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A NEW DETERMINATION OF MOLECULAR
DIMENSIONS

(From the Annalen der Physik (4), 19, 1906,
pp. 289-306. Correctionssbid., 34, 1911, pp.
591-592.) (23)

THE kinetic theory of gaseanade possible
the earliest determinations of the actual
dimensionsof the molecules, whilst physical
phenomenabservablén liquidshavenot, up to
thepresentservedor thecalculatiorof molecular
dimensions. The explanatiorof this doubtless
lies in the difficulties, hitherto unsurpassable,
which discouragehe developmentf a molecular
kinetictheoryd liquidsthatwill extendo details.
It will be shownnow in this paperthat the size
of themoleculesf the solutein anundissociated
dilute solutioncanbe found from the viscosity of
the solution and of the pure solvent,and from
therateof diffusion of the soluteinto the solvent,

if the volume of a moleculeof the soluteis large
36
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comparedwith the volume of a moleculeof the
solvent. For sucha solute moleculewill behave
approximately,with respectto its mobility in
the solvent,andin respecto its influenceon the
viscosity df the latter, asa solid body suspended
in the solvent,andit will be allowableto apply
to the motion of the solventin the immediate
neighbourhood of a moleculethe hydrodynamic
equationsin whichtheliquid is considerethoma
geneousand,accordingly,its molecularstructure
is ignored. We will choosefor the shapeof the
solid bodies,which shallrepresenthe solutemole-
cules,the spherical form.

§ |. ON THE EFFECT ON THE MoTION OF A LIQUID
oF A VERY SMALL SPHERE SUSPENDED IN IT

As the subjectdf our discussionlet ustakean
incompressibléomogeneoukquid with viscosity
k, whosevelocity-components, v, w will begiven
asfunctionsof theco-ordinates #, ¥, z, and< the
time. Taking an arbitrary point x,, s, 2, Wwe
will imaginethat the functionsw, v, w are de-
veloped accordingto Taylor's theoremas func-
tionsdf ¥ — %y, ¥ — ¥, 2 — %, andthata domain
G is markedout aroundthis point sosmallthat
within it only the linear terms in this expansion
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haveto be considered. Themotiond theliquid
containedin G canthen be looked uponin the
familiar mannerastheresultdf the superposition
of threemotions,namely,

1. A parallel displacementf all the particles’
of the liquid without changeof their
relativeposition.

2. A rotation o the liquid without changeof
the relative position of the particlesof
theliquid.

3. A movementf dilatationin threedirections
at sightangles to oneanother (the prin-
cipal axes of dilatation).

We will imaginenow a sphericaigid body in
the domain G, whosecentrelies at the point x,,
Yo, %5, andwhose dimensions are very small com-
pared with those of the domain G, We will
further assumehat the motion under considera-
tion is so slow that the kinetic energy of the
sphereis negligible as well as that of the liquid.
It will befurtherassumedhatthe velocity com
ponentsof an element of surface of the sphere
show agreementvith the correspondingrelocity
componentsf the particlesof the liquid in the
immediateeighbourhood, thatis,thatthecontact-
layer (thought of as continuous)also exhibits
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everywherea viscosity-coefficient that is not
vanishinglysmall.

It is clearwithout further discussionthat the
sphersimplyshare@ thepartidmotionsi andz,
without modifyingthemotionof theneiglibouring
liquid, sincethe liquid movesasa rigid body in
thesepartial motions; andthat we haveignored
the effectsof inertia.

