Strange Attractors in dissipative dynamical systems

Aleix Ciudad



1 Introduction to Chaos

The word chaos comes from the hellenic xdos (opening) when it was used to
talk about the origin of the known world before Gods came and turned it into
Cosmos (kdopos) The chaotic is related with the unpredictable, unexpected,
disordered, erratic...but if we want to get in deeper water, a little more
conciseness is required.

What scientists call chaos is only a special part of all our incapacity to predict
the future (main feature of the physics in the last centuries). We can separate
this incompetence in three aspects:stochasticity,spatiality and chaos. It’s
impossible to perform an exact prediction when at least one of the previous
characteristic is present. In the first case, because of completely random
noise. In the second, the infinity of degrees of freedom makes the problem
infinitely hard. But, surprisingly, the chaotical behavior is deterministic.
”So what’s the problem?” one could ask. ” All is governed by the equations”.
This yields to the fundamental property of chaos: quasi similar systems in
an initial time will evolve to completely different situations, that is, two close
trajectories in the phase space become exponentially separated with time. It
means that any initial difference between them will grow becoming crucial.
That’s the reason why we call this chaos. Because our limited precision in
any measure will be nothing compared with the growing error.

2 Introduction to Attractors

Nonlinear equations, the ones describing the most complex phenomena, are
very difficult and usually impossible to deal with. That was the reason why
Henry Poincaré, in 1892, introduced a new point of view, more qualitative
but not useless at all. It consisted to analyze the behavior of trajectories in
the phase space, leading to concepts like bifurcations, stability, fixed points,
attractors. ..

It’s not easy to define what an attractor is. Roughly speaking we can say
that is a set to which all neighboring trajectories converge. But a more
precise definition can be formulated (Strogatz 1994). We call a closed set A
attractor if next three properties hold.

1. A has to be an invariant set, that is, any trajectory Z(t) starting in A
stays in A for all time.

2. A attracts an open set of initial conditions: There is an open set U
containing A such that if Z(0) € U,then the distance from Z(¢) to A
tends to zero as t — oo. The largest U holding this is called the basin
of attraction of A.

3. A is undecomposable: there is no subset of A satisfying 1 and 2.

Any single stable fixed point or limit cycle is an example of attractor.



3 Dissipative dynamical systems

A dissipative system is a system where Liouville’s theorem doesn’t hold
anymore and consequently any volume of the phase space will decrease with
time. Let V be the volume enclosing a surface S and let

T=F@), &= (z1,...7q) (1)

be the dynamical equations governing the flow. Then, the volume V will
evolve
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Thus, we define a dissipative system as the one with % <0.

4 Definition of a strange attractor
A strange attractor has the two following properties:
1. It is an attractor in the sense of the definition of the previous section.

2. The reason to be strange comes from the fact that is very sensitive on
the initial conditions. In other words: despite the volume contraction,
two close initial points become exponentially separated for very long
times.

How it is possible? How can we maintain volume contraction and chaotic
behaviour without contradiction? In figure 1 we can see that the volume
shrinks in some directions and streteches in others, while a refolding takes
place to keep the volume evolution. This process is what produce a chaotic
motion in the attractor.
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Figure 1: Volume evolution of the strange attractor



5 An example: The Lorenz Attractor

Lorenz, a meteoroligist of the XX century, proposed a model in which three
coupled, first order, nonlinear differential equations led to complete chaotic
trajectories.

X=-0X+0oY (3)
Y=-XZ4+rX-Y (4)
Z=XY -bZ (5)

In figure 2 we can see a simulation of the model for r = 28,0 = 10,6 = %.
If we plot one of the coordinates versus time we will note the irregular
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Figure 2: Lorenz attractor

oscillations. (Figure 3) We can also calculate the Liapunov exponent for the
attractor.(Figure 4) Approximately, A = 4 - 1074,

