

The mean velocity in the direction of x which each of these has before
impact is 4 + Bz, and after impact 4 + Bz’; and its mass is M, so
that a mean momentum = MB (z — z’) is communicated by each
particle. The whole action due to these collisions is therefore

NMB 2—% (z — 2') e dz d’ dn.
We must first integrate with respect to z’ between z’ = 0 and
z' = z — nl; this gives
v
L

for the action between the layer dz and all the layers below the plane
xy. Then integrate from z = 0 to z = nl,

sNMBlyn*e™" dn.

Integrate from n = 0 to n = o0, and we find the whole friction
between unit of area above and below the plane to be

iNMB (n*l* — z») e " dz dn

du du
F=3MNWB = }plv — = y—,
3 ’ dply dz dz
where u is the ordinary coefficient of internal friction,
1 My
= 3ply = —— — . | 24

where p is the density, / the mean length of path of a particle, and v
the mean velocity v = 2a/\/n = 2 V2k/x,

[T
z=£—J—. 25
SNer (25)
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Now Professor Stokes finds by experiments on air,

~/‘-‘-= 116.
p

If we suppose v/k = 930 feet per second for air at 60°, and therefore
the mean velocity v = 1505 feet per second, then the value of /, the
mean distance travelled over by a particle between consecutive
collisions, = s4+&ssth of an inch, and each particle makes
8,077,200,000 collisions per second.
- A remarkable result here presented to us in equation (24), 1s that
if this explanation of gaseous friction be true, the coefficient of
friction is independent of the density. Such a consequence of a
mathematical theory is very startling, and the only experiment 1 have
met with on the subject does not seem to confirm it. We must next
compare our theory with what is known of the diffusion of gases, and

the conduction of heat through a gas.

PART 11

On the process of diffusion of two or more kinds of moving particles
among one another.

[This Part has been omitted because its methods and conclusions were
later found to be incorrect by Clausius, and the errors were admitted by
Maxwell. Maxwell’s improved theory of viscosity, diffusion, and heat
conduction in gases, first published in 1866, will be reprinted in the next
Kinetic Theory volume of this series of Selected Readings in Physics. 1t 1s
recommended that the student who wishes to learn how the mean-free-
path theory accounts for transport processes in gases should first consuit
a modern textbook on kinetic theory, and then read the omitted section of
this paper in Maxwell’s Scientific Papers, Vol. 1, pp. 392-405. There is a
useful note by W. D. NIVEN on p. 392 which cites Clausius’ objection.]

PART III

On the collision of perfectly elastic bodies of any form.

When two perfectly smooth spheres strike each other, the force
which acts between them always passes through their centres of
gravity; and therefore their motions of rotation, if they have any,
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are not affected by the collision, and do not enter into our calcula-
tions. But, when the bodies are not spherical, the force of impact
will not, in general, be in the line joining their centres of gravity ;
and therefore the force of impact will depend both on the motion of
the centres and the motions of rotation before impact, and it will
affect both these motions after impact.

In this way the velocities of the centres and the velocities of rota-
tion will act and react on each other, so that finally there will be some
relation established between them; and since the rotations of the
particles about their three axes are quantities related to each other
in the same way as the three velocities of their centres, the reasoning
of Prop. IV. will apply to rotation as well as velocity, and both will
be distributed according to the law

aN _ w1,
dx  an/m
Also, by Prop. V., if x be the average velocity of one set of particles,

and y that of another, then the average value of the sum or difference
of the velocities is

—Xx/a? )

Vx? + 2 ;
from which it is easy to see that, if in each individual case
u =ax + by + cz,

where x, y, z are independent quantities distributed according to the
law above stated, then the average values of these quantities will be
connected by the equation

u* = a’x* + b*y? + c¢2z.

Prop. XXII. Two perfectly elastic bodies of any form strike each
other: given their motions before impact, and the line of impact, to
find their motions after impact. |

Let M, and M, be the centres of gravity of the two bodies. M, X,
M,Y,, and M,Z, the principal axes of the first; and M,X,, M,Y,,
and M,Z, those of the second. Let I be the point of impact, and
R,IR, the line of impact.

Let the co-ordinates of I with respect to M, be x,y,z,, and with
respect to M, let them be x,y,z,.
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Let the direction-cosines of the line of impact R, IR, be /;m;n; with
respect to M,, and /,m,n, with respect to M,.

Let M, and M, be the masses, and 4, B, C, and 4, B,C, the moments
of inertia of the bodies about their principal axes.

Let the velocities of the centres of gravity, resolved in the direction
of the principal axes of each body, be

Uu, V,, W, and U,, V,, W,, beforeimpact,
and U',, V',, W,, and U’,, V',, W’,, after impact.

Let the angular velocities round the same axes be
Py, Gy, Ty, and p,, g,, r,, before impact,
and v 4, 'y, and p',, q',, r,, after impact.
Let R be the impulsive force between the bodies, measured by the
momentum it produces in each.