But themotion 3 will bemodifiedby thepres
enceof thesphereand ournext problemwill be
to investigatehe influenceof the sphereon this
motion of the liquid. We will further referthe
motion 3 to a co-ordinate systemwhoseaxesare
parallel to the principal axes of dilatation,andwe
will put

% — %= §,
Y—=Ye ="
z— 2z =1,
thenthemotioncanbe expressetly theequations
Uy = A¢,
(I) Vg = BT}:
w, = C{,
in the casewhen the sphereis not present.
4, B, C areconstantsvhich, on accountof the
incompressibilityof the liquid, must fulfil the
condition

(2) A+B+C=o0 . (24)
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Now, f therigid spherewith radiusP is intro-
ducedat the point x,, ¥,, 2, the motionsof the
liquid in its neighbourhood aremodified. In the
foliowing discussiorwe will, for the saked con
venience,speakd P as “finite” ; whilst the
valuesd ¢, g, ¢, for which the motionsof the
liquid areno longerappreciablynfluencedby the
spherewe will spealkof as ““ infinitely great.”

Firstly, it is clear from the symmetryd the
motionsof the liquid under considerationthat
therecanbe neithera translationnor a rotation
of the sphereaccompanyinghe motionin ques
tion, andwe obtainthelimiting conditions

#=v=w=0whenp=P
wherewe haveput
p=NE+pP+E>o.

Hereu, v, w arethe velocity-component®f the
motion NOw underconsideratiorjmodified by the
sphere). If we put

%=A§+M1,
(3) 7)=B7)+v1:
w=C{ + w,

sincethe motion definedby equation (3) must be
transformedinto that defined by equations(i)
in the “infinite” region, the velocitiesy,, v;, w,
will vanishin thelatterregion.
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The functionsu, v, w must satisfythe hydro-
dynamic equationswith due referenceto the
viscosity,andignoringinertia. Accordingly,the
following equationsvill hold :— (*)

@) {bj’-kz] ’b_;g i, ap_kd bu_l_bv_!_\w

0§ b14 of
where4 stands‘or theoperator
afl
afﬂ + + bgﬂ

andp for the hydrostatlcpressure.

Since the equations(1) are solutionsd the
equationg4) andthe latter arelinear, according
to (3) thequantitiewu,, v,, w; mustalsosatisfythe
equation$§). | havedetermined u,, v,, w,, andp,
accordingto a method given in the lecture of
Kirchhoff quotedin § 4 (1), andfind

(*) G. Kirchhoff, “ Lectureson Mechanics,”Lect. 26.

(1) “ From the equationgy) it followsthatap = o.
If p is chosenin accordancevith this condition, and a
function ¥ is determinedwhich satisfiesthe equation

I
AV = E?n
thenthe equationg4) are satisfiedif we put
AV ’ 14
U= — + u, v=_— v’ s = !
of o T w= { +w

and choseu’, v’, @', so that A’ = o0, aAv’ = o, and
Aw’ = 0, and
du’ dw’ I

M+w+x““'

1]
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afz 772

*(;)

Y& } -~ const.

p= ‘*sz{A

+ G Lt~

— 4 3psyé D

u=A¢ 3PAa S

— By — 3pspn 3D

{

= —upsGc. - .

w= C{ Pcpa Y&
Now if we put

PRl

P P

7‘;—26355

andin agreementvith this

=+ba&*+ -9

I

and
w = — 2¢_P, v =0, w = o,
o

the constants:, b, e canbe choserso that when p =20,
u=v=w=o0 By superpositionof three similar
solutionswe obtainthe solutiongiven in the equations
(5) and (5a).
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where
,

D= A{%PDE, w}

2

Fof3pt s 1‘2}.

It is easyto see that the equationg5) are solu
tionsof the equationg4). Then,since

(52) )

+B{5P3 + P5

\

d¢=o, A’L;=o, A,,:i
and

(5= ) -0
weget

)
I
%= 2t
—pol5 P 3p p
_ kbE{P"Aafz-!— PB_E . }

But the last expressiorobtainedis, accordingto
thefirst of the equationys), identicalwith dp/d¢.
In similar manner,we canshowthat the second
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andthird of the equationg4) aresatisfied. We
obtainfurther—

Rt =UHBLO
+ SPS{ bz( ) + Bbz( ) + cbz(fz’)} — 4D.