6 The Kolmogorov Entropy

The Entropy introduced by Komogorov (1959) is the best characterization
of any chotic motion. It’s related with the thermodinamic entropy as well
as with Liapunov exponents. Let’s start defining it by considering a d di-
mensional trajectory Z(t) of a dynamical system. We’ll consider the d space
divided in boxes {¢. Then, if we measure the system every time 7, the prob-

ability of Z(t = 0) being in box ip, Z(t = 7) in box i1, ..., and Z(t = n7) in
ip, Will be P, ; . Making use of the Shannon definition of entropy we get
Kn=— Y Py.i,log(Py..i,) (6)
10...%n
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Figure 3: Aperiodic motion

K, +1 — K, is the loss of information from time n7 to time (n + 1)7. So the
Kolmogorov Entropy is defined as the average rate of loss of information,

that is,
1 N1
K =limlim lim — K, — K, 7
T g i, 7 2 U = K "
In a one-dimensional map, K is just the (positive) Liapunov exponent A. In

higher dimensions is just the average of positive Liapunov exponents:

K = / dap() YN (@) (8)

7 Extraction information of the attractor from a
signal

First of all, is useful to define the generalized dimension Dy. If we divide the
attractor in boxes of linear dimension [ and p; is the probability that the
attractor visits box i, then averaging powers g of the probabilities,

1 q
0 Ilog(zi:pi) (9)

D, =—lim——
g l%q—l'log

This quantity is no more than a correlation between different points of the
attractor, because Y, py is, for ¢ > 1, the total probability of having g points
in one box. Sometimes we want to study the properties of an attractor but we
can’t measure all components of the trajectory at the same time (evident for
an infinite dimensional time). Then, is useful to deal with the time series of
one component in order to reconstruct some properties of the whole attractor
(Takens 1981). If we have a d-dimensional flow

d, =
=i = F(?) (10)
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Figure 4: Liapunov exponent

then it can be proved (Takens 1981) that the vector
£(t) = (), @i (¢ +7), i (t + (2d + 1)7)) (11)

provides a smooth aproximation of the flow. Let’s check this tool with the
Rossler attractor (1976):

T=—-z—y (12)
y=z+ay (13)
z=b+z(x—rc) (14)

The direct simulation is shown in figure 5. Moreover, in figure 6 we recon-
struct the attractor with 7 = 0.92. What’s the meaning of 77 If we choose
it very small, z(¢) and z(t+ 7) will be indistinguishable and the realtion be-
tween them will be linear. The most reasonable choice is to take 7 as close
to the autocorrelation time as we can. (See figure 7). Another interesting
quantity is the correlation integral C(I) defined like

C(l) = lim NQZ& ) (15)
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from which one can get the correlation dimension Ds as the slope in figure
8, where for the Rossler attractor we obtain Dy = 1.05. This correlation
integral can also be used to distinguish between deterministic irregularities
and external white noise. If we have an strange attractor in a space where
there is white noise, each point of the attractor will be sorrounded by a cloud
of points in a d sphere of radius [y (the intensity of the noise). If [ > [y, the
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Figure 5: Rossler attractor

distance between points will not be affected very much, but if we increase
the intensity of noise, then the distances between closer points will increase
yielding to a lower value of C(l). In figure 9 we can observe the effect of the
noise for different values of its intensity.

8 The Julia and Mandelbrot sets

Let’s consider the map
tntt = ful2) = 2+ o (16)

where z;,c¢ € €. We say that a Julia Set J. is the boundary of a basin of
atraction of the map. In this case, the basin of atraction of zx = oo forms a
Julia set J; of f.(z). Julia (1981) and Fatou(1919) demonstrated that J. is
connected if and only if the following limit doesn’t hold
s n

Jim f77(0) = oo (17)
The, one can ask: Which values of ¢ make J. connected? So the answer is:
There is a set M for which the corresponding Julia set is connected. We say
M is the Mandelbrot Set. In figure 10 we can see the general and popular
aspect of M.
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Figure 6: Reconstructed Rossler attractor
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Figure 7: Time autocorrelation
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Figure 8: Correlation dimension
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Figure 9: White noise/correlation dimension

Figure 10: Mandelbrot Set
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