Then, for the velocities of the centres of grawty, we have the
following equations:

Ri RI
U’l — Ul -+ = U’ Uz —2

2
M M, (62)

with two other pairs of equations in ¥V and W.
The equations for the angular velocities are

! R f 4 R
Pi1=pDy T :Z_(ylnl —ZMm), Py =Ps — Z"(J’z"z — Z,m,), (63)
1 2

with two other pairs of equations for ¢ and r.
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The condition of perfect elasticity is that the whole vis viva shall
be the same after impact as before, which gives the equation
M; (U2 —U%) + M, (U?, — U%) + A, (0% — p*)
+ A, (p'%; — p%) + &c. = 0. (64)

The terms relating to the axis of x are here given; those relating to y

and z may be easily written down.
Substituting the values of these terms, as given by equations (62)

and (63), and dividing by R, we find
LU, +U)-4LU,+U)+ (yny — zymy) (p'y+ py)
— (yony — z,my) (P’ + py) + &c. = 0. (65)

Now if v, be the velocity of the striking-point of the first body
before impact, resolved along the line of impact,

and if we put v, for the velocity of the other striking-pbint resolved
along the same line, and »’, and v’, the same quantities after impact,
we may write, equation (65),

v, + v, —v, — v, =0, (66)
or | v, — v, =0, — Uy, (67)

which shows that the velocity of separation of the striking-points
resolved in the line of impact is equal to that of approach.

Substituting the values of the accented quantities in equation (65)
by means of equations (63) and (64), and transposing terms in R, we
find

2{({;}11 — Uyl + py (0yny — zymy) — p, (yan; — 2,m3); + &<

the other terms being related to y and z as these are to x. From this
equation we may find the value of R; and by substituting this in
equations (63), (64), we may obtain the values of all the velocities
after impact,
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We may, for example, find the value of U’, from the equation

I L2  (umi—zm)?  (y,n,—z,m,)? M, ]
1 I 1 —2Z;m, 2Ny —2,Mm, &c.}—l
1{M1+M2+ 4, 4, %

=U, {—{ﬁ-+ _l_zf_l_(.]’1”1"'z1m1)2 _I_(J’znz_zzmz)z
M, M, A4, 4,

+ &c.} % [
h

+ 22U, — 2p, (yyny — z;my) + 2p, (¥, — z,my) — &ec. J
(69)

Prop. XXIII. To find the relations between the average velocities of
translation and rotation after many collisions among many bodies.

Taking equation (69), which applies to an individual collision, we
see that U’, is expressed as a linear function of U,, U,, p,, p,, &c., all
of which are quantities of which the values are distributed among the .
different particles according to the law of Prop. IV. It follows from '
Prop. V., that if we square every term of the equation, we shall have
a new equation between the average values of the different quantities.
It 1s plain that, as soon as the required relations have been estab-
hished, they will remain the same after collision, so that we may put

U,’> = U,? in the equation of averages. The equation between the

verage values may then be written
2 2
/, —z,m,)

| (yyn
(M.U* — M,U,? M. + (M,U? — A,p* —1 1 IA
2 1

PR R ] mm . shemdle B b e - e -

2
N, ~— Z,m
+ (MlUlz — Azpzz)()—}%é_ﬁ + &C- = 0.
2
Now since there are collisions in every possible way, so that the

values of I, m, n, &c. and x, y, z, &c. are infinitely varied, this
equation cannot subsist unless

M,\U* = M,U,* = 4,p,* = 4,p,* = &c.

The final state, therefore, of any number of systems of moving
particles of any form is that in which the average vis viva of trans-
lation along each of the three axes is the same in all the systems, and
equal to the average vis viva of rotation about each of the three
principal axes of each particle.

Adding the vires vive with respect to the other axes, we find that
the whole vis viva of translation is equal to that of rotation in each
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system of particles, and is also the same for different systems, as was
proved in Prop. VI.

This result (which is true, however nearly the bodies approach the
spherical form, provided the motion of rotation is at all affected by
the collisions) seems decisive against the unqualified acceptation of
the hypothesis that gases are such systems of hard elastic particles.
For the ascertained fact that vy, the ratio of the specific heat at con-
stant pressure to that at constant volume, is equal to 1:408, requires
that the ratio of the whole vis viva to the vis viva of translation should
be

3 2
3@ -1

whereas, according to our hypothesis, 8 = 2.

We have now followed the mathematical theory of the collisions
of hard elastic particles through various cases, in which there seems
to be an analogy with the phenomena of gases. We have deduced,
as others have done already, the relations of pressure, temperature,
and density of a single gas. We have also proved that when two
different gases act freely on each other (that is, when at the same
temperature), the mass of the single particles of each is inversely
proportional to the square of the molecular velocity; and therefore,
at equal temperature and pressure, the number of particles in unit of
volume is the same. _ -

We then offered an explanation of the internal friction of gases,
and deduced from experiments a value of the mean length of path of
a particle between successive collisions.

We have applied the theory to the law of diffusion of gases, and,
from an experiment of olefiant gas, we have deduced a value of the
length of path not very different from that deduced from experiments
on _friction.

Using this value of the length of path between collisions, we found
that the resistance of air to the conduction of heat is 10,000,000 times
that of copper, a result in accordance with experience.

Finally, by establishing a necessary relation between the motions
of translation and rotation of all particles not spherical, we proved
that a system of such particles could not possibly satisfy the known
relation between the two specific heats of all gases.

B = 1-634 ;