Y2 YE

But since,accordingto equationsa),

4D =34 2() bz() ()}

3 352 blz

it' follows that the last o the equations(4) is
satisfied. As for the boundary conditions, our
equationdfor #, v, w are transformedinto the
equationg(zr) only when p is indefinitely large.
By insertingthe value of D from the equation
(52) in the seconddf the equationg5)we get

6) u=A¢— —~—§(A§2 + By + CL?)
43 S Prae + Byt + C2) — PT‘Af (25)

We know that # vanishesvhenp = P. On the
groundsof symmetry the sameholdsfor » andw.
We havenow demonstratethatin the equations
(5) a solutionhasbeenobtainedto satisfy both
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the equationg4) andthe boundaryconditionsof
the problem.

It canalsobe shownthat the equationg5) are
the only solutionsdf the equationg4) consistent
with the boundary conditions d the problem.
The proof will only be indicatedhere. Suppose
that, in afinite spacethe velocity-componentsf
aliquid #, v, w satisfytheequationg4). Now, if
anothersolutionU, V,W o theequationg4) can
exist,in which on the boundariesf the spheren
questionU =u, V =v, W = w, then (U— %,
V —v, W —w) wil be a solutiond the equa
tions(4), in whichthe velocity-componentganish
at the boundariesf the space. Accordingly,no
mechanicalWwork,can be doneon the liquid con
tainedin the spacein question. Sincewe have
ignoredthekinetic energyadf theliquid, it follows
thatthe work transformednto heatin the space
in questionis likewise equalto zero. Hencewe
inferthatin thewholespaceve musthavex = «’,
v=1, w =, if the spaceas boundedat least
in part, by stationarywalls. By crossingthe
boundariesthis result can also be extendedto
thecasewhenthe spacan questionis infinite, as
in the caseconsiderecbove. We canshowthus
that the solution obtained above is the sole
solution of the problem.
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We will now placearoundthe pointx,, ¥, % a
sphered radiusR, whereR is indefinitely large
comparedwith P, and will calculatethe energy
whichis transformednto heat(perunit of time)
in theliquid lying within thesphere. Thisenergy
W is equalto the mechanicawork doneon the
liquid. If we callthecomponentsf the pressure
exertedon the surfaceof the spheredf radiusRr,
X., Y., Z,, then

W= j (Xuth + Vi + Zy0)ds

wherethe integrationis extendedverthe surface
o the spheref radiusR.

Here

X,=— (X;g + X7+ Xgp&),

Vo= (Yé+v1+7),

i

Zy

—(z.¢+ 21+ 21,
(Eg+ vl ‘5)
where

X5=p Zki-g{ Y;—-Z — '_y
Y,,=p~—-zk§g, X;_—k§i§’é’i §

ZF"'P—ZI‘»C’ X,"=Yf='"k(§‘t )

Xy= +5kP“(—4iﬁ?ﬁ—25kPa§7l(A §2+£72+C S
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The expressionfor «, v, w aresimplified whenwe
note that for p = R the termswith the factor
P8/p5 vanish.

We haveto put

o°
(63) Y= B’? _— g Pa"?(A £+ ﬁfqz 4+ C gz)
W= C{—~ §ps§(~4§2 + Bn2 4 C{?)

2 P5

For p we obtainfrom thefirst of the equationgs)
by correspondingmissions

p=— 5kP*’A§2 + B:gz rce 4+ const.

We obtainfirst
X=—2kA +IokP8‘i £ spptid §2+57,=+Cg2)

23)

Xp= +5kpa(r4 “};S)fg_zskpsfl(!l-fz-l—f:y”—l-CC”)

andfromthis

Xn=2Ak§_5AkP3§z + 20kpr AL ,l;nz T8 (23)

With the aid of the expressiondor Y, and Z,,
obtainedby cyclic exchangewe get, ignoring all
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termswhich involve the ratio P/p raisedto any
powerhigherthanthethird,

Xt Yoo -+ Zyw = '::;’(_Azgz + B2 4 C202)

— kg (414 Byt CH) -+ ISHER AL+ BrP+C LY. 23)

If we integrateoverthe sphereandbearin mind
that

§ ds = 4R?n,

§ £ds = § n2ds = § {2ds = $nRY,

§ E4ds == § ntds = § {4ds = $nRS,

§ n?l2ds = § [28%ds = § {2nPds = {5mRS,

§ (A&24+-Bn2+-Co)2ds = £&nRS(A24-B24-C?), (23)
we obtain

(7) W = $aRK5 4 $mPoh3t = 23%(V + 7). (23)

where we put
82 = A% + B* I C?,

ATRs — V and 4aPt = @
3 3

If the suspendedpheraverenotpresent{® = o),

thenwe shouldgetfor the energyusedup in the

volumeV,

(7a) W = 28%V.

On accountd the presence of the sphere,the

energyusedup is thereforediminishedby §2k®.
(26)
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§ 2. CALCULATION OF THE ViscosITY-COEFFICIENT
OP A LiQuiD IN WHICH A LARGE NUMBER
OF SMALL SPHERES ARE SUSPENDED IN |R-
REGULAR DISTRIBUTION

In the precedingdiscussiorwe haveconsidered
the casewhenthereis suspendeth a domainG,
of the orderof magnitudedefinedabove a sphere
that is very small comparedwith this domain,
and have investigatedhow this influenced the
motion d theliquid. We will now assumehat
an indefinitely large numberd spheresare dis-
tributed in the domainG, of similar radiusand
actually so small that the volume of all the
spheresogethelis very smallcomparedwith the
domainG. Letthenumberdf spherepresentn
unit volume be#x, wherex is sensiblyconstant
everywheren the liquid.

We will now start oncemorefrom the motion
of a homogeneoudiquid, without suspended
spheres,and consider again the most general
motion of dilatation. If no spheresarepresent,
by suitablechoiceof the co-ordinate systemwe
canexpresshe velocity components,, v,, @,, in
the arbitrarily-choserpoint , y, z in thedomain
G, by theequations
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g = Ax,

v, = By,

w, = Cz,
where A=£B+4+C=o.

Now a spheresuspendedt the point'z,, ¥, 2,
will affect this motionin a mannerevidentfrom
the equation (6). Sincewe have assumedhat
theaveragelistancdetweemeighbouring spheres
is very great comparedwith their radius, and
consequentlyhe additional velocity-components
originating from all the suspendedspheresto-
getherare very small comparedwith #%,, v, w,,
we get for the velocity-components, v, » in the
liquid, takinginto accountthe suspendedpheres
andneglectingermsd higherorders—

A {5 ps f(Afv”-l-Bnﬁ—i—CCz)

#=Ax —
_ 5P f»(A £+ an2 + Ct?) , P Ag,}
2 ) + ok
Pv Pv Py Py
— By~ p{3EiAE By cLy

2p,2
5P q(462 + B‘mz +CLy , Ps Bm}
2 +
Pv Pv Pv
w=Cz — 2{5 p3 gu(Afv -+ B"?vz + ngz)

2 p,?
5P G462+ Bnyz + CLY) + ps CC,.}
\ Zp,, PV Pv

@) |

MOLECULAR DIMENSIONS 51

wherethe summations extendedverail spheres
in the domainG, andwe put

gv =X — Xy,
v =y - Y Pv = ~/§v2’+ 77v2 + {vzy
b =2z—2z,.

%, Y, % arethe Co-ordinatesof the centredf the
sphere.. Further, we 'concludefrom the equa
tions (7) and(7a) thatthe presencef eachof the
spheredasa result (neglectingndefinitely small
guantitiesdf a.higher order) (23) in anincrease
o theheatproductionperunit volume,andthat
the energyper unit volumetransformednto heat
in thedomainG hasthevalue

W = 28% + nd%ko®, . - (23)
or

(7b) W= 25%(x + g) .. (23)

where¢ denoteshe fractionof the volumeoccu
pied by the spheres.

Fromthe equation(sb) the viscosity-coefficient
canbe calculatecf the heterogeneoumixture of
liquid and suspendedspheres(hereaftertermed
briefly *“ mixture”) under discussion ; but we
mustbearin mindthatA, B, C arenot thevalues
o the principal dilatationsin the motion of the
liquid definedoytheequationg8), (23) ; wewill call
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the principal dilatationsdf the mixture 4*, B*,
C*. Onthegroundsdf symmetryit follows that
the principal directionsof dilatation of the mix-
tureareparallelto the directionsdf the principal
dilatations4, B, C, andthereforeto the Co-ord-
nate axes. F we write the equations(8)in the
form

w'= Ax 4 Zu,
v = By + 2v,,
w=Cz 4+ Zw,,

we get

[ U, . .
A% = (5; s 4 +2( )zao—A— C(¥% 4mo
If we excludefrom our discussiorthe immediate
neighbourhood of the singlespheresye canomit
the seconcandthird termsof theexpressiongor
u, v, w, andobtain whenxy = y = 2z = 01—

" = _5P3x,,(Ax, + By,? +Cz2)

27,2 7,3
_ _5P3y,(4%2+ By2 4+ C 2)
(9) v, = 27, v 2 ’,v
w, = 5P P3z,(Ax,* + Bz? + 0z
YT T 4R 7,3
wherewe put
=52+ y2+22>0.
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We extendthe summatiorthroughouthe volume
of asphereX of verylargeradiusk, whosecentre
lies at the origin of the Co-ordinatesystem. I
we assumdurtherthattheirregularly distributed
spheresarenow evenlydistributedandintroduce
anintegralin placed thesummationyve obtain

U,
* y
A*=A4 f axvdx.,dy.,dzw

=4 — nj%ﬁ'ds . . (27)
where the last integration is to be extended over
the surface of the sphere K. Having regard to
(9) we find

A% = 4 — 3 gs I w2 (Ax? -+ Bygd + Ca)ds

=4 — n(gPsw)A = A(x — ¢).

By analogy
B* = B(1 — ¢),
C* = C(x — ¢).
We will put.
s*2 — A*2 | B#z L Oz

then neglectingindefinitely small quantities of

higherorder,
&% = 841 — 2¢).



54 THEORY OF BROWNIAN, MOVEMENT

We havefound for the developmentf heatper
unit o time andvolume

W=w¢+9. . (23)

Let us call the viscosity-coefficient of themixture
k*, then
W* = 28%2k*,
Fromthelastthreeequationsve obtain(neglecting
indefinitelysmallquantitiesdf higherorder)
R*=k(x+254) . - (23)
We reach,therefore the result:—

F very smallrigid spheresare suspendedn a
liquid, thecoefficientdf internalfrictionisthereby
increasedy a fractionwhichis equalto 2-5 times
the total volume o the spheresuspendedn a
unit volume, provided that this total volumeis
very small.

§ 3. ON THE VOLUME OF A DISSOLVED SUBSTANCE
OF MOLECULAR VOLUME L ARGEIN COMPARISON
WITH THAT OF THE SOLVENT

Considera dilute solutionof a substancevhich
doesnot dissociatén the solution. Supposehat
amoleculed thedissolvedsubstanceslargecorn
paredwith a moleculedf the solvent; andcanbe
thoughtof asarigid spheredf radiusP. Wecan
then apply the result obtainedin Paragraphe.
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F %* be the viscosity of the solution,% 'that o
the puresolventthen

%*
ToidEsh . (23)
where ¢ is the total volume of the molecules
presenin the solutionperunit volume.

We will calculate for a 1 per cent.aqueous
sugar solution According to the observations
of Burkhard (Landolt and Bérnstein Tables)
k* |k = 10245 (at20° C.) for a I per cent. aqueous
sugarsolution; thereforep = 0-024; for (approxi-
mately) oor gm. of sugar. A gramadf sugardis-
solvedin water hasthereforethe sameeffect on
the viscosity assmall suspendedigid spheresf
total volumeo-g8 c.c. (23)

We mustrecollectherethat 1 gm. of solid sugar
hasthe volume 0-61 c.c. We shallfind the same
valuefor thespecificvolumes o the sugampresent
in solutionf the sugarsolutionis lookeduponas
a mixtureof waterandsugarin a dissolvediorm.
Thespecificgravity d a1 percent.agueousugar
solution (referredto water at the sametempera
ture)atiy-5° is1-00388. We havethen (neglect
ing the differencein the densityd water at 4°
andatiy:5°)—

L =0 + o01s
1-00388 9 + )
Therefore s = 0-61.
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While, therefore the sugarsolutionbehavesas
to its density,like a mixture of water and solid
sugartheeffectontheviscosityis oneandonehalf
timesgreaterthan would haveresultedfrom the
suspensionf anequalmassof sugar. It appears
to methatthis resultcanhardly be explainedn
the light of the moleculartheory, in any other
mannerthan by assumingthat the sugarmole
culespresentn solutionlimit the mobility of the
water immediatelyadjacent,so that a quantity
o water, whose volume is approximatelyone-
half (z3) thevolume of thesugarmoleculeisbound
on to the sugarmolecule.

We can say, therefore,that a dissolvedsugar
molecule(orthe moleculetogethemith the water
held boundby it respectivelybehavesn hydro-
dynamicaelationsasaspheref volumeo-g8 . 342/N
c.c. (23), where34z isthemoleculamweightof sugar
andN thenumberd actualmoleculesn a gram-
molecule.

§4. ON THE DIFFUSION OF AN UNDISSOCIATED
SUBSTANCE IN SOLUTION IN A LiQuiD

Consider sucha solutionaswas dealt with in
Paragrapls. I a forceK actsonthe molecule,
which we will imagineas a sphered radius P,
the moleculewill move with a velocity « which
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is determinedby P and the viscosity 2 o the
solvent.

Thatis, the equationholds:—(¥*)
(1) w= fé%—f e g
We will usethisrelationfor the calculationd the
diffusioncoefficientof an undissociatedolution.
If # is the osmoticpressuref the dissolvedsub
stancewhich is looked upon as the only force
producingmotionin thedilute solutionundercon
siderationthenthe force exertedn the direction
of the X-axison the dissolvedsubstanceer unit
volumed the solution= — dp/dx. K thereare
p gramsin a unit volumeand is the molecular
weight o the dissolvedsubstancely the number
of actual moleculesin a grammolecule, then
(p/m)N is the numberdf (actual)moleculesin a
unit of volume,andtheforceactingon amolecule
asaresultd thefall in concentrationvill be

—_m?
(2) — pNw
If the solutionis sufficiently dilute, the osmotic

pressuras givenby the equation
R

(*) G. Kirchhoff, * Lectures on Mechanics; Lect.
26 (22).
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where T is the absolute temperature and
R = 8-31.10”. Fromthe equationg1),(2), and
(3) we obtainfor the velocity of movementf the
dissolvedsubstance

RT 1 3

W= — e,

Finally, the weight of substanceassingper unit
o time acrossunit areain the direction of the
X-axiswill be

RT 1

(4) P =T bmk NP 3

We obtain thereforefor the diffusion coefficient
D—
RT 1
D= 6% NP

Accordingly, we cancalculatefrom the diffusion-
coefficientand the coefficientof viscosity of the
solventthevalued theproductof thenumberN

of actualmoleculesn a grammoleculeandof the
hydrodynamically-effective radiusP of the mole-
cule.

In this calculationosmoticpressurds treated
as a force acting on the individual molecules,
which evidently doesnot correspondwith the
conceptionsf thekinetic-moleculartheory,since,
accordingto the latter, the osmotic pressuran
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the caseunderdiscussionrmust be thoughtof as
a virtual force only. However, this difficulty
vanished we reflect that (dynamic)equilibrium
with the (virtual)osmoticforceswhich correspond
to thedifferencesn concentratiomf the solution,
can be establishedy the aid o a numerically
equalforce actingon the singlemoleculesn the
oppositedirection; ascan easily be established
following thermodynamienethods.

Equilibrium can be obtainedwith the osmotic

forceactingonunit mass;— % g—x’z, bytheforce— Px

(appliedto theindividual solutemolecules¥
_I% _ px=o.
P

f weimagine thereforefwo mutually eliminat
ing systemsf forcesPx and— Px appliedto the
dissolvedsubstancegper unit mass),then —Px
establishegquilibriumwith the osmoticpressure
and only the force Px, numericallyequalto the
osmoticpressureremainoverascauseal motion.
Thusthe difficulty mentioneds overcome.(*)

(*) A detailedstatementf thistrainof thoughtwill be
foundin Ann. d. Pays., 17, 1905, p. 549.
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§ 5. DETERMINATION OF MOLECULAR DIMENSIONS
WITH THE HELP oF THE RELATIONS ALREADY
OBTAINED

Wefoundin Paragraphy
%
% =1+ 25¢ =1+ 25n. gﬂP" (23)

wherer isthenumberd solutemoleculegperunit
volume and P the hydrodynamically-effective
radiusof the molecule. f we bearin mind that

N_o»
n m

where p is the massdf the dissolvedsubstance

presentin unit volume and = is its molecular
weight, we obtain

NP* _ %?(ﬁg —

Ontheotherhand,wefoundin § 4

RT L
NP =%oD

Thesetwo equationsput us in the position to
calculateeachdf thequantitied? andN, of which
N mustshowitself to beindependentf thenature
o the solvent,of the soluteandadf the tempera
ture,F our theoryisto correspondavith thefacts.
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Wewill carryoutthecalculatiorfor anaqueous
sugarsolution. Firstly, it follows from the data
given abovefor the viscositydf sugarsolutionat
20° C.

NPt=8 . . . (23)

Accordingto the researchesf Graham(calcu
lated out by Stephan), the diffusion-coefficientof
sugarnn wateratg-s5° is 0-384, f thedayis taken
asunit of time. Theviscositydf wateratg-s° is
o-0135. Wewill insertthesedatain our formula
for the diffusion-coefficient, althoughthey were
obtainedwith 10 percent.solutionsandit is not
to be expectedhat our formulawill be precisely
valid at sohigh a concentration. We get

NP = 2-08. 10t8,
It followsfrom thevaluedoundfor NP3 andNP,

if we ignorethe differencein P at 9-5° andzo°,
that '
P=62.10%cm. . - (23)
N = 3-3. 10%,
The valuefoundfor N agreesatisfactorily, in
orderof magnitude with the valuesobtainedby
othermethoddor this quantity.

Berne,3o 4pril, 1905.
(Received g August, 1905.)
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Supplement

In the new edition of Landolt and Bérnstein’s
“ PhysicalChemicalTables’ will be found very
usefuldatafor the calculationd the sizeof the
sugarmolecule,andthe numberN of the actual
moleculesin a grammolecule. Thovert found
(Table,p. 372) for thediffusion-coefficientof sugar
in waterat 18-5° C. andthe concentratiom-oos
mol. litre thevalueo-33 cm.2/day. Fromatable
(p. 81), with the resultsdf observationsnadeby
Hosking, we find by interpolationthat in dilute
sugarsolutionsan increasein the sugarcontent
d 1 percent.at18-5° C. correspond® anincrease
o the viscosityof o-00025. Utilizing thesedata,
we find

P = 049 . 107 mm.
and
N =6156.10% . . (23),(28)
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